Approximation Algorithms for Multiprocessor Scheduling under
Uncertainty
(Regular Submission)

Guolong Lin
College of Computer and Information Science
Northeastern University, Boston MA 02115.
lingl@ccs.neu.edu

Rajmohan Rajaraman
College of Computer and Information Science
Northeastern University, Boston MA 02115.
rraj@ccs.neu.edu

Abstract

Motivated by applications in grid computing and projects management, we study multiprocessor
scheduling in scenarios where there is uncertainty in the successful execution of jobs when assigned to
processors. We consider the problenmailtiprocessor scheduling under uncertainty which we are
givenn unit-time jobs andn machines, a directed acyclic graphgiving the dependencies among the
jobs, and for every joly and machin€, the probabilityp;; of the successful completion of jgbwhen
scheduled on machinein any given particular step. The goal of the problem is to find a schedule that
minimizes the expected makespan, that is, the expected completion time of all the jobs.

The problem of multiprocessor scheduling under uncertainty was introduced in [21] and was shown
to be NP-hard even when all the jobs are independent. In this paper, we present polynomial-time approxi-
mation algorithms for the problem, for special cases of theag/e obtain arO (log n)-approximation
for the case of independent jobs,@(log m log nlog(n +m)/ loglog(n +m))-approximation whei®
is a collection of disjoint chains, af(log m log? n)-approximation whert is a collection of directed
out- or in-trees, and af (log m log? n log(n+m)/ log log(n+m))-approximation wheit” is a directed
forest.

Keywords: Approximation Algorithms, Multiprocessor Scheduling.

1 Introduction

We study the problem of multiprocessor scheduling under uncertainty, which was introduced in [21] to study
scenarios where there is uncertainty in the successful completion of a job when assigned to a server. One
motivating application is in grid computing, where a large collection of computers, often geographically dis-
tributed,cooperate to solve complex computational tasks. To make better use of the distributed computers,
a task is usually divided into smaller pieces (or jobs) and handed to different computers. For many appli-
cations, there could be non-trivial dependencies among these jobs. Due to the possible physical failures,
or simply the distributed nature of the computing environment, a machine may not successfully execute the
assigned job on time. In this scenario, a natural goal is to determine a schedule of assigning the given jobs
to the computers so that the expected completion time of the task is minimized.

A similar example, also discussed in [21], arises while managing a large project in an organization. The
project may be broken down into small jobs with dependencies among them, i.e., a job may be executed only
after the successful completion of another set of jobs. A group of workers are assigned to this project. Due
to practical reasons and different skills, a worker may not be able to finish an assigned job successfully on
time. To decrease the chance of the potential delay of some key jobs, the project manager could (and would
want to) assign several workers to these jobs at the same time. Based on past experiences and the workers
skill levels, the project manager can estimate the successful probability of any particular worker finishing
any particular job. The challenge for the manager is to work out a strategy (or schedule) of assigning the
workers to the jobs so that tlexpectedtompletion time of the whole project is as small as possible.

Motivated by the examples above, we study the problemufiprocessor scheduling under uncertainty
henceforth referred to &JU. We have a set ofi machines, a set of unit-time jobs, and a directed acyclic
graph representing precedence constraints on the order of the execution of the jobs. We are also given,
for every jobj and machine, the probabilityp;; of the successful completion of jobwhen scheduled
on machines in any given particular step. To compensate for this uncertainty, multiple machines can be
assigned to one job at the same time. We focus on the problem of computing a schedule to minimize the
expected makespan, which is the expected time to complete all the jobs.

1.1 Ourresults

The multiprocessor scheduling probl&WU is shown to be NP-hard in [21] even when all jobs are indepen-
dent. In this paper, we present approximation algorithm$ftdl, for several special classes of dependency
graphs.

e We first consider the case when all the jobs are independent and prese(ibgm)-approximation
algorithm for the problems@).

A crucial component of our approach to the independent jobs case is the formulation of a sub-problem in
which we aim to maximize the sum of success probabilities for the jobs. A similar strategy, refined to handle
job dependencies, allows us to attack the more general case where the jobs are not independent.

e When the precedence constraints on the jobs form a collection of disjoint chains, we obtain an

O(log mlog n%) approximation algorithmg@.1). Our results rely on solving a (relaxed)

linear program and rounding the fractional solution using results from network flow theory.
e Using the algorithm for disjoint chains and the chain decomposition techniques of [17], we obtain
O(log mlog® n) andO(log m log? nlol"g(w) approximations for a collection of in- or out-trees

.) log(n+m)
and directed forests, respectlve!M(Zﬁ.

The schedules computed by the algorithms for disjoint chains, trees, and directed forests, are all oblivious in
the sense that they specify in advance the assignment of machines to jobs in each time step, independent of
the set of unfinished jobs at that step. Oblivious schedules are formally defif2zdvhere we also present
useful definitions and important properties of schedules that are used in our main results.

To the best of our knowledge, our results are the first approximation algorithms for multiprocessor
scheduling under uncertainty problems. Due to space constraints, we have omitted many of the proofs; they
may be found in the appendices A through C.

1.2 Related work

The problem studied in our work was first defined in the recent work by Malewicz [21], largely motivated by
the application of scheduling complex dags in grid computing [9]. Malewicz characterizes the complexity
of the problem in terms of the number of the machines anduidéh of the dependency graph, which is
defined as the maximum number of independent jobs. He shows that when the number of machines and
the width are both constants, the optimal regimen can be computed in polynomial time using dynamic
programming. However, if either parameter is unbounded, the problem is NP-hard. Also, the problem can
not be approximated within a factor 8f4 unless P=NP. Our work extends that of Malewicz by studying the
approximability of the problem when neither the width of the dag nor the number of machines is bounded.

The uncertainty of the scheduling problem we study comes from the possible failure by a machine
assigned to a job, as modeled by thes. There have been different models of uncertainty in the scheduling
literature. Most notable is the model where each task has a duration of random length and may require
different amount of resources. For related work, see [7, 6, 14, 29, 16, 11].

Scheduling in general has a rich history and a vast literature. There are many variants of scheduling
problems, depending on various factors. For example: Are the machines related? Is the execution preemp-
tive? Are there precedence constraints on the execution of the jobs? Are there release dates associated with
the jobs? What is the objective function: makespan, weighted completion time, weighted flow time, etc.?
See [13] for a survey and [12, 20, 28, 19, 4, 17] for representative work.

Two particular variants of scheduling closely related to our work is job shop scheduling [27] and the
scheduling of unrelated machines under precendence constraints. In the job shop scheduling problem, we
are givenm machines ana jobs, each job consisting of a sequence of operations. Each operation must be
processed on a specified machine. A job is executed by processing its operations according to the associated
sequence. At most one job can be scheduled on any machine at any time. The goal of the job shop scheduling
problem is to find a schedule of the jobs on the machines that minimizes the maximum completion time.
This problem is strongly NP-hard and widely studied [10, 18, 1]. Also extensively studied is the the problem
of preemptively scheduling jobs with precedence constraints on unrelated parallel machines [19, 27, 17], the
processing time of a job depends on the machine to which it is assigned. One common characteristic of
this problem an&UU is that in each problem, the capability of a machirie complete a joy may vary
with bothi and;j. However, while the unrelated parallel machines problem models this nonuniformity using
deterministic processing times that vary witland j, in SUU the jobs are all unit-size but may fail to
complete with probabilities that vary withand;j. Owing to the uncertainty in the completion of jol&JU
schedules appear to be more difficult to specify and analyze. One other technical difference iSthdt in
we allow multiple machines to be assigned to the same job at the same time, for the purpose of raising the
probability of successfully completing the job. The unrelated parallel machines problem is typically solved
by a reduction to instances of the job shop scheduling problem. Some 8idialgorithms also include
similar reductions.

