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Abstract7

We study the online balanced graph re-partitioning problem (OBGR) which was introduced by8

Avin, Bienkowski, Loukas, Pacut, and Schmid [2] and has recently received significant attention [16,9

12, 13, 10, 4] owing to potential applications in large-scale, data-intensive distributed computing. In10

OBGR, we have a set of ℓ clusters, each with k vertices (representing processes or virtual machines),11

and an online sequence of communication requests, each represented by a pair of vertices. Any12

request (u, v) incurs unit communication cost if u and v are located in different clusters (and zero13

otherwise). Any vertex can be migrated from one cluster to another at a migration cost of α ≥ 1. We14

consider the objective of minimizing the total communication and migration cost in the competitive15

analysis framework. The only known algorithms (which run in exponential time) include an O(k2ℓ2)16

competitive [2] and an O(kℓ2O(k)) competitive algorithm [4]. A lower bound of Ω(kℓ) is known [16].17

In an effort to bridge the gap, recent results have considered beyond worst case analyses including18

resource augmentation (with augmented cluster capacity [2, 13, 12]) and restricted request sequences19

(the learning model [13, 12, 16]).20

In this paper, we give deterministic, polynomial-time algorithms for OBGR, which mildly exploit21

resource augmentation (i.e. augmented cluster capacity of (1 + ε)k for arbitrary ε > 0). We improve22

beyond O(k2ℓ2)-competitiveness (for general ℓ, k) by first giving a simple algorithm with competitive23

ratio O(kℓ2 log k). Our main result is an algorithm with a significantly improved competitive ratio24

of O(kℓ log k). At a high level, we achieve this by employing i) an ILP framework to guide the25

allocation of large components, ii) a simple ‘any fit’ style assignment of small components and iii) a26

charging argument which allows us to bound the cost of migrations. Like previous work on OBGR,27

our algorithm and analysis are phase-based, where each phase solves an independent instance of28

the learning model. Finally, we give an Ω(αkℓ log k) lower bound on the total cost incurred by any29

algorithm for OBGR under the learning model, which quantifies the limitation of a phase-based30

approach.31
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1 Introduction35

Modern data intensive applications which are distributed across data centers or clusters36

generate a large amount of network traffic [21, 18, 3]. To enable efficient communication37

among processes or virtual machines that may be dispersed in these clusters, many dis-38

tributed systems are increasingly re-configurable and demand-aware [5]. Since inter-cluster39

communication can incur significant cost due to physical distance and limited bandwidth,40

clusters may strategically migrate processes to reduce the cost of communication, subject to41

cluster capacity constraints. The online balanced graph re-partitioning (OBGR) problem,42

introduced by Avin, Bienkowski, Loukas, Pacut, and Schmid [2], is an algorithmic investig-43

ation of trade-offs between migration and inter-cluster communication in an environment44

where the sequence of communication requests is unknown or hard to predict.45

In OGBR, we are given ℓ clusters (representing servers or data centers), each holding at46

most k vertices (representing processes or virtual machines), and an online sequence of edges47

(representing communication requests). The communication cost of serving a request (u, v)48

is 0 if u and v are in the same cluster and 1, otherwise. Prior to serving any request, an49

algorithm has the option of migrating any vertex from one cluster to another for a migration50

cost of α ∈ Z+. Given an online sequence σ of requests, the cost incurred by an (online)51

algorithm A, denoted by c(A, σ) is the sum of the communication costs and migration costs52

over σ. Let OPT (σ) denote the cost incurred by an optimal offline algorithm, which knows σ53

in advance. We measure the performance of the algorithm in terms of the (strict) competitive54

ratio which is the minimum value of ρ > 0 such that for any input sequence σ and a fixed55

constant τ > 0 (independent of the length of σ) we have c(A, σ) ≤ ρ · OPT (σ) + τ . We56

usually refer to OPT (σ) as OPT when σ is clear from context.57

The offline version of balanced graph partitioning and its variants are well studied [14,58

