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Abstract

Motivated by applications in grid computing and projects management, we study multiprocessor
scheduling in scenarios where there is uncertainty in the successful execution of jobs when assigned to
processors. We consider the problem ofmultiprocessor scheduling under uncertainty, in which we are
givenn unit-time jobs andm machines, a directed acyclic graphC giving the dependencies among the
jobs, and for every jobj and machinei, the probabilitypij of the successful completion of jobj when
scheduled on machinei in any given particular step. The goal of the problem is to find a schedule that
minimizes the expected makespan, that is, the expected completion time of all the jobs.

The problem of multiprocessor scheduling under uncertainty was introduced in [21] and was shown
to be NP-hard even when all the jobs are independent. In this paper, we present polynomial-time approxi-
mation algorithms for the problem, for special cases of the dagC. We obtain anO(log n)-approximation
for the case of independent jobs, anO(logm log n log(n+m)/ log log(n+m))-approximation whenC
is a collection of disjoint chains, anO(logm log2 n)-approximation whenC is a collection of directed
out- or in-trees, and anO(logm log2 n log(n+m)/ log log(n+m))-approximation whenC is a directed
forest.

Keywords: Approximation Algorithms, Multiprocessor Scheduling.



1 Introduction

We study the problem of multiprocessor scheduling under uncertainty, which was introduced in [21] to study
scenarios where there is uncertainty in the successful completion of a job when assigned to a server. One
motivating application is in grid computing, where a large collection of computers, often geographically dis-
tributed,cooperate to solve complex computational tasks. To make better use of the distributed computers,
a task is usually divided into smaller pieces (or jobs) and handed to different computers. For many appli-
cations, there could be non-trivial dependencies among these jobs. Due to the possible physical failures,
or simply the distributed nature of the computing environment, a machine may not successfully execute the
assigned job on time. In this scenario, a natural goal is to determine a schedule of assigning the given jobs
to the computers so that the expected completion time of the task is minimized.

A similar example, also discussed in [21], arises while managing a large project in an organization. The
project may be broken down into small jobs with dependencies among them, i.e., a job may be executed only
after the successful completion of another set of jobs. A group of workers are assigned to this project. Due
to practical reasons and different skills, a worker may not be able to finish an assigned job successfully on
time. To decrease the chance of the potential delay of some key jobs, the project manager could (and would
want to) assign several workers to these jobs at the same time. Based on past experiences and the workers’
skill levels, the project manager can estimate the successful probability of any particular worker finishing
any particular job. The challenge for the manager is to work out a strategy (or schedule) of assigning the
workers to the jobs so that theexpectedcompletion time of the whole project is as small as possible.

Motivated by the examples above, we study the problem ofmultiprocessor scheduling under uncertainty,
henceforth referred to asSUU. We have a set ofmmachines, a set ofn unit-time jobs, and a directed acyclic
graph representing precedence constraints on the order of the execution of the jobs. We are also given,
for every jobj and machinei, the probabilitypij of the successful completion of jobj when scheduled
on machinei in any given particular step. To compensate for this uncertainty, multiple machines can be
assigned to one job at the same time. We focus on the problem of computing a schedule to minimize the
expected makespan, which is the expected time to complete all the jobs.

1.1 Our results

The multiprocessor scheduling problemSUU is shown to be NP-hard in [21] even when all jobs are indepen-
dent. In this paper, we present approximation algorithms forSUU, for several special classes of dependency
graphs.

• We first consider the case when all the jobs are independent and present anO(log n)-approximation
algorithm for the problem (§3).

A crucial component of our approach to the independent jobs case is the formulation of a sub-problem in
which we aim to maximize the sum of success probabilities for the jobs. A similar strategy, refined to handle
job dependencies, allows us to attack the more general case where the jobs are not independent.

• When the precedence constraints on the jobs form a collection of disjoint chains, we obtain an
O(logm log n log(n+m)

log log(n+m)) approximation algorithm (§4.1). Our results rely on solving a (relaxed)
linear program and rounding the fractional solution using results from network flow theory.

• Using the algorithm for disjoint chains and the chain decomposition techniques of [17], we obtain
O(logm log2 n) andO(logm log2 n log(n+m)

log log(n+m)) approximations for a collection of in- or out-trees
and directed forests, respectively (§4.2).
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The schedules computed by the algorithms for disjoint chains, trees, and directed forests, are all oblivious in
the sense that they specify in advance the assignment of machines to jobs in each time step, independent of
the set of unfinished jobs at that step. Oblivious schedules are formally defined in§2, where we also present
useful definitions and important properties of schedules that are used in our main results.

To the best of our knowledge, our results are the first approximation algorithms for multiprocessor
scheduling under uncertainty problems. Due to space constraints, we have omitted many of the proofs; they
may be found in the appendices A through C.

1.2 Related work

The problem studied in our work was first defined in the recent work by Malewicz [21], largely motivated by
the application of scheduling complex dags in grid computing [9]. Malewicz characterizes the complexity
of the problem in terms of the number of the machines and thewidth of the dependency graph, which is
defined as the maximum number of independent jobs. He shows that when the number of machines and
the width are both constants, the optimal regimen can be computed in polynomial time using dynamic
programming. However, if either parameter is unbounded, the problem is NP-hard. Also, the problem can
not be approximated within a factor of5/4 unless P=NP. Our work extends that of Malewicz by studying the
approximability of the problem when neither the width of the dag nor the number of machines is bounded.

The uncertainty of the scheduling problem we study comes from the possible failure by a machine
assigned to a job, as modeled by thepij ’s. There have been different models of uncertainty in the scheduling
literature. Most notable is the model where each task has a duration of random length and may require
different amount of resources. For related work, see [7, 6, 14, 29, 16, 11].

Scheduling in general has a rich history and a vast literature. There are many variants of scheduling
problems, depending on various factors. For example: Are the machines related? Is the execution preemp-
tive? Are there precedence constraints on the execution of the jobs? Are there release dates associated with
the jobs? What is the objective function: makespan, weighted completion time, weighted flow time, etc.?
See [13] for a survey and [12, 20, 28, 19, 4, 17] for representative work.

Two particular variants of scheduling closely related to our work is job shop scheduling [27] and the
scheduling of unrelated machines under precendence constraints. In the job shop scheduling problem, we
are givenm machines andn jobs, each job consisting of a sequence of operations. Each operation must be
processed on a specified machine. A job is executed by processing its operations according to the associated
sequence. At most one job can be scheduled on any machine at any time. The goal of the job shop scheduling
problem is to find a schedule of the jobs on the machines that minimizes the maximum completion time.
This problem is strongly NP-hard and widely studied [10, 18, 1]. Also extensively studied is the the problem
of preemptively scheduling jobs with precedence constraints on unrelated parallel machines [19, 27, 17], the
processing time of a job depends on the machine to which it is assigned. One common characteristic of
this problem andSUU is that in each problem, the capability of a machinei to complete a jobj may vary
with bothi andj. However, while the unrelated parallel machines problem models this nonuniformity using
deterministic processing times that vary withi and j, in SUU the jobs are all unit-size but may fail to
complete with probabilities that vary withi andj. Owing to the uncertainty in the completion of jobs,SUU
schedules appear to be more difficult to specify and analyze. One other technical difference is that inSUU
we allow multiple machines to be assigned to the same job at the same time, for the purpose of raising the
probability of successfully completing the job. The unrelated parallel machines problem is typically solved
by a reduction to instances of the job shop scheduling problem. Some of ourSUU algorithms also include
similar reductions.
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2 Schedules, success probabilities, and mass

In this section, we present formal definitions of a schedule (§ 2.1), introduce the notion of the mass of a job
and prove a key technical theorem about the accumulation of mass of a job within the expected makespan
of a given schedule (§ 2.2).