2 Schedules, success probabilities, and mass

In this section, we present formal definitions of a schedy2 1), introduce the notion of the mass of a job
and prove a key technical theorem about the accumulation of mass of a job within the expected makespan
of a given schedul&(2.2).

2.1 Schedules

In SUU, we are given a sef of n unit-step jobs, and a sét/ of m machines. There are precedence
constraints among the jobs, which form a directed acyclic graph (@agyjob j is eligible for execution at

stept if all the jobs preceding according to the precedence constraints have been successfully completed
beforet. For every jobj and machine, we are also givem;;, which is the probability that jo when
scheduled on a machinevill be successfully completed)dependendf the outcome of any other execution.
Multiple machines can be assigned to the same job at the same step. Without loss of generality, we assume
that for eacly, there exists a machiniesuch thap;; > 0.

Definition 2.1. A scheduleX of length 7' € Z* U {oo} is a collection of functiong fs; : M — JU{L
+|S CJ, 1 <t<T+1}. Anexecutionof the schedul& means that, at the start of each steff S is the
set of unfinished jobs: machitiés assigned to jolyfs (i) if fs(¢) is eligible and belongs t&’; otherwise,
1 is idle for that step.

Our formal definition of a schedule specifies assignment functfgndor infinite ¢t. This is because
there is a positive probability for a jopto be not completed yet by any given stepif p;; < 1. For the
purposes of optimizing expected makespan, however, we can restrict our attention to a restricted class of
schedules.

Definition 2.2 ([21]). Aregimen Y, is a schedule in whiclfis, (-) = fs,(-) foranyS C J andt; # to.
In other words, the assignment functiofys's depend only on the unfinished job $efThus, we can specify
¥4 by a complete collection of functiofgs : M — SU{L}|S C J}.

We denote the minimum expected makespan for a gBlgbl instance byr°"", which is finite because
for any jobj, there exists a maching such thap;; > 0. It is not hard to see that there exists an optimal
schedule which is a regimen because at anystepe can determine an optimal assignment function, which
only depends on the subset of unfinished jobs atiséepl is independent of the past execution history or the
valuet. While a naive specification of an arbitrary regimen ugeslifferent assignment functions, certain
regimens can specified succinctly, for instance, by a polynomial-length function thatSaesput and
returnsfs. In this paper, we also consider a different restricted class of schedules,aldliédus schedule

Definition 2.3. Anoblivious schedules a schedule in which every assignment funcfignis independent
of S,i.e., forallt,S, 5, fs:(-) = fs+(-). Hence, the assignment functions at any stegn be specified by
a single function, which we denote iy

Oblivious schedules are appealing for two reasons. First, at any,stafy one assignment function is
needed, regardless of the actual unfinished jotbsetcurring at step. Recall that there could be many
different suchS' at a givent because of the execution uncertainty. The second benefit is more technical:
oblivious schedules allow us to addresstineertaintyin the SUU problem by solving relatedeterministic
optimization problems.

2.2 Success probabilities and mass

When a subset of machinésC M is assigned tg in any time step, the probability thatis successfully
completed isl — [],.4(1 — ps;). For ease of approximation, the following Proposition is useful to us.

3

Proposition 2.1. Givenzy, -,z € [0,1], 1 = (1 —z1)--- (1 — x) < x1 + -+ - + . Furthermore, if
1+ Fap<1,thenl — (1 —x1)--- (1 —) ze_l(scl—k‘-'—i-a:k). U

Proposition 2.1 suggests that we can approximate the success probability with a convenient linear form.

Definition 2.4. For any schedules, we define thenassof a job j at the end of stepto be the sum, over
all timet’ € [1,t] and over every machineto which; is assigned at timé, of p;;. Thus, for an arbitrary
schedule, the mass of a jgkat timet is a random variable. For aoblivious schedul&,, the mass of at

the end of any stepis simply
min{ Z Z Dij, 1},

1<7<t isf, (i)=j

wheref,(-) is the assignment function &f, at stepr. We say thaj accumulateshat mass by step

The following theorem is crucial for our approach to the scheduling problem. We emphasize that it holds
for an arbitrarySUU instance. It is used in the proofs of Theorem 3.1 and Lemma 4.2.

Theorem 2.2. Let Y be a schedule for aBUU instance, whose expected makespadni.igor any jobj, in
an execution ok for 27T steps, with probability at leadt/4, j accumulates a mass of at ledstd.

Proof. Let A be the event thaj is finished within ste@7. Let S; be the random variable denoting
the collection of machines assigned to jpkat stept and P(S;) = > ..q, pij- Let B be the event
that >, ,or P(S:) < 1/4. What we want to prove i®r(B¢) > 1/4. Observe thaPr(A) equals
Pr(A N B) + Pr(A N B), which is at mosPr(A N B) + Pr(B°).

We estimate the value &fr(A N B) below. Observe that all possible executionsXodn the jobs form
an infinite rooted tree, in which each node represents an intermediate state during an execution (see Figure 1
for an illustration). Each node has an associated set of jobs, representing the unfinished jobs at that state.
For a nodeN, let Job$N) be its associated set of unfinished jobs. Note that(J®pr the root nodeR
at level0 consists of the entire set of jobs. The nodes at lév@énote the states aftérsteps. From each
nodeN at levelk to each nod&) at levelk + 1, we can compute the corresponding transition probability
according to the assignment functigpg, v +1-

Lemma 2.3. Consider a tree nodé/ at levelk, wherej € JobgN). For1 <t < k, let S; be the machine
set assigned tg during stept along the path leading t&/ from R. Assume tha} _, _,, P(S:) < ¢, where
c < 1. And letP(j, N) be the probability thay will be finished by level (ste@T following a tree path
throughN and) ., o7 P(S) < c. ThenP(j, N) < ¢ — > ;1< P(St).

Proof of Lemma: We prove the lemma by backward induction on the level numibeConsider the base
case:N's level is2T — 1. We only need to execute the schedule for one more stepSdzebe the set of
machines assigned joduring ste@7". If P(Saor) > ¢ — >, ;<op_1 P(S:), thenP(j, N) = 0. Otherwise,
the probability thay is finished within this step is at most(Sor). In either case, the claim is true.

We now assume that the claim is true for any levet 27 — 1, our aim is to prove that the claim is also
true for levelk — 1. Consider a tree nod¥ at levelk — 1. Let .Sy be the set of machines assigned tturing
stepk according to assignment functigiy,q) x- A child node ofN at levelk either does not contain(j
is finished at stefy) or containsj (j is not finished at step). Let the probabilities of the two cases Be
and1l — Py, respectively. Denote all the children nodes whgi®still unfinished ad..

A Markov chain for aregimen. Aninfinite execution tree for a schedule.