20, 15, 1]. In this problem, given a weighted graph on a set V of n vertices and an integer59

ℓ, the goal is to partition V into vertex sets V1, ...., Vℓ such that the total weight of edges60

of the form (u, v) where u ∈ Vi, v ∈ Vj , j ≠ i is minimized. The problem is NP-hard and61

even hard to approximate within a finite factor. Note that for k = 2, this corresponds to62

maximum matching and for ℓ = 2, this reduces to the minimum bisection problem which is63

already NP-hard [11]. Several approximation and bi-criteria approximation algorithms are64

known [9, 8, 6, 7] (for a discussion of results, see [2]). Since balanced graph partitioning is65

NP-hard in the offline setting, exponential time competitive algorithms have been considered66

in the online setting [2, 16, 13]. Note that a balanced partition of the graph induced by the67

entire request sequence may not necessarily correspond to the optimal offline algorithm’s68

strategy since this strategy overlooks the initial assignment of vertices in clusters (and thus,69

the migration cost required to mimic a balanced partition), the length of the sequence and its70

evolution over time. Since the problem does not admit any known polynomial time optimal71

offline algorithms, beyond worst-case analysis has been employed to study competitiveness72

and running times. We briefly discuss two such settings in which OBGR has been studied.73

Resource Augmentation: In the resource augmented setting, an (1 + ε)-augmented online74

algorithm is granted (1 + ε)k capacity on each cluster for some constant ε > 0, and its75

performance is compared with the optimal offline algorithm with capacity exactly k per76

cluster. This is similar in vein to the offline bi-criteria versions of the offline balanced graph77

partitioning problem [6, 7] where the algorithm is required to partition V into ℓ clusters that78

minimizes the weighted sum of cut edges, such that the number of excess vertices assigned79

to any cluster is at most δk for some δ > 0. The cost of an algorithm’s obtained partition80

is compared to the cost of an optimal partition of V in which clusters are assigned exactly81
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k vertices. We note that resource augmentation has been studied extensively in online82

algorithms (e.g., see [17, 24, 25]), and goes back as far as the earliest work on caching [22].83

Constrained Input: A special case of OBGR that has been recently considered is the84

so-called learning model, introduced by Henzinger, Neumann, Räcke, and Schmid [12] and85

studied later in [4, 16]. In this model, the online sequence satisfies the condition that there86

exists a feasible assignment of vertices to clusters without any inter-cluster requests in the87

sequence. Thus, upon executing such an assignment of vertices, any algorithm incurs zero88

cost. In other words, an online algorithm in this model is required to learn an optimal89

partitioning of V into k clusters with no inter-cluster edges. In contrast to the general model90

(i.e. with an arbitrary request sequence), the learning model focuses only on migration costs.91

1.1 Related work92

OBGR without resource augmentation. In [2], an O(k2ℓ2) upper bound and an Ω(k)93

lower bound are established on the competitive ratio of any deterministic algorithm for OBGR94

without resource augmentation. The lower bound has been improved to Ω(kℓ) in recent work95

by Pacut, Parham, and Schmid [16]. The special cases of k = 2 (online re-matching problem)96

and k = 3 have also been studied [2, 16]. In very recent work, Bienkowski, Böhm, Koutecký,97

Rothvoß, Sgall, and Veselý [4] give an O(kℓ2O(k))-competitive algorithm for OBGR, which is98

optimal for constant k.99

OBGR with resource augmentation. The Ω(k) lower bound of [2] holds even when100

the algorithm is allowed an arbitrary amount of resource augmentation as long as ℓ ≥ 2101

and all vertices do not fit into a single cluster. The main result of [2] is an O(k log k)-102

competitive deterministic algorithm for OBGR with (2 + ε)k augmented cluster capacity for103

ε ∈ (0, 1). Very recently, Forner, Räcke, and Schmid [10] give a polynomial time deterministic104