2.1 Schedules

In SUU, we are given a setJ of n unit-step jobs, and a setM of m machines. There are precedence
constraints among the jobs, which form a directed acyclic graph (dag)C. A job j is eligible for execution at
stept if all the jobs precedingj according to the precedence constraints have been successfully completed
beforet. For every jobj and machinei, we are also givenpij , which is the probability that jobj when
scheduled on a machineiwill be successfully completed,independentof the outcome of any other execution.
Multiple machines can be assigned to the same job at the same step. Without loss of generality, we assume
that for eachj, there exists a machinei such thatpij > 0.

Definition 2.1. A scheduleΣ of length T ∈ Z+ ∪ {∞} is a collection of functions{fS,t : M → J ∪ {⊥
} |S ⊆ J, 1 ≤ t < T +1}. Anexecutionof the scheduleΣ means that, at the start of each stept, if S is the
set of unfinished jobs: machinei is assigned to jobfS,t(i) if fS,t(i) is eligible and belongs toS; otherwise,
i is idle for that step.

Our formal definition of a schedule specifies assignment functionsfS,t for infinite t. This is because
there is a positive probability for a jobj to be not completed yet by any given step if∀i, pij < 1. For the
purposes of optimizing expected makespan, however, we can restrict our attention to a restricted class of
schedules.

Definition 2.2 ([21]). A regimen Σg is a schedule in whichfS,t1(·) = fS,t2(·) for anyS ⊆ J andt1 6= t2.
In other words, the assignment functionsfS,t’s depend only on the unfinished job setS. Thus, we can specify
Σg by a complete collection of functions{fS : M → S ∪ {⊥} |S ⊆ J}.

We denote the minimum expected makespan for a givenSUU instance byT OPT, which is finite because
for any jobj, there exists a machinei, such thatpij > 0. It is not hard to see that there exists an optimal
schedule which is a regimen because at any stept, one can determine an optimal assignment function, which
only depends on the subset of unfinished jobs at stept and is independent of the past execution history or the
valuet. While a naive specification of an arbitrary regimen uses2n different assignment functions, certain
regimens can specified succinctly, for instance, by a polynomial-length function that takesS as input and
returnsfS . In this paper, we also consider a different restricted class of schedules, calledoblivious schedule.

Definition 2.3. Anoblivious scheduleis a schedule in which every assignment functionfS,t is independent
ofS, i.e., for all t, S, S′, fS,t(·) = fS′,t(·). Hence, the assignment functions at any stept can be specified by
a single function, which we denote byft.

Oblivious schedules are appealing for two reasons. First, at any stept, only one assignment function is
needed, regardless of the actual unfinished job setS occurring at stept. Recall that there could be many
different suchS at a givent because of the execution uncertainty. The second benefit is more technical:
oblivious schedules allow us to address theuncertaintyin theSUU problem by solving relateddeterministic
optimization problems.

2.2 Success probabilities and mass

When a subset of machinesS ⊆ M is assigned toj in any time step, the probability thatj is successfully
completed is1−

∏
i∈S(1− pij). For ease of approximation, the following Proposition is useful to us.

3



Proposition 2.1. Givenx1, · · · , xk ∈ [0, 1], 1 − (1 − x1) · · · (1 − xk) ≤ x1 + · · · + xk. Furthermore, if
x1 + · · ·+ xk ≤ 1, then1− (1− x1) · · · (1− xk) ≥ e−1(x1 + · · ·+ xk).

Proposition 2.1 suggests that we can approximate the success probability with a convenient linear form.

Definition 2.4. For any scheduleΣ, we define themassof a job j at the end of stept to be the sum, over
all time t′ ∈ [1, t] and over every machinei to whichj is assigned at timet′, of pij . Thus, for an arbitrary
schedule, the mass of a jobj at timet is a random variable. For anoblivious scheduleΣo, the mass ofj at
the end of any stept is simply

min{
∑

1≤τ≤t

∑
i:fτ (i)=j

pij , 1},

wherefτ (·) is the assignment function ofΣo at stepτ . We say thatj accumulatesthat mass by stept.

The following theorem is crucial for our approach to the scheduling problem. We emphasize that it holds
for an arbitrarySUU instance. It is used in the proofs of Theorem 3.1 and Lemma 4.2.

Theorem 2.2. Let Σ be a schedule for anSUU instance, whose expected makespan isT . For any jobj, in
an execution ofΣ for 2T steps, with probability at least1/4, j accumulates a mass of at least1/4.

Proof. Let A be the event thatj is finished within step2T . Let St be the random variable denoting
the collection of machines assigned to jobj at stept and P (St) =

∑
i∈St pij . Let B be the event

that
∑

1≤t≤2T P (St) ≤ 1/4. What we want to prove isPr(Bc) ≥ 1/4. Observe thatPr(A) equals
Pr(A ∩B) + Pr(A ∩Bc), which is at mostPr(A ∩B) + Pr(Bc).

We estimate the value ofPr(A ∩ B) below. Observe that all possible executions ofΣ on the jobs form
an infinite rooted tree, in which each node represents an intermediate state during an execution (see Figure 1
for an illustration). Each node has an associated set of jobs, representing the unfinished jobs at that state.
For a nodeN , let Jobs(N) be its associated set of unfinished jobs. Note that Jobs(R) for the root nodeR
at level0 consists of the entire set of jobs. The nodes at levelk denote the states afterk steps. From each
nodeN at levelk to each nodeQ at levelk + 1, we can compute the corresponding transition probability
according to the assignment functionfJobs(N),k+1.

Lemma 2.3. Consider a tree nodeN at levelk, wherej ∈ Jobs(N). For 1 ≤ t ≤ k, letSt be the machine
set assigned toj during stept along the path leading toN fromR. Assume that

∑
1≤t≤k P (St) ≤ c, where

c ≤ 1. And letP (j,N) be the probability thatj will be finished by level (step)2T following a tree path
throughN and

∑
1≤t≤2T P (St) ≤ c. ThenP (j,N) ≤ c−

∑
1≤t≤k P (St).

Proof of Lemma: We prove the lemma by backward induction on the level numberk. Consider the base
case:N ’s level is2T − 1. We only need to execute the schedule for one more step. LetS2T be the set of
machines assigned toj during step2T . If P (S2T ) > c−

∑
1≤t≤2T−1 P (St), thenP (j,N) = 0. Otherwise,

the probability thatj is finished within this step is at mostP (S2T ). In either case, the claim is true.
We now assume that the claim is true for any levelk ≤ 2T − 1, our aim is to prove that the claim is also

true for levelk−1. Consider a tree nodeN at levelk−1. LetSk be the set of machines assigned toj during
stepk according to assignment functionfJobs(N),k. A child node ofN at levelk either does not containj (j
is finished at stepk) or containsj (j is not finished at stepk). Let the probabilities of the two cases beP1

and1− P1, respectively. Denote all the children nodes wherej is still unfinished asL.
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Figure 1: An illustration of the schedule. For simplicity purpose, we only use3 jobs. Each node represents an
intermediate state, with its associated set of unfinished jobs appearing inside. The number close to an edge represents
its transition probability. The left graph is a Markov chain representation of a regimen. The right graph is a rooted tree
representation of the execution of a schedule. To avoid cluttering, we only show the complete transitions for nodes
{1, 2} and{1} at step2.