Figure 1: An illustration of the schedule. For simplicity purpose, we only @gebs. Each node represents an
intermediate state, with its associated set of unfinished jobs appearing inside. The number close to an edge represents
its transition probability. The left graph is a Markov chain representation of a regimen. The right graph is a rooted tree
representation of the execution of a schedule. To avoid cluttering, we only show the complete transitions for nodes
{1,2} and{1} at step2.

If P(Sk) > c— > 1<1<p 1 P(St), thenP(j, N) = 0, whichis<c— >, ., ; P(S5t). Otherwise,

P(j,N) = Pi+ > P(Q)

QeL
< P1+Z(c— Z P(St))

QeL 1<t<k
= P+(1-"P)(c— Z P(St))

1<t<k
< P+ (c— Z P(S1))
1<t<k
< c— Z Pr(Sy),
1<t<k—1

where the second inequality follows from the induction hypothesis and the last inequality follows from the
fact thatP; < P(Sy). This proves the induction step and hence the Lemma. O
By invoking the lemma withe = 1/4, we obtainPr(A N B) = P(j,R) < ¢ = 1/4. HencePr(A) <
1/4 + Pr(B¢). And by Markov’s inequalityPr(A) > 1/2. We conclude thaPr(B¢) > 1/4, completing
the proof. O

3 Independent jobs

In this section, we study a special case of the scheduling problem, where the jobs are independent. We
refer to this problem aSUU-I. To compute a solution t8UU-I, we first establish that there exists an
oblivious schedule in which the total mass accumulated by the job$7iY"") steps i€2(n). To find such a
schedule, we formulate a subproblem for maximizing the total sum of masses and then give polynomial-time
algorithms to compute af(log n)-approximate schedule and &flog? n)-approximate oblivious schedule

Algorithm MSM-ALG ’ Algorithm SUU-I-ALG
INPUT: JobsJ, machines\/, pi;'s. INPUT: JobsJ, machines\, p;;’s.
e Setf(i) tonil, i € M. e Let S, denote the set of unfinished jobs at the start
e For eachp;; in nonincreasing order: If (¢) is nil of stept
anq Zx:f(:c):j pzj +pij < 1, @SSIgNi 10 j, 1.8, o |neach step, schedule according to the assignment
f(@) < j. determined by MSM-ALG applied t§; and all ma-
¢ For every unused machingf (i) «—_L; outputf. chines.

Figure 2: An approximation algorithm for scheduling independent jobs.

for SUU-I. For oblivious schedules, we improve the approximation fact@p ftwg n - log(min{n, m}))
when we study the more general case with chain-like precedence constraits.in

Theorem 3.1. If there exists a schedule for SUU-I with expected makespdn then there exists an obliv-
ious schedule of lengt?il’, in which the total mass accumulated by all jobs is at leg4t6.

Proof. Consider an executioh of X for 27" steps. This execution yields naturally an oblivious scheluyle

of length27", whose assignment functiorfg-)’s are defined as followsf; (i) = j if machinei is assigned

to jobj at stept in E. Note that due to execution uncertainky, and henc& g are bothrandom variables

By Theorem 2.2, for any job, with probability at least /4, j accumulates a mass of at leagtl by step
2T in X g. Thus, the expected mass pht step27" in X is at leastl /16. This implies that the expected
total mass of all the jobs at stefi’ in X is at leastn/16. Therefore, there exists an oblivious schedule in
which the total mass of the jobs at st&p is at least:/16. O

3.1 AnO(logn)-approximate schedule forSUU-

Motivated by Theorem 3.1, we formulate subproblsfaxSumMass for maximizing the sum of masses.
In MaxSumMass, we are given a sef of n independent, unit-step jobs, a gdtof m machines, and the
probabilitiesp;;, and the goal is to find an assignme¢nt A/ — JU{_L} for a single step that maximizes the
sum of masses over the jobs in the step. In Figure 2, we pres¢atapproximation algorithm MSM-ALG
for MaxSumMass (which can be shown to be NP-hard), and our approximation algorith®UJai-1, which
simply executes, in every step, MSM-ALG on the unfinished jobs.

Theorem 3.2. MSM-ALG computes d /3-approximate solution to ProbleMaxSumMass. O
Theorem 3.3. Algorithm SUU-1-ALG is anO(log n)-approximation algorithm foSUU-I.

Proof. Let S; denote the set of unfinished jobs at the start of stefhen, by Theorem 3.1, there exists an
oblivious schedule of lengt?il"°"" starting from step, in which total mass of all jobs if; is at leastS;|/16.
By averaging over th@T™"" time steps of this schedule, there exists an assignment of jobs to machines in
stept such that the total mass of the jobsSnin stept is at leastS;|/(327°°""). By Theorem 3.2, in stepof
SUU-I-ALG, the total mass of the jobs accumulated in stegpat least.S;|/(967°""). By Proposition 2.1,
it follows that the expected number of jobs that complete in sieg@t leastS;|/(96e1°T).

We thus have a sequence of random variablewhich satisfy the property¥[|Si+1] |S:] = |S¢|(1 —
1/(96eT°"T)). By straightforward Chernoff bound arguments [3, 15], we obtain that with high probability,
Sy is empty withinO(T°""log n) steps. O

The schedule computed by SUU-1-ALG is adaptive in the sense that the assignment function for each
step is dependent on the set of unfinished jobs at the start of the step. Using an extension of MSM-ALG,

6

we also give a polynomial-time combinatorial algorithm to computelalivious schedule with expected
makespan within a®(log? n) of the optimal. Due to space constraints, we refer the reader to the ap-
pendix for details. Ir§4.1, we improve this bound further @(log n - log(min{n, m})) using an LP-based
algorithm.

4 Jobs with precedence constraints

In this section, we studgUU when there are non-trivial precedence constraints on the jobs. We first present
in §4.1 a polylogarithmic approximation algorithm for the case when the constraints form didaiints

and then extend the results§A.2 to the more general case when the constraints form directed forests. All
of the schedules we compute are oblivious.

4.1 Disjoint chains

We consideiSUU in the special case where the dependency gtapbr the jobs is a collection of disjoint
chainsC = {C1,---,C;}. We refer to this problem aSUU-C. If job j; precedesj; according to the
constraints, we writg; < js.

At a high level, our approach to sol8JU-C is to first compute an oblivious schedule of near-optimal
length in which every job has a constant probability of successful completionrépboatethis schedule
sufficiently many times to conclude that all the jobs are finished with high probability within a desired
makespan bound. We first consider the problem of accumulating a constant success probability for each job.
As in the independent jobs case, we will use the notion of mass instead of the actual probability. However,
we need to take into account the dependencies among the jobs. Therefore, we formulate the following
problemAccuMass-C: Given the input forISUU-C, compute an oblivious schedule with minimum length
T, subject to two conditions: (i) Every jopaccumulates a mass of at leag® within 7T7; (i) If j; < jo,
j1 must already accumulate mals® before any machine can be assigneghtoCondition (i) captures the
intuition that if j; has a low probability of successful completion before ste¢hen the probability that,
is eligible for execution at stepwould be small; so it does not make much sense to assign machipges to
prior tot in the oblivious schedule.

The following is a relaxed linear program (LP1) faccuMass-C. Let x;; denote the number of steps
during which machine are assigned tp. Letd; be the number of steps during which there is some machine
assigned tg.