O(k log k)-competitive algorithm in the same setting.105

The learning model. In [16], the authors present a tight Θ(kℓ) bound for the best determ-106

inistic competitive ratio in the learning model without resource augmentation. Moreover,107

they show that a lower bound of Ω(ℓ) holds even in the (1 + ε)-augmented setting for ε < 1/3.108

Henzinger, Neumann and Schmid [13] introduced the learning model of OBGR and give109

a O((ℓ log ℓ log n)/ε)-competitive algorithm and a lower bound of Ω(1/ε + log n) assuming110

(1 + ε)k augmented capacity for ε ∈ (0, 1/2). In more recent work, [12] establishes tight111

bounds of Θ(log ℓ + log k) and Θ(ℓ log k) on the best competitive ratio of randomized and112

deterministic algorithms, respectively, for the learning model with resource augmentation.113

Summarizing, for deterministic competitive ratios, the best known upper bound for114

OBGR is O(k2ℓ2) without resource augmentation and O(k log k) with (2 + ε)-augmentation,115

while the best known lower bound is Ω(kℓ) without resource augmentation and Ω(k + ℓ log k)116

with (1 + ε)-augmentation for ε < 1/3.117

1.2 Our results118

In this paper, we give online deterministic (1 + ε)-augmented algorithms for OBGR in the119

general model, for an arbitrary constant ε > 0. We first observe that a ρ-competitive120

algorithm for OBGR in the learning model can be used to get a ρkl-competitive algorithm121

in the general model. The proof is deferred to Appendix A.122

▶ Observation 1. Any ρ-competitive algorithm for OBGR in the learning model can be123

transformed to a O(ρkℓ)-competitive algorithm for OBGR in the general model.124
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Using the (1 + ε)-augmented deterministic O(ℓ log k)-competitive algorithm of [12] for125

the learning model, Observation 1 immediately yields (1 + ε)-augmented deterministic126

O(kℓ2 log k)-competitive and randomized O(kℓ(log k + log ℓ))-competitive algorithms for the127

general model. The algorithm of [12] for the learning model is quite sophisticated and relies128

on an intricate analysis. In Section 3, we give an alternative simpler algorithm for the general129

model referred to as AS , which admits a direct analysis and attains the same competitive130

ratio.131

▶ Theorem 2. There exists a deterministic, polynomial time, (1+ε)-augmented O(kℓ2 log k)-132

competitive algorithm for OBGR in the general model, for arbitrary constant ε > 0.133

Our main result, given in Section 4, is a polynomial time deterministic (1 + ε)-augmented134

O(kℓ log k)-competitive algorithm AG, for constant ε > 0; the competitive ratio nearly135

matches the lower bound of Ω(kℓ) without resource augmentation [16]. Under resource136

augmentation, our algorithm is optimal for constant k while for constant ℓ it is within a137

O(log k) factor of the optimal (following from the lower bound of Ω(k+ℓ log k) in the resource138

augmented setting). For many applications in which k is usually large (such as distributed139

communication between nodes placed in cloud servers), our algorithms have near-linear140

instead of an exponential [4] or quadratic [2] dependence on k in previous work.141

▶ Theorem 3. There exists a deterministic, polynomial time (1 + ε)-augmented O(kℓ log k)-142

competitive algorithm for OBGR in the general mode, for arbitrary constant ε > 0.143

The algorithm of Theorem 3 is a "phase-based" algorithm in which each phase solves OBGR144

in the learning model. The key component of our proof is an upper bound of O(αkℓ log k)145

on the total cost of the algorithm in the learning model, starting from an arbitrary initial146

assignment of vertices. It is natural to ask whether this bound can be improved since any147

improvement would also yield an improved competitive ratio for OBGR in the general model.148

The following lower bound, which can be derived from a lower bound instance of [12], rules149

this out, thus presenting a limitation of a phase-based analysis approach.150

▶ Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + ε)-151

augmentation for the learning model where ε > 0 is an arbitrary constant, there exists a152

sequence of requests for which the cost (resp., expected cost) is Ω(αkℓ log k).153