If P (Sk) > c−
∑

1≤t≤k−1 P (St), thenP (j,N) = 0, which is≤ c−
∑

1≤t≤m−1 P (St). Otherwise,

P (j,N) = P1 +
∑
Q∈L

P (j,Q)

≤ P1 +
∑
Q∈L

(c−
∑

1≤t≤k
P (St))

= P1 + (1− P1)(c−
∑

1≤t≤k
P (St))

≤ P1 + (c−
∑

1≤t≤k
P (St))

≤ c−
∑

1≤t≤k−1

Pr(St),

where the second inequality follows from the induction hypothesis and the last inequality follows from the
fact thatP1 ≤ P (Sk). This proves the induction step and hence the Lemma.

By invoking the lemma withc = 1/4, we obtainPr(A ∩ B) = P (j, R) ≤ c = 1/4. HencePr(A) ≤
1/4 + Pr(Bc). And by Markov’s inequality,Pr(A) ≥ 1/2. We conclude thatPr(Bc) ≥ 1/4, completing
the proof.

3 Independent jobs

In this section, we study a special case of the scheduling problem, where the jobs are independent. We
refer to this problem asSUU-I. To compute a solution toSUU-I, we first establish that there exists an
oblivious schedule in which the total mass accumulated by the jobs inO(T OPT) steps isΩ(n). To find such a
schedule, we formulate a subproblem for maximizing the total sum of masses and then give polynomial-time
algorithms to compute anO(log n)-approximate schedule and anO(log2 n)-approximate oblivious schedule
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Algorithm MSM-ALG
INPUT: JobsJ , machinesM , pij ’s.

• Setf(i) to nil, i ∈M .

• For eachpij in nonincreasing order: Iff(i) is nil
and

∑
x:f(x)=j pxj + pij ≤ 1, assigni to j, i.e.,

f(i)← j.

• For every unused machinei, f(i)←⊥; outputf .

Algorithm SUU-I-ALG
INPUT: JobsJ , machinesM , pij ’s.

• Let St denote the set of unfinished jobs at the start
of stept

• In each stept, schedule according to the assignment
determined by MSM-ALG applied toSt and all ma-
chines.

Figure 2: An approximation algorithm for scheduling independent jobs.

for SUU-I. For oblivious schedules, we improve the approximation factor toO(log n · log(min{n,m}))
when we study the more general case with chain-like precedence constraints in§4.1.

Theorem 3.1. If there exists a scheduleΣ for SUU-I with expected makespanT , then there exists an obliv-
ious schedule of length2T , in which the total mass accumulated by all jobs is at leastn/16.

Proof. Consider an executionE of Σ for 2T steps. This execution yields naturally an oblivious scheduleΣE

of length2T , whose assignment functionsft(·)’s are defined as follows:ft(i) = j if machinei is assigned
to job j at stept in E. Note that due to execution uncertainty,E, and henceΣE are bothrandom variables.
By Theorem 2.2, for any jobj, with probability at least1/4, j accumulates a mass of at least1/4 by step
2T in ΣE . Thus, the expected mass ofj at step2T in ΣE is at least1/16. This implies that the expected
total mass of all the jobs at step2T in ΣE is at leastn/16. Therefore, there exists an oblivious schedule in
which the total mass of the jobs at step2T is at leastn/16.

3.1 AnO(log n)-approximate schedule forSUU-I

Motivated by Theorem 3.1, we formulate subproblemMaxSumMass for maximizing the sum of masses.
In MaxSumMass, we are given a setJ of n independent, unit-step jobs, a setM of m machines, and the
probabilitiespij , and the goal is to find an assignmentf : M → J∪{⊥} for a single step that maximizes the
sum of masses over the jobs in the step. In Figure 2, we present a1/3-approximation algorithm MSM-ALG
for MaxSumMass (which can be shown to be NP-hard), and our approximation algorithm forSUU-I, which
simply executes, in every step, MSM-ALG on the unfinished jobs.

Theorem 3.2. MSM-ALG computes a1/3-approximate solution to ProblemMaxSumMass.

Theorem 3.3. AlgorithmSUU-I-ALG is anO(log n)-approximation algorithm forSUU-I.

Proof. Let St denote the set of unfinished jobs at the start of stept. Then, by Theorem 3.1, there exists an
oblivious schedule of length2T OPT starting from stept, in which total mass of all jobs inSt is at least|St|/16.
By averaging over the2T OPT time steps of this schedule, there exists an assignment of jobs to machines in
stept such that the total mass of the jobs inSt in stept is at least|St|/(32T OPT). By Theorem 3.2, in stept of
SUU-I-ALG, the total mass of the jobs accumulated in stept is at least|St|/(96T OPT). By Proposition 2.1,
it follows that the expected number of jobs that complete in stept is at least|St|/(96eT OPT).

We thus have a sequence of random variablesSt which satisfy the propertyE[|St+1| |St] = |St|(1 −
1/(96eT OPT)). By straightforward Chernoff bound arguments [3, 15], we obtain that with high probability,
St is empty withinO(T OPT log n) steps.

The schedule computed by SUU-I-ALG is adaptive in the sense that the assignment function for each
step is dependent on the set of unfinished jobs at the start of the step. Using an extension of MSM-ALG,
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we also give a polynomial-time combinatorial algorithm to compute anobliviousschedule with expected
makespan within anO(log2 n) of the optimal. Due to space constraints, we refer the reader to the ap-
pendix for details. In§4.1, we improve this bound further toO(log n · log(min{n,m})) using an LP-based
algorithm.

4 Jobs with precedence constraints

In this section, we studySUU when there are non-trivial precedence constraints on the jobs. We first present
in §4.1 a polylogarithmic approximation algorithm for the case when the constraints form disjointchains,
and then extend the results in§4.2 to the more general case when the constraints form directed forests. All
of the schedules we compute are oblivious.

4.1 Disjoint chains

We considerSUU in the special case where the dependency graphC for the jobs is a collection of disjoint
chainsC = {C1, · · · , Cl}. We refer to this problem asSUU-C. If job j1 precedesj2 according to the
constraints, we writej1 ≺ j2.

At a high level, our approach to solveSUU-C is to first compute an oblivious schedule of near-optimal
length in which every job has a constant probability of successful completion, thenreplicatethis schedule
sufficiently many times to conclude that all the jobs are finished with high probability within a desired
makespan bound. We first consider the problem of accumulating a constant success probability for each job.
As in the independent jobs case, we will use the notion of mass instead of the actual probability. However,
we need to take into account the dependencies among the jobs. Therefore, we formulate the following
problemAccuMass-C: Given the input forSUU-C, compute an oblivious schedule with minimum length
T , subject to two conditions: (i) Every jobj accumulates a mass of at least1/2 within T ; (ii) If j1 ≺ j2,
j1 must already accumulate mass1/2 before any machine can be assigned toj2. Condition (ii) captures the
intuition that if j1 has a low probability of successful completion before stept, then the probability thatj2
is eligible for execution at stept would be small; so it does not make much sense to assign machines toj2
prior to t in the oblivious schedule.