(LP1) min ¢
S.t. Zpij.%‘ij > 1/2 VjedJ (1)
1€M
inj < t YieM (2)
j€J
Y dj <t CrecC ®3)
J€Ck
0<wzy < dj Vij (4)
dj = 1 Vj ()

Some comments on (LP1) are in order. Equation 1 enforces Condition (i). Equation 2 boutusitbe

every machine, which we define below. Equation 3 bounds the time length on each chain constraint. Finally
Equation 4 ensures that each job accumulates its mass durinfy 8teps when there is some machine
assigned to it. LeT™ be the optimal value for (LP1) above.

Note that in (LP1) we do not have any condition to prevent two different jobs from two precedence
chains to be scheduled on the same machine at the same step. We use {tsetetcischedul® capture
such “schedules”, in which different jobs from different precedence chains may be scheduled to the same
machine simultaneously.

Definition 4.1. A pseudo-schedulef length T € Z* U oo is a collection of assignment functionsf; :
M —27|1<t<T+1}.

Hence, an assignment function of a pseudo-schedule may map a machine to a set of jobs. In this sense, a
pseudo-schedule may not be feasible; we address this issue later when describe how to transform a pseudo-
schedule to an appropriate oblivious schedule. An oblivious schedule is a pseudo-schedule in which the
value of f; is a single element.

Definition 4.2. Given a pseudo-scheduig, of (finite) lengthT’, {f; : M — 27 |1 <t < T + 1}, theload
of a machine: is defined as the total number of times that a job is scheduledrok,. Formally, the load
of machine is » , ., [fi(i)]. Theload of X, is defined as the maximum load of any machine.

We remark that a pseudo-schedule of lerifjtimay have a load greater thdh

Theorem 4.1. Within polynomial time one can round an optimal feasible solution to (LP1), and obtain a
pseudo-schedule for ProblefitcuMass-C whose length and load are both(log m)T™.

Proof. Obviously (LP1) is feasible because one can assign machines to each job for a finite steps so that the
job can accumulate a massiof2. Let {z;;,d;, t} be oneoptimalsolution to (LP1). (Note thatis equal to
T*.) Our efforts mainly concern the rounding procedure, i.e., obtaining a feasibtgal solution from the
fractional solution without blowing uptoo much. We then describe how to get a pseudo-schedule from an
integral solution to (LP1). We differentiate between two cases.

The first case is whenh> [.J| = n. We round each;; andd; up by settingr;; = [z;;] andd; = [d;].
We obtain a feasible integral solution with approximation factor 2 since we have

> iem Pijti; 2 1/2 Vi€ J, Y ap<t+n<2t Viel,
jel
Yec, dj St+n<2t CpeC, xj<dj Vij.

The second case is when< |J| = n. We make use of some results from network flow theory for our
rounding in this case. Notice that although we target for a masgfany constant smaller than'2 will

do as well because we can always scale every variable up to reach that target, sacrificing only a constant
factor. In our presentation below, we use many such scale-up operations. (We haven't tried to optimize
the constants.) For a given jgbif >,/ .. -1 pijzi; > 1/4, we can round these;;’s to the next larger

integer. Sincgz;;] < 2z;;, this only incurs a factor of 2 blow up i Thus, we only need to consider

those jobsj such thaty ;. ., ~q pijzi; < 1/4, which implies thaty _;c,, . - pijzi; > 1/4. Observe

thatZieM7pi_j<#7w<1p,»jxij < 1/8, which imp"eSZieMmijz#,mﬁapijmij > 1/8.
We bucket thesg;;’s into at mostB = [log(8m)] intervals(2~+1) 27%] (k = 0,1,...). For a bucket

b (270 27b) if _pi;cbuckety Tij < 1/32, we remove this bucket from further consideration. Note that

the sum ofp;;z;; over all removed buckets is at mast16. Hence for thep;;’s in the remaining buckets,

we still have)>;c ;. > 1 . pijziy > 1/16.

_8m7
For each jobj, there is a bucket; : (2_‘(”1“),2‘1’7‘] such thaly, cpuckews, Lij = %. Denote the
sum on the left side of the above inequality DBy. If necessary, we scale all thg;’s (and other variables)

up by a factor of 32, so that alb; > 1. We then round); down to| D, |. These operations only cost us a

constant factor in terms of approximation. Thus for the ease of the presentation below, we assume that the
Dj's areintegraland leD = . ; D;.
We now construct aetwork-flowinstance as follows (see Figure 3). We have one node for each job
one node for each machiriea source node, and a destination node We add an edgéi, j) for each
x;; contributing to the computation d@d;’s. We orient the edgéi, j) from j to ¢, with edge capacityd; |.
From each machine nodeadd an edge toward, with capacity[2t]. For each job nodg, add an edge
fromw to j, with capacityD;.

Figure 3: A network flow instance for the rounding of an optimal solution to (LP1)

The argument before the construction shows that a flow of demaatiu can be pushed through the
network, where ther;;’s specify such a feasible flowD is actually the maximum flow of the network
(consider the cut where one side consista afone). From Ford-Fulkerson’s theorem [8, 5], we know that
there exists aimtegral feasible flow when the parameters are integral, as in our instance. We take such an
integral flow value on edggj, i) as our rounded solution;;. Furthermore, the integral solution obtained
observes the following identities.

ZZEMpU:U;k] 2 m VJ € J, Z.’L’:} S [Qt—l Vi S M
j€d
Yjec,ldil < [2t] Crp e, zij < [dj] Vi, j.
Raising all the values by a factor 6f(logm), we obtain an integral feasible soluti({mj,cij,f}, where
t = O(logm)T*.
We now describe how to construct from the integral solution a pseudo-schegdwaose length and
load are both bounded by= O(logm)T*. Consider a jolyj in a chainC;, € C. Given thei;;’s, let
Lj = max; &;;. Lety; = 3. . Lj,. We assign the machines tovithin a step interval of length ; from
stepy; + 1to; + Lj, using each machingez;; times. In other words, the assignment functions for chain
C, are specified as follows. For any jgtand machineé, if #;; > 0, fF(i) = {j} fort € [v; + 1,¢; + 2]
This can be done because each machine is assigngdttmostL; times and different machines can be
assigned tg at the same step. After we define tffg(-) for every chainCy, € C, we define the assignment
functions forX; as
fi(i) = Uk:C’kECftk(i) forie Mt e [Lﬂ
Recall that the range of the assignment functions for a pseudo-schedule is a set of jobs. This completes the
proof of the theorem. O

We now relateAccuMass-C to SUU-C. Recall thatT™* is the optimal value of (LP1) we write for
ProblemAccuMass-C, andT°"" is the expected makespan of an optimum scheBute ProblemSUU-C.

9

We now bound the valug&™ in terms of 7°°" in Lemma 4.2. This lemma, together with Theorem 4.1
immediately yields a pseudo-schedule that sodMesuMass-C with load and length withir® (log n) factor
of T°F.

Lemma 4.2. T* < 16T°"". O

Theorem 4.3. A pseudo-schedule with length and load bounde®fyg m) - T°°" can be computed within
polynomial time, such that: (i) Every jobaccumulates at leadt/2 mass. (ii) Ifj; < j2, j2 can only begin
the accumulation aftef; accumulated /2 mass. O

In the remainder of this section, we describe how to convert a pseudo-schedule obtained from Theo-
rem 4.3 to a feasible schedule. According to Theorem 4.3, we can compute a pseudo-schedlidagth
O(logm) - T°"" in which every job accumulates a mass of at lda&t and hence a success probability of
at Ieasti. Moreover, ifj; < j2, no machine is assigned jo until j; has accumulatetl/2 such mass. We
now convert:, to a (feasible) oblivious schedug, in two steps. We describe these two steps briefly and
refer the reader to the appendix for details.