1.3 Overview of techniques154

We highlight the main techniques we use to get a significantly improved competitive ratio155

for OBGR in the general model. Our algorithms maintain a set of connected components156

and utilize the concept of a phase similar to most known algorithms for OBGR. All vertices157

in a connected component are assigned to the same cluster during any phase. On any158

request (u, v) where u is in component P1 and v in P2, P1 and P2 are merged into Pm and159

subsequently co-located. Components are classified as small or large based on a threshold160

size Dk where D = Θ(ε2).161

For the algorithm AS , if Pm is large, we solve an ILP to guide the assignment of large162

components. Small components may also need to be reassigned. If Pm is small, P1 is migrated163

to P2’s cluster as long as there is enough space. If that is not possible, small components are164

reassigned. We ensure that the maximum assigned volume on any cluster is (1 + ε
4 )k after165

the ILP is solved or small components are reassigned. By definition, large component merges166

happen only O(1) times while at least εk
4 total volume of small components is successfully167

migrated between any two small component reassignments. Using a charging argument, we168
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show that every vertex can be charged at most O(ℓ log k) before an optimal offline algorithm169

incurs a cost of 1 during that phase, yielding Theorem 2.170

The approach for algorithm AG is as follows. Each small component assigned to a cluster171

is allocated a volume which is within a (1 + ε
4 ) factor of the component size. Once a large172

component is created during a phase, successive assignments of large components created by173

any merge are handled by ILP used in AS . We note that our ILP is similar to that of [12]174

and we follow their approach to invoke a result on sensitivity analysis of ILPs [19], which175

limits the change in assignments when a large component is created. This is not sufficient to176

establish Theorem 3, however, since small components can be completely displaced leading to177

high migration cost after every merge. Interestingly, we show that a simple ‘any fit’ strategy178

for small components coupled with a charging argument is sufficient to bound the total179

migration cost by O(kℓ log k).180

Finally, to establish the lower bound of Theorem 4, we show that for any competitive181

algorithm A there exists a request sequence composed of Ω(log k) batches of requests and an182

initial assignment which is Ω(kℓ) far apart from A’s assignment such that A incurs cost at183

least Ω(αkℓ) on every batch.184

2 Preliminaries185

In this section, we present some definitions and high-level structure of our algorithms, which186

will be useful throughout the paper. Let [n] denote the set of integers {1, 2, .., n}. Let V187

denote the set of n = kℓ vertices. Let C denote the set of ℓ clusters. Each cluster C ∈ C188

is initially assigned exactly k vertices. A request is an unordered pair of vertices (u, v). A189

connected component Pi induced by a sequence of requests is the maximal set of vertices such190

that for any u ∈ Pi there exists v ∈ Pi s.t. (u, v) was a request in the sequence. The volume191

of any component Pi is its size |Pi|. Our algorithms maintain a set of connected components192

P = {P1, P2, ..P|P|} where Pi ⊆ V for all i and
⋃|P|

i=1 Pi = V . Initially, P = {{u}|u ∈ V } i.e.193

the set of singleton vertices. We refer to a request (ut, vt) with ut ∈ P1 and vt ∈ P2 as an194

inter-cluster request (between P1 and P2) if P1 and P2 are assigned to different clusters at195

the start of time t.196

Large and small components. Both our algorithms organize components into classes197

based on their volumes. A component P is in class i if |P | ∈ [(1 + ε
4 )i−1, (1 + ε

4 )i). A198

component is small if it belongs to a class i where i ≤ cs = ⌊ 4
ε ln( ε2k

32 )− 2⌋ where cs denotes199

the number of small component classes. Hence, a component is small if it has volume at most200