The following is a relaxed linear program (LP1) forAccuMass-C. Let xij denote the number of steps
during which machinei are assigned toj. Letdj be the number of steps during which there is some machine
assigned toj.

(LP1) min t

s.t.
∑
i∈M

pijxij ≥ 1/2 ∀j ∈ J (1)∑
j∈J

xij ≤ t ∀i ∈M (2)

∑
j∈Ck

dj ≤ t Ck ∈ C (3)

0 ≤ xij ≤ dj ∀i, j (4)

dj ≥ 1 ∀j (5)

Some comments on (LP1) are in order. Equation 1 enforces Condition (i). Equation 2 bounds theload on
every machine, which we define below. Equation 3 bounds the time length on each chain constraint. Finally
Equation 4 ensures that each job accumulates its mass during thedj steps when there is some machine
assigned to it. LetT ∗ be the optimal value for (LP1) above.
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Note that in (LP1) we do not have any condition to prevent two different jobs from two precedence
chains to be scheduled on the same machine at the same step. We use the termpseudo-scheduleto capture
such “schedules”, in which different jobs from different precedence chains may be scheduled to the same
machine simultaneously.

Definition 4.1. A pseudo-scheduleof length T ∈ Z+ ∪ ∞ is a collection of assignment functions,{ft :
M → 2J | 1 ≤ t < T + 1}.

Hence, an assignment function of a pseudo-schedule may map a machine to a set of jobs. In this sense, a
pseudo-schedule may not be feasible; we address this issue later when describe how to transform a pseudo-
schedule to an appropriate oblivious schedule. An oblivious schedule is a pseudo-schedule in which the
value offt is a single element.

Definition 4.2. Given a pseudo-scheduleΣg of (finite) lengthT , {ft : M → 2J | 1 ≤ t < T + 1}, theload
of a machinei is defined as the total number of times that a job is scheduled oni in Σg. Formally, the load
of machinei is

∑
1≤t<T+1 |ft(i)|. Theload of Σg is defined as the maximum load of any machine.

We remark that a pseudo-schedule of lengthT may have a load greater thanT .

Theorem 4.1. Within polynomial time one can round an optimal feasible solution to (LP1), and obtain a
pseudo-schedule for ProblemAccuMass-C whose length and load are bothO(logm)T ∗.

Proof. Obviously (LP1) is feasible because one can assign machines to each job for a finite steps so that the
job can accumulate a mass of1/2. Let {xij , dj , t} be oneoptimalsolution to (LP1). (Note thatt is equal to
T ∗.) Our efforts mainly concern the rounding procedure, i.e., obtaining a feasibleintegralsolution from the
fractional solution without blowing upt too much. We then describe how to get a pseudo-schedule from an
integral solution to (LP1). We differentiate between two cases.

The first case is whent ≥ |J | = n. We round eachxij anddj up by settingx∗ij = dxije andd∗j = ddje.
We obtain a feasible integral solution with approximation factor 2 since we have∑

i∈M pijx
∗
ij ≥ 1/2 ∀j ∈ J,

∑
j∈J

x∗ij ≤ t+ n ≤ 2t ∀i ∈M,∑
j∈Ck d

∗
j ≤ t+ n ≤ 2t Ck ∈ C, x∗ij ≤ d∗j ∀i, j.

The second case is whent < |J | = n. We make use of some results from network flow theory for our
rounding in this case. Notice that although we target for a mass of1/2, any constant smaller than1/2 will
do as well because we can always scale every variable up to reach that target, sacrificing only a constant
factor. In our presentation below, we use many such scale-up operations. (We haven’t tried to optimize
the constants.) For a given jobj, if

∑
i∈M,xij≥1 pijxij ≥ 1/4, we can round thesexij ’s to the next larger

integer. Sincedxije ≤ 2xij , this only incurs a factor of 2 blow up int. Thus, we only need to consider
those jobsj such that

∑
i∈M,xij≥1 pijxij ≤ 1/4, which implies that

∑
i∈M,xij<1 pijxij ≥ 1/4. Observe

that
∑

i∈M,pij<
1

8m
,xij<1 pijxij < 1/8, which implies

∑
i∈M,pij≥ 1

8m
,xij<1 pijxij ≥ 1/8.

We bucket thesepij ’s into at mostB = dlog(8m)e intervals(2−(k+1), 2−k] (k = 0, 1, . . .). For a bucket
b : (2−(b+1), 2−b], if

∑
pij∈bucketb xij < 1/32, we remove this bucket from further consideration. Note that

the sum ofpijxij over all removed buckets is at most1/16. Hence for thepij ’s in the remaining buckets,
we still have

∑
i∈M,pij≥ 1

8m
,xij<1 pijxij ≥ 1/16.

For each jobj, there is a bucketbj : (2−(bj+1), 2−bj ] such that
∑

pij∈bucketbj xij ≥
2bj

16B . Denote the
sum on the left side of the above inequality byDj . If necessary, we scale all thexij ’s (and other variables)
up by a factor of 32, so that allDj ≥ 1. We then roundDj down tobDjc. These operations only cost us a
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constant factor in terms of approximation. Thus for the ease of the presentation below, we assume that the
Dj ’s are integral and letD =

∑
j∈J Dj .

We now construct anetwork-flowinstance as follows (see Figure 3). We have one node for each jobj,
one node for each machinei, a source nodeu, and a destination nodev. We add an edge(i, j) for each
xij contributing to the computation ofDj ’s. We orient the edge(i, j) from j to i, with edge capacityddje.
From each machine nodei, add an edge towardv, with capacityd2te. For each job nodej, add an edge
from u to j, with capacityDj .

u v

i

d j

2t

D j

d j
d j

2t

2t
2t

j

Figure 3: A network flow instance for the rounding of an optimal solution to (LP1)

The argument before the construction shows that a flow of demandD at u can be pushed through the
network, where thexij ’s specify such a feasible flow.D is actually the maximum flow of the network
(consider the cut where one side consists ofu alone). From Ford-Fulkerson’s theorem [8, 5], we know that
there exists anintegral feasible flow when the parameters are integral, as in our instance. We take such an
integral flow value on edge(j, i) as our rounded solutionx∗ij . Furthermore, the integral solution obtained
observes the following identities.∑

i∈M pijx
∗
ij ≥ 1

16dlog(8m)e ∀j ∈ J,
∑
j∈J

x∗ij ≤ d2te ∀i ∈M∑
j∈Ckddje ≤ d2te Ck ∈ C, x∗ij ≤ ddje ∀i, j.

Raising all the values by a factor ofO(logm), we obtain an integral feasible solution{x̂ij , d̂j , t̂}, where
t̂ = O(logm)T ∗.