1. We use the elegant random delay technique of [19, 27] to delay the start step of the execution for each
chain appropriately and obtain a new pseudo-schedulein which the number of jobs scheduled on

any machine at any step@(%). The randomized schedule can also be derandomized using

techniques from [22, 25, 27]. We then “flatteR’; ; to obtain an oblivious schedule, ;, sacrificing

a factor ofO(%) in the schedule’s length.

2. To obtain the final oblivious schedule,, we to take the oblivious schedule, ; from above and
replicate each step’s machine assignm@(ibg n) times, so that all jobs will be finished with high
probability.

Theorem 4.4. For Problem SUU-C, there exists a polynomial-time algorithm to compute an oblivious

schedule schedule with expected makespan within a factflog m log n%) of the optimal. O

For independent jobs, i.e., when the constrafiii® ProblemSUU-C is empty, we can prove a bound
for oblivious schedules that slightly improves over the result stated at the €3d of

Theorem 4.5. For ProblemSUU-I, there exists a polynomial-time algorithm to compute an oblivious sched-
ule schedule with expected makespan within a fact@(@fg » - log(min{n, m})) of the optimal. O

4.2 Tree-like precedence constraints

Our algorithm for tree-like precedence constraints uses techniques from [17], who extend the work of [27]
on scheduling unrelated parallel machines with chain precedence constraints to the case where there are
tree-like precedence constraints by decomposing the directed forest3(inton) collection of chains. To

state their result, we first introduce some notations used in [17]. Given@@dagr), letd;, (v) anddyy,:(u)

denote the in-degree and out-degree, respectively,infG. A chain decompositionf G is a partition of

its vertex set into subsefs;, . .., By (called blocks) such that: (i) The subgraph induced by each kick

is a collection of vertex-disjoint directed chains; (ii) For any € V, letu € B; be an ancestor af € B;.

Then, eitheri < j, ori = j andu andv belong to the same directed chain®f, (iii) If d,..(u) > 1, then

none ofu’s out-neighbors are in the same blocksuasThe chain-widthof a dag is the minimum valug

such that there is a chain decomposition of the dagArtitocks. We now state the decomposition result.

Lemma 4.6 ([17], Lemma 1). Every dag whose underlying undirected graph is a forest has a chain de-
composition of widthy, wherey < 2([logn] + 1). The decomposition can be computed within polynomial
time.

10

Using Lemma 4.6, we simply decompose a given directed forest into atmestO(logn) blocks,
and within each block, apply our algorithm for the chain case (Theorem 4.4). Since the optimal expected
makespan on any subgraph (subset of jobs) is a lower bound for that of the whole graph (whole set of jobs),
this approach gives up another factoi@f n. We have thus obtained

Theorem 4.7. For ProblemSUU, if the dependency graphi is a directed forest, there exists a polynomial-
time algorithm to compute an oblivious schedule schedule with expected makespan within a factor of

O(log mlog? n%) of the optimal.

When the precedence constraints form a collectioautftrees(rooted trees with edges directed away
from the root) orin trees(defined analogously), we can obtain an improved approximation algorithm by
again following the ideas of [17]. More specifically, we decompose the out/in tree®ifibg n) blocks;
then randomly delay each chain by an amount of steps chosen uniformly[t@XI1,,,. /logn)] (this
step can be derandomized in polynomial time); and prove that with high probability, atifiogtr) jobs
can be scheduled on any machine simultaneously. We defer the details to the full version.

Theorem 4.8. For ProblemSUU, if the dependency grap@l is a collection of out/in trees, there exists
a polynomial-time algorithm to compute an oblivious schedule schedule with expected makespan within a
factor of O(log m log® n) of the optimal.

5 Open problems

In this paper, we have presented polylogarithmic approximation algorithms for the problem of multiproces-
sor scheduling under uncertainty, for special classes of dependency graphs. We believe that our bounds are
not tight; in particular, we conjecture that a more careful analysis will improve the approximation ratios by
anO(logn) factor in each case. It will also be interesting to obtain approximations for more general classes
of dependencies, and to consider online versions of our scheduling problem.

References

[1] D. Applegate and B. Cook. A computational study of the job-shop scheduling proQIR8A Journal
of Computing 3(2):149-156, 1991.

[2] D. Bertsimas and J. Tsitsikligntroduction to Linear OptimizatianAthena Scientific, 1997.

[3] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of
observationsAnnals of Mathematical Statistic83:493-509, 1952.

[4] F.Chudak and D. Shmoys. Approximation algorithms for precedence-constrained scheduling problems
on parallel machines that run at different speeflsGORITHMS: Journal of Algorithm$0, 1999.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémroduction to AlgorithmsMIT Press and
McGraw-Hill Book Company, Cambridge, MA, second edition, 2001.

[6] A.Fernandez, R. Armacost, and J. Pet-Edwards. A model for the resource constrained project schedul-
ing problem with stochastic task durations. 7l Industrial Engineering Research Conference Pro-
ceedings1998.

[7] A. Fernandez, R. Armacost, and J. Pet-Edwards. Understanding simulation solutions to resource con-
strained project scheduling problems with stochastic task duratiomggneering Management Journal
10(4):5-13, 1998.

11

[8] L. R. Ford, Jr. and D. R. Fulkersoifrlows in Networks Princeton University Press, Princeton, 1962.

[9] I. Foster and C. Kesselman, editoihe Grid: Blueprint for a New Computing Infrastructuf@organ
Kaufmann, San Francisco, CA, 2nd edition, 2004.

[10] M. R. Garey and D. S. JohnsonComputers and Intractability: A guide to the theory of NP-
completenessW. H. Freeman, San Francisco, 1979.

[11] A. Goel and P. Indyk. Stochastic load balancing and related problemBrobreedings of the 40th
Annual Symposium on Foundations of Computer Science (FQG%.

[12] R. L. Graham. Bounds for certain multiprocessing anomabdl System Technical Journal (BSTJ)
45:1563-1581, 1966.

[13] L. Hall. Approximation algorithms for scheduling. In D. Hochbaum, edidgaproximation Algorithms
for NP-hard Problems, PWS Publishing Compah997.

[14] W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and research potentials.
European Journal of Operational Reseayd®5(2):289-306, 2005.

[15] W. Hoeffding. On the distribution of the number of successes in independent &iatgls of Mathe-
matical Statistics27:713—-721, 1956.

[16] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connec®@OMP: SIAM
Journal on Computing30, 2000.

[17] V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. Scheduling on unrelated machines under
tree-like precedence constraints. ARPROX: International Workshop on Approximation Algorithms
for Combinatorial Optimization2005.

[18] E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys. Sequencing and scheduling: Algorithms and
complexity. Technical Report BS-R8909, Centre for Mathematics and Computer Science., Amsterdam,
1991.

[19] F. T. Leighton, B. M. Maggs, and S. Rao. Packet routing and job-shop scheduling in O (congestion +
dilation) steps Combinatorica14(2):167—-186, 1994.

[20] J. Lenstra, D. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel
machinesMATHPROG: Mathematical Programming6, 1990.