Dk where D < ε2

32 < ε
4 and large otherwise. Note that the number of large component classes,201

denoted by cl satisfies cl ≤ 4+ε
ε ln( 1

D ) + 2 = O(1). A large component P is understood to be202

in (large) component class i if it is in class i + cs. We assume ε ≥ 4
k . For any cluster C, we203

use V (C), VS(C), and VL(C) to denote the total volume of all, small, and large components,204

assigned to C, respectively.205

Phase-based algorithms. Both our algorithms are phase-based: they divide the sequence206

of requests into phases, and treat each phase as an independent sequence of requests.207

▶ Definition 5 (Phase). A phase p of a sequence σ of requests is a maximal contiguous208

subsequence of σ such that there exists a feasible assignment of the set of large components209

induced by p to clusters in C satisfying the constraint that the total volume of large components210

assigned to any cluster is at most (1 + ε
4 )k.211

A request sequence can be naturally partitioned into consecutive phases. Our algorithms212

begin a phase by setting P to the set of singletons and an assignment of vertices to clusters213
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such that every cluster C ∈ C is assigned exactly k vertices. For all phases p and all Pi ∈ P214

where P is the set of components induced by p, vertices in Pi are assigned to the same cluster.215

Note that OPT increases by 1 per phase. For the sake of exposition, we give our algorithms216

for the case when α = 1. In Appendix B, we show that a simple refinement of our algorithms217

handles the case when α > 1, without asymptotically affecting the competitive ratios.218

Merge cases. After any request, (u, v) between components P1 and P2 (where w.l.o.g.,219

|P1| ≤ |P2|) which are merged to form Pm, our algorithms consider two merge cases: small,220

when P1, P2 and Pm are small, and large when Pm is large. A merge is viewed as a deletion221

of components P1, P2 and an insertion of Pm.222

3 An O(kℓ2 log k)-competitive algorithm223

In this section, we present AS , an O(kl2 log k)-competitive algorithm. The algorithmic and224

analytic techniques developed play a key role in the improved algorithm AG of Section 4.225

We describe how AS executes during any phase. Recall that for any inter-cluster226

request, our algorithm considers two merge cases. For both the cases, AS calls subroutine227

Balance-Small to migrate and re-assign small components. For the large merge case, AS228

calls subroutine Reassign-Large to solve an integer linear program (ILP) and guide the229

placement of large components. The ILP has a constant number of variables and constraints230

and hence can be solved in constant time. To present the ILP, we first introduce the notion231

of a signature, which encodes the number of large components of each class assigned to a232

cluster.233

▶ Definition 6 (Signature). A signature τ = (τ1, τ2, ..., τcl
) for a cluster C ∈ C is a non-234

negative vector of dimension cl where τi is the number of large components of class i that235

can be assigned to C such that Dk
∑cl

i=1(1 + ε
4 )i−1τi ≤ k.236

▶ Lemma 7 (Upper bound on number of signatures). The number of possible signatures for237

any cluster C is O(( 1
ε2 )cl).238

Proof. Let τ be a possible signature. Note that τi ≤ k
Dk = O( 1

ε2 ) for all i ∈ [cl]. Therefore,239

the total number of different signatures is O(( 1
ε2 )cl). ◀240

3.1 The ILP241

We describe the ILP which is agnostic to the assignment of small components. Let T =242

{T1, T2, . . . , } denote the set of all possible signatures where w.l.o.g., T1 is the all-zeroes243

vector. Let Tij denote the jth entry of signature Ti. From Lemma 7, |T | = O(1). For each244

signature, Ti let variable xi ∈ [0, ℓ] denote the number of clusters assigned a signature Ti.245

Furthermore, let κj ∈ [0, ⌈ ℓ
D ⌉] denote the total number of class j large components. The ILP246

is as follows.247

|T |∑
i=1

Tijxi = κj for all j

|T |∑
i=1

xi = ℓ xi ∈ [0, ℓ] for all i (1)248

In matrix form, the ILP has nr = O(ln(1/ε2)) = O(1) rows and nc = O(|T |) = O(1) columns.249