We now describe how to construct from the integral solution a pseudo-scheduleΣs whose length and
load are both bounded bŷt = O(logm)T ∗. Consider a jobj in a chainCk ∈ C. Given thex̂ij ’s, let
Lj = maxi x̂ij . Letψj =

∑
j0:j0≺j Lj0 . We assign the machines toj within a step interval of lengthLj from

stepψj + 1 to ψj + Lj , using each machinei x̂ij times. In other words, the assignment functions for chain
Ck are specified as follows. For any jobj and machinei, if x̂ij > 0, fkt (i) = {j} for t ∈ [ψj + 1, ψj + x̂ij ].
This can be done because each machine is assigned toj at mostLj times and different machines can be
assigned toj at the same step. After we define thefkt (·) for every chainCk ∈ C, we define the assignment
functions forΣs as

ft(i) = ∪k:Ck∈Cf
k
t (i) for i ∈M, t ∈ [1, t̂].

Recall that the range of the assignment functions for a pseudo-schedule is a set of jobs. This completes the
proof of the theorem.

We now relateAccuMass-C to SUU-C. Recall thatT ∗ is the optimal value of (LP1) we write for
ProblemAccuMass-C, andT OPT is the expected makespan of an optimum scheduleΣ for ProblemSUU-C.
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We now bound the valueT ∗ in terms ofT OPT in Lemma 4.2. This lemma, together with Theorem 4.1
immediately yields a pseudo-schedule that solvesAccuMass-C with load and length withinO(log n) factor
of T OPT.

Lemma 4.2. T ∗ ≤ 16T OPT.

Theorem 4.3.A pseudo-schedule with length and load bounded byO(logm) ·T OPT can be computed within
polynomial time, such that: (i) Every jobj accumulates at least1/2 mass. (ii) Ifj1 ≺ j2, j2 can only begin
the accumulation afterj1 accumulates1/2 mass.

In the remainder of this section, we describe how to convert a pseudo-schedule obtained from Theo-
rem 4.3 to a feasible schedule. According to Theorem 4.3, we can compute a pseudo-scheduleΣs of length
O(logm) · T OPT in which every job accumulates a mass of at least1/2, and hence a success probability of
at least 1

2e . Moreover, ifj1 ≺ j2, no machine is assigned toj2 until j1 has accumulated1/2 such mass. We
now convertΣs to a (feasible) oblivious scheduleΣo in two steps. We describe these two steps briefly and
refer the reader to the appendix for details.

1. We use the elegant random delay technique of [19, 27] to delay the start step of the execution for each
chain appropriately and obtain a new pseudo-scheduleΣs,1 in which the number of jobs scheduled on

any machine at any step isO( log(n+m)
log log(n+m)). The randomized schedule can also be derandomized using

techniques from [22, 25, 27]. We then “flatten”Σs,1 to obtain an oblivious scheduleΣo,1, sacrificing

a factor ofO( log(n+m)
log log(n+m)) in the schedule’s length.

2. To obtain the final oblivious scheduleΣo, we to take the oblivious scheduleΣo,1 from above and
replicate each step’s machine assignmentO(log n) times, so that all jobs will be finished with high
probability.

Theorem 4.4. For ProblemSUU-C, there exists a polynomial-time algorithm to compute an oblivious
schedule schedule with expected makespan within a factor ofO(logm log n log(n+m)

log log(n+m)) of the optimal.

For independent jobs, i.e., when the constraintsC in ProblemSUU-C is empty, we can prove a bound
for oblivious schedules that slightly improves over the result stated at the end of§3.

Theorem 4.5.For ProblemSUU-I, there exists a polynomial-time algorithm to compute an oblivious sched-
ule schedule with expected makespan within a factor ofO(log n · log(min{n,m})) of the optimal.

4.2 Tree-like precedence constraints

Our algorithm for tree-like precedence constraints uses techniques from [17], who extend the work of [27]
on scheduling unrelated parallel machines with chain precedence constraints to the case where there are
tree-like precedence constraints by decomposing the directed forests intoO(log n) collection of chains. To
state their result, we first introduce some notations used in [17]. Given a dagG(V,E), letdin(u) anddout(u)
denote the in-degree and out-degree, respectively, ofu in G. A chain decompositionof G is a partition of
its vertex set into subsetsB1, . . . , Bλ (called blocks) such that: (i) The subgraph induced by each blockBi
is a collection of vertex-disjoint directed chains; (ii) For anyu, v ∈ V , letu ∈ Bi be an ancestor ofv ∈ Bj .
Then, eitheri < j, or i = j andu andv belong to the same directed chain ofBi; (iii) If dout(u) > 1, then
none ofu’s out-neighbors are in the same blocks asu. Thechain-widthof a dag is the minimum valueλ
such that there is a chain decomposition of the dag intoλ blocks. We now state the decomposition result.

Lemma 4.6 ([17], Lemma 1).Every dag whose underlying undirected graph is a forest has a chain de-
composition of widthγ, whereγ ≤ 2(dlog ne+ 1). The decomposition can be computed within polynomial
time.
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Using Lemma 4.6, we simply decompose a given directed forest into at mostγ = O(log n) blocks,
and within each block, apply our algorithm for the chain case (Theorem 4.4). Since the optimal expected
makespan on any subgraph (subset of jobs) is a lower bound for that of the whole graph (whole set of jobs),
this approach gives up another factor oflog n. We have thus obtained

Theorem 4.7. For ProblemSUU, if the dependency graphC is a directed forest, there exists a polynomial-
time algorithm to compute an oblivious schedule schedule with expected makespan within a factor of
O(logm log2 n log(n+m)

log log(n+m)) of the optimal.

When the precedence constraints form a collection ofout trees(rooted trees with edges directed away
from the root) orin trees(defined analogously), we can obtain an improved approximation algorithm by
again following the ideas of [17]. More specifically, we decompose the out/in trees intoO(log n) blocks;
then randomly delay each chain by an amount of steps chosen uniformly from[0, O(Πmax/ log n)] (this
step can be derandomized in polynomial time); and prove that with high probability, at mostO(log n) jobs
can be scheduled on any machine simultaneously. We defer the details to the full version.

Theorem 4.8. For ProblemSUU, if the dependency graphC is a collection of out/in trees, there exists
a polynomial-time algorithm to compute an oblivious schedule schedule with expected makespan within a
factor ofO(logm log2 n) of the optimal.

5 Open problems

In this paper, we have presented polylogarithmic approximation algorithms for the problem of multiproces-
sor scheduling under uncertainty, for special classes of dependency graphs. We believe that our bounds are
not tight; in particular, we conjecture that a more careful analysis will improve the approximation ratios by
anO(log n) factor in each case. It will also be interesting to obtain approximations for more general classes
of dependencies, and to consider online versions of our scheduling problem.
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A Success probability and mass

Proof of Proposition 2.1:The first assertion follows from the identity(1−x1) · · · (1−xk) ≥ 1−(x1+· · ·+
xk), which can be proved using a simple induction argument. The base case ofk = 1 is trivial. Suppose the
identity holds fork − 1. If x1 + · · ·+ xk−1 > 1, then the identity holds fork; Otherwise, according to the
induction hypothesis,

(1− x1) · · · (1− xk−1)(1− xk)
≥ [1− (x1 + · · ·+ xk−1)](1− xk)
≥ 1− (x1 + · · ·+ xk).

For the second assertion, notice that if0 ≤ x ≤ 1, 1 − x ≤ e−x ≤ 1 − x
e . Since1 − x ≤ e−x,

(1− x1) · · · (1− xk) ≤ e−x1 · · · e−xk , we have

1− (1− x1) · · · (1− xk)
≥ 1− e−x1 · · · e−xk

= 1− e−(x1+···+xk)

≥ x1 + · · ·+ xk
e

,

where the last inequality follows becausee−x ≤ 1− x
e for x ∈ [0, 1] and the assumption thatx1 + · · ·+xk ≤

1.