[21] G. Malewicz. Parallel scheduling of complex dags under uncertaintyPrdceedings of the 17th
annual ACM symposium on Parallelism in algorithms and architectyrages 66 — 75, Las Vegas,
Nevada, USA, 2005.

[22] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing integer
programs.JCSS: Journal of Computer and System Scier&&s1988.

[23] P. Raghavan and C. Thompson. Provably good routing in graphs: Regular arrag3OCt ACM
Symposium on Theory of Computing (STCXEB5.

[24] P. Raghavan and C. Thompson. Randomized rounding: A technique for provably good algorithms and
algorithmic proofs. COMBINAT: Combinatorica7, 1987.

12

[25] J. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-hoeffding bounds for applications with limited
independenceSIJDM: SIAM Journal on Discrete Mathematj& 1995.

[26] A. Schrijver. Theory of linear and integer programmingnterscience Series in Discrete Mathematics
and Optimization. Wiley, 1986.

[27] D. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop scheduling problems.
SICOMP: SIAM Journal on Computing3, 1994.

[28] M. Skutella. Convex quadratic and semidefinite programming relaxations in schedddinghal of
the Association for Computing Machinery (JAGM3(2):206—-242, 2001.

[29] M. Skutella and M. Uetz. Scheduling precedence-constrained jobs with stochastic processing times on
parallel machines. IRroceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms
(SODA) pages 589-590, Washington, D.C., US, 2001.

A Success probability and mass

Proof of Proposition 2.1: The first assertion follows from the identity —z1) - - - (1 —x) > 1— (214 - -+
xr,), which can be proved using a simple induction argument. The base chase bfs trivial. Suppose the
identity holds fork — 1. If 1 +--- + zx_1 > 1, then the identity holds fok; Otherwise, according to the
induction hypothesis,

(I—x1) (1 —2p—1)(1 —xg)
[1 — (l’l + .- +$k,1)](1 — :Ck)

>
> 1— (214 +xp).

For the second assertion, notice thadif< z < 1,1 —z < e™@ < 1 — f. Sincel — z < e7%,
(I—z1) - (1 —ag) <e ™ ...e %, we have

1—(1—z1)--- (1 —x)
1—e ™..e7

1 — ¢~ (@1t+zk)

Ty 4+ g

9

v

e

where the last inequality follows because < 1—Z for z € [0, 1] and the assumption that +- - -+, <
1. Il

B Independent jobs

Proof of Theorem 3.2:Consider a bi-partite graph, where one side of the graph lie the nodes fof pi
the other side lie the nodes for machings There is an edgé, j) between machinéand job; for any
pi; > 0. MSM-ALG can be viewed as picking and orienting the edges. Let Qpgi=)} be the collection
of edges of picked by the optimum assignmght Let SoL be the solution computed by MSM-ALG. We
use a charging argument below. Consider any €dgg € Opt.

1. (4,7) € SoL, chargep;; to itself.
2. (i,7) ¢ SoL:

13

(@) (i,7) is not added because in stepf2;) # nil. Letj’ = f(i). Chargep;; to p;;» where(i, j') €
SoL. Notice thatp;; < p;;7, andp;;» will be charged at most once due to this situation because
each machingin Opt is used at most once.

(b) (¢,7) is not added because in step/Zj) = nil yety_, r)_;pa; + pij > 1. Sincep;;'s are
processed in decreasing order, we conclude thatin, 3°,. ;(,)—; P = 1/2. Chargep;; to
22 i f(w)=j Pai-

Observe that one copy oftk is sufficient to cover the charges of types 1 and 2(a). Two copie®ofabe
sufficient to cover the charges of type 2(b) because, by definition, the mass of any job is atimasy
assignment.

We conclude that MSM-ALG computes a solution with an approximation fdotar O

In the remainder of this section, we present a combinatorial algorithm for computing an oblivious sched-
ule with expected makespan within(log? n) of the optimal. According to Theorem 3.1, there exists an
oblivious schedule of lengt?7™°"", in which total mass of all jobs is at leas{16. Intuitively, if one com-
putes an oblivous scheduig of length27°°T with the aim of maximizing théotal sumof masses over the
jobs, there should bmanyjobs accumulating constant masse&in One can then remove those jobs and
compute a second oblivious schedtileof length27°"" to maximize the total sum of masses for the remain-
ing jobs, to remove some additional jobs which have accumulated constant masses. Since each computation
of the oblivious schedule removesanyjobs, this process should terminate quickly. By concatenating the
31, Y9, . .. together, one obtains an oblivious schedulm which everyjob accumulates constant mass.

By Theorem 3.2, we havelg 3 approximation algorithm for ProbleMaxSumMass. However,Max-
SumMass only considers oblivious schedules of length 1, i.e., each machine is assigned to at most one job.
What we need is a procedure of finding an oblivous schedule of I&¥tH, which maximizes the sum
of masses over jobs. It turns out that one can extend MSM-ALG easily to take into account the schedule
length, which can barbitrary, and still obtain the same aproximation factorl@8. We now formalize our
discussion.

Problem (MaxSumMass-Ext): We are given a sef of n independent, unit-step jobs and a 3€of m
machines. Lep;; denote the probability that jopis successfully completed if assigned to machiné/e
are also given a parametec Z*. The goal of the problem is to find an oblivious schedujeof lengtht
such that the total sum of masses accumulated by the jobs by istepaximized.

We show below Algorithm MSM-E-ALG, which outputs an oblivious schedi)eof lengtht € Z*
that is al/3 approximate solution to ProbleMaxSumMass-Ext. Algorithm MSM-E-ALG is a simple
modification from MSM-ALG as follows. Since the schedule is of lengthach machine can be assigned
t times. We maintain e&emaining capacityparameter for each machirtg, initialized to the valug, to keep
track of how many steps machines still available to be assigned. We also usgto keep track of how
many steps machinéss assigned to joh. In Step 2(a) of MSM-E-ALG, as long asis positive, assign
to 5 for as many steps as necessary. In Step 2(b), we updateordingly. In Step 3, we output an oblivious
scheduleX, = {f;(-) : 1 < 7 < t}, which can be specified hy;;'s as follows. Letji,...,j, be an
ordering of the jobs.f, (i) = ji for >, pwij +1 <7 < >0 < iy, and1l < k < n. Observe that
the running time of MSM-E-ALG is independent of the valubecause each;;, hence each pait, j),
is processed exactly once in Step 2. It is not hard to see that MSM-E-ALG outfdyts @pproximate
solution to ProblemMaxSumMass-Ext because similar analysis for MSM-ALG from Theorem 3.2 can
be applied.

Lemma B.1. MSM-E-ALG computes a solution to ProbleMaxSumMass-Ext with an approximation
factor1/3.

We now present an approximation algorithm SUU-1-OBL for Probigi-I.

14

Algorithm 1 MSM-E-ALG
INPUT: JobsJ, machinesV/, p;;'s andt.

1. Sortp;;’s in decreasing order. Initializéfi, t; < t; Vi, j, z;; < 0.

2. For eaclp;; according to the order:

(a) x4 < min {ti, {MJ }

Pij
(b) t; — t; — Lij-

3. Output}, specified byz;;'s.

Algorithm 2 SUU-I-OBL

INPUT: JobsJ, machines\/, p;;’s.
1.t 1.
2.1 —1. R+ J. ¥ < “empty schedule”.
3. While (R| > 0) and (< 661logn)

(a) Let>; be the output of invoking MSM-E-ALG o, M with the current value.> — Yo Y.
(b) Remove jobs that accumulate at leg86 mass fromR.
(c) I —1+1.