Thus, the ILP can be solved in polynomial time. The following lemma shows that the total250

volume of large components assigned to any cluster never exceeds cluster capacities by more251

than an ε
4 factor.252

▶ Lemma 8 (Total volume of large components). Let τ denote the assigned signature to253

cluster C according to which large components are assigned to C. Then, VL(C) < (1 + ε
4 )k.254
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Proof. We note that VL(C) < (1 + ε
4 )Dk

∑cl

i=1(1 + ε
4 )i−1τi ≤ (1 + ε

4 )k. ◀255

Next, we give subroutines Balance-Small and Reassign-Large.

Algorithm Balance-Small

1: for each cluster C ∈ C s.t. V (C) > (1 + ε
4 )k:

2: while V (C) > (1 + ε
4 )k:

3: Migrate a small component P from C to C1 where C1 ← arg min
C2∈C

V (C2).

256

Algorithm Reassign-Large

1: Solve ILP (1) to obtain solution x.
2: if ILP is infeasible: return NULL.
3: Unmark all clusters C ∈ C and all large components in P.
4: for i ∈ [|T |]:
5: for r ∈ [xi]:
6: Assign signature Ti to an unmarked cluster C, and mark C.
7: for j ∈ [cl]:
8: Assign an unmarked large component P of class j to C and mark P .
9: Migrate P , if necessary.

If large components are assigned according to the subroutine Reassign-Large, then257

VL(C) ≤ (1 + ε
4 )k for all C ∈ C which follows from Lemma 8. On the other hand, if258

VL(c) ≤ (1 + ε
4 )k for all C ∈ C and Balance-Small is run, V (C) ≤ (1 + ε

4 )k thereafter. The259

latter follows since D < ε
4 and there always exists a cluster C1 such that V (C1) ≤ k.260

3.2 The algorithm261

For a request (ut, vt) where ut ∈ P1, vt ∈ P2, the algorithm AS proceeds as follows.262

Algorithm AS

Input: Distinct components P1 and P2 in clusters C1 and C2, respectively; |P1| ≤ |P2|
1: Merge P1 and P2 into Pm and update P,PS and PL accordingly.
2: if C1 ̸= C2 :
3: if Pm is small: ▷ Small merge case
4: Assign Pm to C2.
5: if V (C2) ≤ (1 + ε

2 )k: Migrate all vertices of P1 from C1 to C2.
6: else: Run Balance-Small.
7: else: ▷ Large merge Case
8: Run Reassign-Large.
9: if Reassign-Large returns NULL: Start a new phase.

10: else: Run Balance-Small.

Proof of Theorem 2: We bound the total migration cost incurred by the algorithm AS263

during a phase. For the large merge case, the migration cost is bounded by kℓ. To pay for264

this cost, we charge each vertex in Pm a cost at most ℓ
D . Every vertex can be charged O(cℓ)265

times in this manner within any phase, since a component size is bounded by k. For all kℓ266

vertices, this gives a total charge of O( kℓ2

D ) = O(kℓ2).267



R. Rajaraman and O. Wasim XX:7

For the small merge case, there are two cases. If V (C2) ≤ (1 + ε
2 )k, then each vertex268

in P1 is charged unit cost. Any vertex can be charged at most O(log k) in this way since269

|Pm| ≥ 2|P1| yielding a total charge of O(kℓ log k). If V (C2) > (1 + ε
2 )k the migration cost270

incurred due to Balance-Small is at most kℓ. Let X denote the set of vertices that migrated271

to C2 since the last invocation of Balance-Small. Then, |X| > εk
4 . Each vertex in X is272

charged 4ℓ
ε . Note that any vertex can be a vertex can be included in such a set X only273

O(log k) times before it is part of a large component. For all kℓ vertices, this charge sums to274