B Independent jobs

Proof of Theorem 3.2:Consider a bi-partite graph, where one side of the graph lie the nodes for jobsJ and
the other side lie the nodes for machinesM . There is an edge(i, j) between machinei and jobj for any
pij > 0. MSM-ALG can be viewed as picking and orienting the edges. Let Opt ={(i, j)} be the collection
of edges of picked by the optimum assignmentf∗. Let SOL be the solution computed by MSM-ALG. We
use a charging argument below. Consider any edge(i, j) ∈ Opt.

1. (i, j) ∈ SOL, chargepij to itself.

2. (i, j) /∈ SOL:
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(a) (i, j) is not added because in step 2,f(i) 6= nil. Let j′ = f(i). Chargepij to pij′ where(i, j′) ∈
SOL. Notice thatpij ≤ pij′ , andpij′ will be charged at most once due to this situation because
each machinei in Opt is used at most once.

(b) (i, j) is not added because in step 2,f(i) = nil yet
∑

x:f(x)=j pxj + pij > 1. Sincepij ’s are
processed in decreasing order, we conclude that in SOL,

∑
x:f(x)=j pxj ≥ 1/2. Chargepij to

2
∑

x:f(x)=j pxj .

Observe that one copy of SOL is sufficient to cover the charges of types 1 and 2(a). Two copies of SOL are
sufficient to cover the charges of type 2(b) because, by definition, the mass of any job is at most1 in any
assignment.

We conclude that MSM-ALG computes a solution with an approximation factor1/3.
In the remainder of this section, we present a combinatorial algorithm for computing an oblivious sched-

ule with expected makespan withinO(log2 n) of the optimal. According to Theorem 3.1, there exists an
oblivious schedule of length2T OPT, in which total mass of all jobs is at leastn/16. Intuitively, if one com-
putes an oblivous scheduleΣ1 of length2T OPT with the aim of maximizing thetotal sumof masses over the
jobs, there should bemanyjobs accumulating constant masses inΣ1. One can then remove those jobs and
compute a second oblivious scheduleΣ2 of length2T OPT to maximize the total sum of masses for the remain-
ing jobs, to remove some additional jobs which have accumulated constant masses. Since each computation
of the oblivious schedule removesmanyjobs, this process should terminate quickly. By concatenating the
Σ1,Σ2, . . . together, one obtains an oblivious scheduleΣ in whicheveryjob accumulates constant mass.

By Theorem 3.2, we have a1/3 approximation algorithm for ProblemMaxSumMass. However,Max-
SumMass only considers oblivious schedules of length 1, i.e., each machine is assigned to at most one job.
What we need is a procedure of finding an oblivous schedule of length2T OPT, which maximizes the sum
of masses over jobs. It turns out that one can extend MSM-ALG easily to take into account the schedule
length, which can bearbitrary, and still obtain the same aproximation factor of1/3. We now formalize our
discussion.

Problem (MaxSumMass-Ext): We are given a setJ of n independent, unit-step jobs and a setM ofm
machines. Letpij denote the probability that jobj is successfully completed if assigned to machinei. We
are also given a parametert ∈ Z+. The goal of the problem is to find an oblivious scheduleΣo of lengtht
such that the total sum of masses accumulated by the jobs by stept is maximized.

We show below Algorithm MSM-E-ALG, which outputs an oblivious scheduleΣo of lengtht ∈ Z+

that is a1/3 approximate solution to ProblemMaxSumMass-Ext. Algorithm MSM-E-ALG is a simple
modification from MSM-ALG as follows. Since the schedule is of lengtht, each machine can be assigned
t times. We maintain aremaining capacityparameter for each machine,ti, initialized to the valuet, to keep
track of how many steps machinei is still available to be assigned. We also usexij to keep track of how
many steps machinesi is assigned to jobj. In Step 2(a) of MSM-E-ALG, as long asti is positive, assigni
to j for as many steps as necessary. In Step 2(b), we updateti accordingly. In Step 3, we output an oblivious
scheduleΣo = {fτ (·) : 1 ≤ τ ≤ t}, which can be specified byxij ’s as follows. Letj1, . . . , jn be an
ordering of the jobs.fτ (i) = jk for

∑
1≤l<k xijl + 1 ≤ τ ≤

∑
1≤l≤k xijl and1 ≤ k ≤ n. Observe that

the running time of MSM-E-ALG is independent of the valuet because eachpij , hence each pair(i, j),
is processed exactly once in Step 2. It is not hard to see that MSM-E-ALG outputs a1/3 approximate
solution to ProblemMaxSumMass-Ext because similar analysis for MSM-ALG from Theorem 3.2 can
be applied.

Lemma B.1. MSM-E-ALG computes a solution to ProblemMaxSumMass-Ext with an approximation
factor1/3.

We now present an approximation algorithm SUU-I-OBL for ProblemSUU-I.
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Algorithm 1 MSM-E-ALG
INPUT: JobsJ , machinesM , pij ’s andt.

1. Sortpij ’s in decreasing order. Initialize:∀i, ti ← t; ∀i, j, xij ← 0.

2. For eachpij according to the order:

(a) xij ← min
{
ti,
⌊

1−
∑
k∈M xkj ·pkj
pij

⌋}
.

(b) ti ← ti − xij .

3. OutputΣo specified byxij ’s.

Algorithm 2 SUU-I-OBL
INPUT: JobsJ , machinesM , pij ’s.

1. t← 1.

2. I ← 1. R← J . Σ← “empty schedule”.

3. While (|R| > 0) and (I ≤ 66 logn)

(a) LetΣI be the output of invoking MSM-E-ALG onR,M with the currentt value.Σ← Σ◦ΣI .

(b) Remove jobs that accumulate at least1/96 mass fromR.

(c) I ← I + 1.

4. If |R| > 0, thent← 2t, GOTO step 2; Otherwise, returnΣ.
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A few comments on SUU-I-OBL are in order. We use MSM-E-ALG repeatedly to accumulate con-
stant masses for a good fraction of the jobs each round, until all jobs accumulate constant masses. There
is still one obstacle though. Since we don’t know the value ofT OPT, we have to “guess” a value oft for
MSM-E-ALG, which must be large enough, e.g., at least2T OPT, to ensure that thereexistsan oblivious
schedule of lengtht in which the total mass is at leastn/16, as proved in Theorem 3.1. In summary, in the
loop of SUU-I-OBL (Step 3), we repeatedly invoke MSM-E-ALG to accumulate1/96 mass for the jobs,
for at most66 logn rounds (we will explain the reason shortly). At the end of the loop (Step 4), if there
are some remaining jobs, that means ourt value is not large enough, we hence double the value oft and try
the newt again by resetting the other parameters. Note that during each invocation of MSM-E-ALG, we
start from scratch by ignoring any mass that the jobs may have accumulated in the previous rounds. We now
analyze the performance of SUU-I-OBL.