4. If |R| > 0, thent «— 2t, GOTO step 2; Otherwise, retubi

15

A few comments on SUU-I-OBL are in order. We use MSM-E-ALG repeatedly to accumulate con-
stant masses for a good fraction of the jobs each round, until all jobs accumulate constant masses. There
is still one obstacle though. Since we don’t know the valug'df, we have to “guess” a value offor
MSM-E-ALG, which must be large enough, e.g., at |e2iEP"", to ensure that therexistsan oblivious
schedule of length in which the total mass is at leasf 16, as proved in Theorem 3.1. In summary, in the
loop of SUU-I-OBL (Step 3), we repeatedly invoke MSM-E-ALG to accumulat®s mass for the jobs,
for at most66 log n rounds (we will explain the reason shortly). At the end of the loop (Step 4), if there
are some remaining jobs, that means oualue is not large enough, we hence double the valdeaofl try
the newt again by resetting the other parameters. Note that during each invocation of MSM-E-ALG, we
start from scratch by ignoring any mass that the jobs may have accumulated in the previous rounds. We now
analyze the performance of SUU-I-OBL.

If ¢ > 27°FT, with one invocation of MSM-E-ALG using, let x be the number of jobs that get at
leastl /96 mass. The total sum of masses over the jobs is at most+ (n — =) - 1/96 because the mass
that any job accumulates is at mdstFrom Theorem 3.1, we know that there exists an oblivious schedule
of lengtht, with a total sum of mass at leasf16. Now according to Lemma B.1, MSM-E-ALG has an
approximation ratio ot /3. Thus,

x-1+(n—x)-1/96 >1/3-n/16.

It follows thatx > n/95. Since each invocation of MSM-E-ALG makes at leas15 of the jobs accumu-
late 1/96 mass, it is sufficient to invoke MSM-E-ALG at most log » times until all jobs accumulate at
leastl /96 mass.

To prove that SUU-1-OBL terminates in polynomial time, we first bound the val@&ot Letp,,;, =
min; ; p;j. Obviously, if we let the jobs accumulate sufficient mass one by one by assigning all machines
to a single job at any step, then every job accumulates a mass of at lgdisin a time interval of(}#}.
This implies that°"" = O(# logn). Sincet is doubling every iteration in SUU-1-OBLQ(logn +
log ﬁ) differentt values will be “probed” before the algorithm terminates. With eachalue, we invoke
MSM-E-ALG at most66 log n times, and each such invocation runs in polynomial time. We conclude that
algorithm SUU-I-OBL terminates within time polynomial in the size of the input. We have thus proved:

Lemma B.2. For ProblemSUU-I, one can compute in polynomial time an oblivious schedule of length
O(log n)T°"" in which every job accumulates a mass of at |€5$6.

Theorem B.3. For ProblemSUU-I, within polynomial time, we can compute an oblivious schedule whose
expected makespan is within a factor@flog? n) of the optimal.

Proof. Using Lemma B.2, we first compute an oblivious schedijeof lengthT = O(log?n) - T° in
which every job accumulates a mass of at l€g$6. The infinite repetition of:,, ¥°°, is the oblivious
schedule we want. Treating the executiort)df during each step interval ot - 7'+ 1, (k + 1) - 7], where
k=0,1,...,as one iteration, by Proposition 2.1 we know that every job has a success probability of at least
2%46 during each iteration. Withi@(log n) iterations, all jobs are finished with high probability. Thus, the
expected makespan BE® is within O(log? n) of T°"". We now formalize this argument.

Let random variableX be the iteration number when all jobs are finished. We bound the expected value

16

of X below.

EIX] = > Pr(X >i)
i=0
362logn—1 oo
=) Pr(X>i+ Y Pr(X>i)
=0 i=362log n
00 .
< 362logn -1 R Y
< S62logn-14), n-(1-ge)
i=362logn
- 36210gn—|—n.(1_L)362logn'§:(1_i)i
96e = 96e

< 362logn + %,
n

where the third inequality follows because every job has a probalgg}}ty)f success within each iteration,
and the last inequality follows by summing the geometric series and the fa¢t thag—)'®! < 1/2. This
completes the proof of the theorem. O

C Jobs with dependencies

Proof of Lemma 4.2: The following linear program is the same as (LP1), except tiiatis replaced by
1/16 andt is replaced by 7°"". We argue that this linear program is feasible.

Zpijxij > 1/16 Vjied
ieM
Y wy < 2T VieM
jeJ

>4

JECK

277977 CreC

IN

d; Vi, j
1V
0 Vi,j

&
IV IV IA

Consider the firsR7°"T execution steps using an optimal scheduleLet random variableX;; be the
number of steps in whichis assigned tg. Let random variablé’; be the total number of steps when there
is some machine assignedjtoWe know from Theorem 2.2 that with probability at leagt, j accumulates
at leastl /4 mass within27°"" steps. This amounts to the fact that the expected accumulated mgss for
at leastl/16. Thus

ieM

Since inX a machine is assigned to at most a job at any step,; X;; < 27°°". So
> E[Xy) < 2T

jeJ

17

Since we are considering oniy7°"" steps of%, we have} ;. Y; < 27°"". Obviously, X;; < Yj.
Taking the expectation, we have

Z E[Y;] < 21°°7
jeCk

and
EB[X;;] < EYj].

We conclude that;; = E[X;;] fori € M,j € J andd; = E[Yj;] for j € J form a solution to the
linear program. Raising this solution by a factor8pfive obtain a solution to (LP1). This means thatat
value167°"" is achievable in (LP1). We have thus proved thiat< 167°°". This completes the proof of
the lemma. O

We next describe in detail the two steps that convert a pseudo-schedule to a feasible oblivious schedule.
Since the second step is simpler, we describe it first.

Schedule replication: We first replicateX, ; at each step by a factor ef= 16 log n to get another oblivi-
ous schedul&, ». More precisely, lef” denote, ;'s length and le;(-)’s be the assignment functions of
Yo,1. We define the assignment functiofig-)’'s of £, as follows. For any € [1,0 - T, fi(-) = g-(-),
wherer = {%j + 1. Note that if¥, ; can be specified in space polynomial in the size of the input, as we
will show in the “delay” step, so cah, ».

We define yet another oblivious schedullgs of lengthn as follows. Topologically sort the jobs ac-
cording to the precedence constraints, e.g., appending the precedence chains one after another, and let
Ji,---,jn be the jobs in the sorted order. The assignment funciigh$'s for X, 5 are specified as follows.

Vi € M, h(i) = j;, wherel <t < n. Now the final oblivious schedule we want}s = >, o Yo% In
other words, oblivious schedulg, is simply the replicated, ; followed by assigning all the machines to
some job at each step.

We now analyze the expected makespah oflf all jobs are successfully completed within Step, the
expected makespan is at mogt. The probability that this does not happen is at mdst—) < 1/n?.