O(kℓ2 log k
ε ). Thus, the total amount charged to all vertices during a phase is O(kℓ2 log k),275

completing the proof of the theorem.276

4 An O(kℓ log k)-competitive algorithm277

In this section, we present algorithm AG. A major shortcoming of AS is that a cost of Ω(kℓ2)278

can be incurred for both small and large merge cases. For a large merge case, AG addresses279

this by ensuring that the total volume O(k) large components migrated is O(k) by employing280

a sensitivity analysis. The O(kℓ log k)-competitiveness of AG crucially hinges on bounding281

the migration cost of small components after a large merge case by O(k). To this end, we282

give a simple ‘any-fit’ assignment procedure for small components. Effectively, the algorithm283

guarantees that the the total migration cost for both merge cases is O(|Pm|), which can be284

charged to Pm. This yields the desired competitive ratio.285

The pseudo code of Algorithm AG is given below.286

Algorithm AG

Input: Components P1 and P2 in clusters C1, C2 of class i, j respectively; i ≤ j.
1: Merge P1 and P2 into Pm and update P,PS and PL respectively.
2: if Pm is large ▷ Large merge case (see Section 4.1)
3: Solve ILP(1).
4: Run algorithm Assign Signatures and let C′ ⊆ C be the set of clusters whose

signatures changed.
5: for all C ∈ C′

6: for all P ∈ PS assigned to C

7: if U(C) < ⌈|P |⌉(1+ ε
4 )

8: Assign and migrate P to C3 ∈ C where U(C3) ≥ ⌈|P |⌉(1+ ε
4 ).

9: U(C3)← U(C3)− ⌈|P |⌉(1+ ε
4 ).

10: else
11: U(C)← U(C)− ⌈|P |⌉(1+ ε

4 ). ▷ The assignment of P remains unchanged
12: else ▷ Small merge case (see Section 4.2)
13: if (1 + ε

4 )j ≥ |P1|+ |P2|
14: Migrate vertices of P1 to C2.
15: else
16: if U(C2) ≥ (1 + ε

4 )m − (1 + ε
4 )j

17: Migrate vertices of P1 to C2.
18: U(C2)← U(C2)− (1 + ε

4 )m + (1 + ε
4 )j .

19: else
20: Migrate vertices of Pm to C3 where U(C3) ≥ (1 + ε

4 )m.
21: U(C3)← U(C3)− (1 + ε

4 )m.

Algorithm AG executes as follows. At any given time, the algorithm maintains the287
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property that the volume assigned to every class i component is given by (1 + ε
4 )i. Thus,288

the total assigned volume for a cluster C overestimates the total volume of components289

assigned to C by a (1 + ε
4 ) factor. For the large merge case, an ILP is solved to handle290

assignment of large components similarly to AS . The assignment of large components is291

completely independent of small components. Thus, the reassignment of large components292

can displace small components. A displacement of small component P is viewed as a deletion293

and successive (re)insertion of P . In the next section, we give a procedure to handle the294

large merge case and show that the total volume of large components migrated is O(k) if Pm295

is large.296

4.1 Handling large components297

To handle the large merge case, we use ILP (1). Additionally, we employ a well known bound298

on the sensitivity of optimal ILP solutions.299

▶ Theorem 9. (reproduced verbatim from [19]) Let A be an integral nr×nc matrix, such that300

each subdeterminant of A is at most ∆ in absolute value; let b′ and b” be column nr-vectors,301

and let c be a row nc-vector. Suppose max{cx|Ax ≤ b′ : x integral} and max{cx|Ax ≤ b” :302

x integral} are finite. Then for each optimum solution z′ of the first maximum there exists an303

optimum solution z” of the second maximum such that ∥z′ − z”∥∞ ≤ nc∆(∥b′ − b”∥∞ + 2).304

Following the merge, the RHS vector in our ILP changes by at most 1 in the infinity305

norm. To bound the sub-determinant, we use the Hadamard inequality to derive that306