If t ≥ 2T OPT, with one invocation of MSM-E-ALG usingt, let x be the number of jobs that get at
least1/96 mass. The total sum of masses over the jobs is at mostx · 1 + (n − x) · 1/96 because the mass
that any job accumulates is at most1. From Theorem 3.1, we know that there exists an oblivious schedule
of lengtht, with a total sum of mass at leastn/16. Now according to Lemma B.1, MSM-E-ALG has an
approximation ratio of1/3. Thus,

x · 1 + (n− x) · 1/96 ≥ 1/3 · n/16.

It follows thatx ≥ n/95. Since each invocation of MSM-E-ALG makes at least1/95 of the jobs accumu-
late1/96 mass, it is sufficient to invoke MSM-E-ALG at most66 logn times until all jobs accumulate at
least1/96 mass.

To prove that SUU-I-OBL terminates in polynomial time, we first bound the value ofT OPT. Letpmin =
mini,j pij . Obviously, if we let the jobs accumulate sufficient mass one by one by assigning all machines
to a single job at any step, then every job accumulates a mass of at least1 within a time interval ofd n

pmin
e.

This implies thatT OPT = O( n
pmin

log n). Sincet is doubling every iteration in SUU-I-OBL,O(log n +
log 1

pmin
) differentt values will be “probed” before the algorithm terminates. With eacht value, we invoke

MSM-E-ALG at most66 logn times, and each such invocation runs in polynomial time. We conclude that
algorithm SUU-I-OBL terminates within time polynomial in the size of the input. We have thus proved:

Lemma B.2. For ProblemSUU-I, one can compute in polynomial time an oblivious schedule of length
O(log n)T OPT in which every job accumulates a mass of at least1/96.

Theorem B.3. For ProblemSUU-I, within polynomial time, we can compute an oblivious schedule whose
expected makespan is within a factor ofO(log2 n) of the optimal.

Proof. Using Lemma B.2, we first compute an oblivious scheduleΣo of lengthT = O(log2 n) · T OPT in
which every job accumulates a mass of at least1/96. The infinite repetition ofΣo, Σ∞o , is the oblivious
schedule we want. Treating the execution ofΣ∞o during each step interval of[k · T + 1, (k + 1) · T ], where
k = 0, 1, . . ., as one iteration, by Proposition 2.1 we know that every job has a success probability of at least

1
24e during each iteration. WithinO(log n) iterations, all jobs are finished with high probability. Thus, the
expected makespan ofΣ∞o is withinO(log2 n) of T OPT. We now formalize this argument.

Let random variableX be the iteration number when all jobs are finished. We bound the expected value
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of X below.

E[X] =
∞∑
i=0

Pr(X > i)

=
362 logn−1∑

i=0

Pr(X > i) +
∞∑

i=362 logn

Pr(X > i)

≤ 362 logn · 1 +
∞∑

i=362 logn

n · (1− 1
96e

)i

= 362 log n+ n · (1− 1
96e

)362 logn ·
∞∑
i=0

(1− 1
96e

)i

≤ 362 log n+
96e
n
,

where the third inequality follows because every job has a probability1
96e of success within each iteration,

and the last inequality follows by summing the geometric series and the fact that(1− 1
96e)

181 < 1/2. This
completes the proof of the theorem.

C Jobs with dependencies

Proof of Lemma 4.2: The following linear program is the same as (LP1), except that1/2 is replaced by
1/16 andt is replaced by2T OPT. We argue that this linear program is feasible.∑

i∈M
pijxij ≥ 1/16 ∀j ∈ J∑
j∈J

xij ≤ 2T OPT ∀i ∈M

∑
j∈Ck

dj ≤ 2T OPT Ck ∈ C

xij ≤ dj ∀i, j
dj ≥ 1 ∀j
xij ≥ 0 ∀i, j

Consider the first2T OPT execution steps using an optimal scheduleΣ. Let random variableXij be the
number of steps in whichi is assigned toj. Let random variableYj be the total number of steps when there
is some machine assigned toj. We know from Theorem 2.2 that with probability at least1/4, j accumulates
at least1/4 mass within2T OPT steps. This amounts to the fact that the expected accumulated mass forj is
at least1/16. Thus ∑

i∈M
pij · E[Xij ] ≥ 1/16.

Since inΣ a machine is assigned to at most a job at any step,
∑

j∈J Xij ≤ 2T OPT. So∑
j∈J

E[Xij ] ≤ 2T OPT.
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Since we are considering only2T OPT steps ofΣ, we have
∑

j∈Ck Yj ≤ 2T OPT. Obviously,Xij ≤ Yj .
Taking the expectation, we have ∑

j∈Ck

E[Yj ] ≤ 2T OPT

and
E[Xij ] ≤ E[Yj ].

We conclude thatxij = E[Xij ] for i ∈ M, j ∈ J anddj = E[Yj ] for j ∈ J form a solution to the
linear program. Raising this solution by a factor of8, we obtain a solution to (LP1). This means that at of
value16T OPT is achievable in (LP1). We have thus proved thatT ∗ ≤ 16T OPT. This completes the proof of
the lemma.

We next describe in detail the two steps that convert a pseudo-schedule to a feasible oblivious schedule.
Since the second step is simpler, we describe it first.
Schedule replication: We first replicateΣo,1 at each step by a factor ofσ = 16 log n to get another oblivi-
ous scheduleΣo,2. More precisely, letT denoteΣo,1’s length and letgt(·)’s be the assignment functions of
Σo,1. We define the assignment functionsft(·)’s of Σo,2 as follows. For anyt ∈ [1, σ · T ], ft(·) = gτ (·),
whereτ = b t−1

σ c+ 1. Note that ifΣo,1 can be specified in space polynomial in the size of the input, as we
will show in the “delay” step, so canΣo,2.

We define yet another oblivious scheduleΣo,3 of lengthn as follows. Topologically sort the jobs ac-
cording to the precedence constraints, e.g., appending the precedence chains one after another, and let
j1, . . . , jn be the jobs in the sorted order. The assignment functionsht(·)’s for Σo,3 are specified as follows.
∀i ∈ M,ht(i) = jt, where1 ≤ t ≤ n. Now the final oblivious schedule we want isΣo = Σo,2 ◦ Σ∞o,3. In
other words, oblivious scheduleΣo is simply the replicatedΣo,1 followed by assigning all the machines to
some job at each step.

We now analyze the expected makespan ofΣo. If all jobs are successfully completed within stepσT , the
expected makespan is at mostσT . The probability that this does not happen is at mostn(1− 1

2e)
σ < 1/n2.

Notice also that from stepσT + 1 on, Σo assigns all the machines to a single job at each step periodically
(due toΣo,3, with a period length ofn). The expected number of steps for a job to be completed is at most
T OPT if all the machines are assigned to it. Since we periodically assign the machines to any fixed job, on
average, it takes at most(nT OPT) steps to complete any fixed job. Hence, on average, it takes at mostn2T OPT

steps to complete all the jobs using the assignment functions beyond stepσT . The expected makespan of
Σo is thus at most

(1− 1/n2)σ · T + 1/n2 · (σ · T + n2T OPT).

As we will prove shortly,T = O(logm log(n+m)
log log(n+m)) ·T OPT andσ = 16 log n. We conclude that the expected

makespan ofΣo isO(log n logm log(n+m)
log log(n+m)) · T OPT.

Converting pseudo-scheduleΣs to an oblivious schedule:We now address the issue when the computed
pseudo-scheduleΣs from Theorem 4.3 is not yet feasible, that is, when some machine is assigned to more
than one job at the same step. We claim that we can convertΣs to an oblivious scheduleΣo,1 by sacrificing

a factor ofO( log(n+m)
log log(n+m)).