Notice also that from stepT” + 1 on, X, assigns all the machines to a single job at each step periodically
(due toX, 3, with a period length of:). The expected number of steps for a job to be completed is at most
T°FT if all the machines are assigned to it. Since we periodically assign the machines to any fixed job, on
average, it takes at mogt7°"") steps to complete any fixed job. Hence, on average, it takes atHbSt"
steps to complete all the jobs using the assignment functions beyona’Etephe expected makespan of
>, Is thus at most

(1—-1/n%)o-T +1/n- (o - T 4 n*T°7).
As we will prove shortlyT = O(log fm%
makespan oE, is O(log n log m%) TP,
Converting pseudo-schedule:; to an oblivious schedule:We now address the issue when the computed
pseudo-schedulg, from Theorem 4.3 is not yet feasible, that is, when some machine is assigned to more
than one job at the same step. We claim that we can cohyed an oblivious schedulE, ; by sacrificing

a factor ofO(lolgi ”:Tr)n).

LetIL,,.. be ghe Ioad o, i.e., the maximum number of jobs assigned to any machine. A result by
Shmoys, Stein and Wein on job shop scheduling problem [27, Lemma 2.1] states thdeifaythe starting

step of each chain by an integral amount independently and uniformly chosefofrdm,.|, the resulting
pseudo-schedule has no more tl@(q%) jobs scheduled on any machine during any step. We now
explain what we mean by the terelay. Recal that in the last paragraph of the proof for Theorem 4.1, we
first specify a functionf* for each constraint chaifi;, € C, and then define assignment function K as

f: = UifF. Suppose that a chaifi, is delayed by an amount @f,, the assignment functiogf’ for chain

Cy is modified as follows¥i € M, if ¢ < ¢y, g (i) = 0; otherwisegf (i) = f}' 4 (i). And the assignment

)-T°"Tando = 16 log n. We conclude that the expected

18

function for the schedule is defined As= U, gF. To make our presentation self-contained, we now outline
the argument for the bound ﬁ(%) below.

Fix a stept and a machiné Letp = Pr[at leastr units of processing are scheduled on machiaiestep
t]. Note that a joly could be scheduled in multiple steps, and each job is unit-step, it is equivalent to say that
there are multiple processing units of jgb There are at mos(t“';“) ways to choose those processing
units. Focus on a particular choiceqoijnits If these units are from different chains, the probability that
they are all scheduled at stejs at most(—) since we choose the delay independently and uniformly
from [0, I1,,,4,]. Otherwise, the probablllty i8 because our pseudo-schedule can never assign two units

from the same chain to the same machine at the same step. Therefore,

L IIm(Z(E
IIma:p
S

(&)

If 7 log(ntm) _ thenp < (n + m)~(@=D. Let L4, be the length of the longest chain according

ai
log log(n+m)?
to ¥;. The probability thaany machine atany step is assigned at Iem% jobs is bounded by

m(Wnaz + Limaz) (n+m)~ (@~ With the assumption, which we will remove shortly, tHi&f is bounded
by a polynomial in(n + m), IL,;,42 + Limas 1S bounded by a polynomial itn + m) as well. If we choose
« to be sufficiently large, then with high probability, no more thqﬁ% jobs are scheduled on any
machine at any step.

Shmoys, Stein and Wein [27] also derandomize the algorithm sa@Xtiag(n + m)) jobs can be sched-
uled on any machine simultaneously, based on results by [23, 24, 22]. Schmdit, Siegel and Srinivasan [25]
give a different derandomization strategy and obtain a collision bound matching the randomized algorithm,
ie., O(%) machines simultaneously for any machine. We denote this (derandomized) pseudo-
schedule by>, 1, whose length is at most twice that Bf,. According to Theorem 4.3.’s length is
O(logm) - T°, it follows that we can “flatten, ; out to obtain an oblivious schedul, ; whose length

is O(log m%) T°PT, in which each machine is assigned to one job at any step. We comment that

therandom delaytechnique originates in [19] when they study the job shop scheduling problem.
Reducing 7°°": We now address the issue th&t"" is not always bounded by a polynomial (n + m).

We make use of a trick from [27, Section 3.1]. Consider the pseudo-schedatemputed in Theorem 4.3.
For each joly, let/;; be the number of steps in which machine assigned tg andL; bemax; [;;. Denote
max; L; by L. We know that all machines are assigned twithin a window of lengthZ;. Let 5 = nm.
Round eacli;; down to the nearest multiple (g and denote this value ij. We therefore can treat the

z;j as integers if0, ..., 5}. A schedule for this new problem can be trivially rescaled to one with the real
valueslgj. Since3 = nm, the schedule nowffectivelyhas a length (and load) bounded by a polynomial
in (n + m). Hence our discussions of the random delay and derandomization hold now’ betthe

resulting feasible oblivious schedule, with length bounde®iplg m%ﬁo” and load bounded

by O(logm)T°"". To get a feasible oblivious scheduig ; so that every job accumulatég2 mass, we
insert(l;; — zgj) units of processing t&’. The insertion can be done in a way that preserves the precedence
constraints, i.e., ifi < jo2, then no machine can be assignedgddeforej; accumulateg /2 mass. Since
each insertion lengthen’d' by an amounk % and we have at mostm such insertions, the length of the
schedule is increased by at mdst The loads on the machines are the same as before the rounding. Note

that L is bounded by1,,,,, which isO(log m)T°"". We thus have obtained a feasible oblivious schedule

19

¥,1 whose length ig)(log m%)w”, in which every job accumulatesc@nstantmass. Finally,
we use theeplicationtechnique discussed earlier in this section to obtain the desired schedule.
Proof of Theorem 4.5: Let (LP2) be the linear program obtained from (LP1) by removing constraints 3,
4, 5, andT’; be (LP2)'s optimal value. We first show that one can round an optimal feasible solution to
(LP2), and obtain an oblivious schedule for ProblaotuMass-C, whose length, and hence load, are both
O(log(min{n,m})) - T.

For ProblemSUU-I, Condition (ii) of AccuMass-C is void. We thus don’t need constraints 3, 4, 5
when writing the linear program. The rounding in the proof of Theorem 4.1 givé¥(g m) blow-up. If
m > n, we can do a better analysis for the rounding procedure. Since thete-arenon-trivial constraints
in (LP2), there are at most+m nonzero values in any basic feasible solution [2, 26]. In an optimal solution
{xi;,t} (which is basic feasible), we may assume without loss of generality that for any magchiese
exists aj such thatr;; > 0. Otherwise, we may remove that machine from consideration in (LP2). From
here, we conclude that the number of machin#ésat have at least two;; > 0 is at mostn. When we
roundz;;'s, we only need to consider these machinesth at least twar;; > 0. Then the same rounding
procedure in the proof of Theorem 4.1 gives a fac¥glog) blow-up because for each job, we only need
to considelO(log n) buckets.

We conclude that one can obtain an integral feasible solytign¢} wheret = O(log(min{n, m})) -
Ty. Furthermore, fron{;;,}, one can construct a (feasible) oblivious schedule for ProBlecuMass-
C, whose length, and hence load, are O(log(min{n,m}))-T;. This is because the load on each machine
is bounded by according to Equation 2 and the jobs are independent. Hence the machine assignment can
be done in such a way that no more than one job is scheduled on any machine at any step.

We thus have an oblivious schedule in which every job accumulatesstantmass within time that
is at mostO(log(min{n,m}) times optimal. We now apply the schedule replication step and obtain the
desired bound. O

20