Let Πmax be the load ofΣs, i.e., the maximum number of jobs assigned to any machine. A result by
Shmoys, Stein and Wein on job shop scheduling problem [27, Lemma 2.1] states that if wedelaythe starting
step of each chain by an integral amount independently and uniformly chosen from[0,Πmax], the resulting
pseudo-schedule has no more thanO( log(n+m)

log log(n+m)) jobs scheduled on any machine during any step. We now
explain what we mean by the termdelay. Recall that in the last paragraph of the proof for Theorem 4.1, we
first specify a functionfkt for each constraint chainCk ∈ C, and then define assignment function forΣs as
ft = ∪kfkt . Suppose that a chainCk is delayed by an amount ofφk, the assignment functiongkt for chain
Ck is modified as follows.∀i ∈M , if t ≤ φk, g

k
t (i) = ∅; otherwise,gkt (i) = fkt−φk(i). And the assignment
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function for the schedule is defined asft = ∪kgkt . To make our presentation self-contained, we now outline
the argument for the bound ofO( log(n+m)

log log(n+m)) below.
Fix a stept and a machinei. Letp = Pr[at leastτ units of processing are scheduled on machinei at step

t]. Note that a jobj could be scheduled in multiple steps, and each job is unit-step, it is equivalent to say that
there are multiple processing units of jobj. There are at most

(
Πmax
τ

)
ways to choose thoseτ processing

units. Focus on a particular choice ofτ units. If these units are from different chains, the probability that
they are all scheduled at stept is at most( 1

Πmax
)τ since we choose the delay independently and uniformly

from [0,Πmax]. Otherwise, the probability is0 because our pseudo-schedule can never assign two units
from the same chain to the same machine at the same step. Therefore,

p ≤
(

Πmax

τ

)(
1

Πmax

)τ
≤

(
eΠmax

τ

)τ ( 1
Πmax

)τ
≤

( e
τ

)τ
If τ = α log(n+m)

log log(n+m) , thenp < (n + m)−(α−1). LetLmax be the length of the longest chain according

to Σs. The probability thatany machine atany step is assigned at leastα log(n+m)
log log(n+m) jobs is bounded by

m(Πmax+Lmax)(n+m)−(α−1). With the assumption, which we will remove shortly, thatT OPT is bounded
by a polynomial in(n + m), Πmax + Lmax is bounded by a polynomial in(n + m) as well. If we choose
α to be sufficiently large, then with high probability, no more thanα log(n+m)

log log(n+m) jobs are scheduled on any
machine at any step.

Shmoys, Stein and Wein [27] also derandomize the algorithm so thatO(log(n+m)) jobs can be sched-
uled on any machine simultaneously, based on results by [23, 24, 22]. Schmdit, Siegel and Srinivasan [25]
give a different derandomization strategy and obtain a collision bound matching the randomized algorithm,
i.e., O( log(n+m)

log log(n+m)) machines simultaneously for any machine. We denote this (derandomized) pseudo-
schedule byΣs,1, whose length is at most twice that ofΣs. According to Theorem 4.3,Σs’s length is
O(logm) · T OPT, it follows that we can “flatten”Σs,1 out to obtain an oblivious scheduleΣo,1 whose length

isO(logm log(n+m)
log log(n+m)) · T OPT, in which each machine is assigned to one job at any step. We comment that

therandom delaytechnique originates in [19] when they study the job shop scheduling problem.

ReducingT OPT: We now address the issue thatT OPT is not always bounded by a polynomial in(n + m).
We make use of a trick from [27, Section 3.1]. Consider the pseudo-scheduleΣs computed in Theorem 4.3.
For each jobj, let lij be the number of steps in which machinei is assigned toj andLj bemaxi lij . Denote
maxj Lj by L. We know that all machines are assigned toj within a window of lengthLj . Let β = nm.
Round eachlij down to the nearest multiple ofLβ , and denote this value byl′ij . We therefore can treat the
l′ij as integers in{0, . . . , β}. A schedule for this new problem can be trivially rescaled to one with the real
valuesl′ij . Sinceβ = nm, the schedule noweffectivelyhas a length (and load) bounded by a polynomial
in (n + m). Hence our discussions of the random delay and derandomization hold now. LetΣ′ be the
resulting feasible oblivious schedule, with length bounded byO(logm log(n+m)

log log(n+m))T OPT and load bounded
by O(logm)T OPT. To get a feasible oblivious scheduleΣo,1 so that every job accumulates1/2 mass, we
insert(lij − l′ij) units of processing toΣ′. The insertion can be done in a way that preserves the precedence
constraints, i.e., ifj1 ≺ j2, then no machine can be assigned toj2 beforej1 accumulates1/2 mass. Since
each insertion lengthensΣ′ by an amount≤ L

nm and we have at mostnm such insertions, the length of the
schedule is increased by at mostL. The loads on the machines are the same as before the rounding. Note
thatL is bounded byΠmax, which isO(logm)T OPT. We thus have obtained a feasible oblivious schedule
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Σo,1 whose length isO(logm log(n+m)
log log(n+m))T OPT, in which every job accumulates aconstantmass. Finally,

we use thereplicationtechnique discussed earlier in this section to obtain the desired schedule.
Proof of Theorem 4.5: Let (LP2) be the linear program obtained from (LP1) by removing constraints 3,
4, 5, andT ∗2 be (LP2)’s optimal value. We first show that one can round an optimal feasible solution to
(LP2), and obtain an oblivious schedule for ProblemAccuMass-C, whose length, and hence load, are both
O(log(min{n,m})) · T ∗2 .

For ProblemSUU-I, Condition (ii) of AccuMass-C is void. We thus don’t need constraints 3, 4, 5
when writing the linear program. The rounding in the proof of Theorem 4.1 gives anO(logm) blow-up. If
m ≥ n, we can do a better analysis for the rounding procedure. Since there aren+m non-trivial constraints
in (LP2), there are at mostn+m nonzero values in any basic feasible solution [2, 26]. In an optimal solution
{xij , t} (which is basic feasible), we may assume without loss of generality that for any machinei, there
exists aj such thatxij > 0. Otherwise, we may remove that machine from consideration in (LP2). From
here, we conclude that the number of machinesi that have at least twoxij > 0 is at mostn. When we
roundxij ’s, we only need to consider these machinesi with at least twoxij > 0. Then the same rounding
procedure in the proof of Theorem 4.1 gives a factorO(log n) blow-up because for each job, we only need
to considerO(log n) buckets.

We conclude that one can obtain an integral feasible solution{x̂ij , t̂} wheret̂ = O(log(min{n,m})) ·
T ∗2 . Furthermore, from{x̂ij , t̂}, one can construct a (feasible) oblivious schedule for ProblemAccuMass-
C, whose length, and hence load, aret̂ = O(log(min{n,m}))·T ∗2 . This is because the load on each machine
is bounded bŷt according to Equation 2 and the jobs are independent. Hence the machine assignment can
be done in such a way that no more than one job is scheduled on any machine at any step.

We thus have an oblivious schedule in which every job accumulates aconstantmass within time that
is at mostO(log(min{n,m}) times optimal. We now apply the schedule replication step and obtain the
desired bound.
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