∆ ≤ n
nc/2
c A

nc/2
max , where Amax denotes the maximum entry (in absolute value) of the constraint307

matrix A. Each entry in the constraint matrix of our ILP has value either 1 or Tij so that308

Amax ≤ k
Dk = O(1/ε2). As a result, ∆ = O((|T |/ε2)|T |). Thus, the optimal solution to the309

ILP changes by O(|T |∆) in the infinity norm. Since x has dimension |T | the number of310

signatures which change between any two optimal solutions is O(|T |2∆).311

Assigning signatures to clusters. Let x = (x1, ..., x|T |) denote the optimal solution312

obtained after solving the ILP. The procedure Assign Signatures greedily assigns signatures313

to clusters. Following greedy assignment of signatures, large components are migrated between314

clusters whose assigned signatures changed to reflect new component assignments. The315

pseudo code is given as follows.316

▶ Lemma 10. The number of clusters whose assigned signatures change whenever a large317

component is created is O(|T |2∆) = O(1).318

Proof. The greedy procedure ensures that at most O(|T |∆) clusters previously assigned319

a signature Ti for i ∈ [|T |] are subsequently assigned a new signature. Thus, at most320

O(|T |2∆) = O(1) clusters change their assigned signatures. ◀321

4.2 Handling small components322

In this section, we give a simple procedure to assign small components. This procedure is323

used for both small and large merge cases. In the latter case, small components may need to324

be re-assigned due to displacements following a re-assignment of large components. Each325

small component P of class i is allocated volume exactly (1 + ϵ
4 )i on a cluster to which it326

is assigned, i.e. the allocated volume of a component is equal to ⌈|P |⌉(1+ ϵ
4 ) where ⌈x⌉(1+ ϵ

4 )327

denotes the value x rounded up to the nearest multiple of (1+ ϵ
4 ). We introduce some notation.328

Let AL(C) and AS(C) denote volume allocated to large and small components respectively329

on a cluster C ∈ C. Let PS(C),PL(C) ⊆ PS denote the set of small and large components330
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Algorithm Assign Signatures

1: Unmark all clusters C ∈ C.
2: C′ ← ∅
3: for i = 1 to |T |:
4: zi = xi.
5: while zi ̸= 0:
6: if there is an unmarked cluster C which has assigned signature Ti

7: Mark C.
8: else
9: Pick an arbitrary unmarked cluster C, assign it signature Ti.

10: Mark C and set C′ ← C′ ∪ {C}.
11: zi ← zi − 1.
12: PC′ ← {P | P ∈ PL and P is assigned to some C ∈ C′}.
13: for C ∈ C′ ▷ Migrate large components to reflect the change in signature.
14: τ ← assigned signature of C.
15: for i ∈ [cl]
16: for j ∈ [τi]
17: P ← class i component in PC′ .
18: Assign P to C and migrate if necessary.
19: PC′ ← PC′\{P}.

U(C)← (1 + ε)k −AL(C).

respectively assigned to a cluster C. Note that AL(C) = Dk
∑cl

i=1 τi(1 + ϵ
4 )i where τ is the331

signature assigned to C. If P does not have any large components, then AL(C) = 0 for all332

C ∈ C. Moreover, AS(C) =
∑

P ∈PS(C)⌈|P |⌉1+ ϵ
4
. We define the unallocated volume U(C) of333

cluster C ∈ C as U(C) = (1 + ϵ)k −AL(C)−AS(C).334

A small component P of class i which is currently unassigned, is assigned to an arbitrary335

cluster C whose unallocated volume U(C) is greater than (1 + ϵ
4 )i. Note that such a cluster336

C must always exist since otherwise this implies that the total volume of components exceeds337

kl, a contradiction. Below, we outline the assignment of small components.338

Small merge case. Consider the small merge case in which components P1 and P2 of class339

i (resp. j) currently assigned to C1 (resp. C2) are merged into Pm of class m. W.l.o.g., let340

i ≤ j. If (1 + ϵ
4 )j ≥ |P1|+ |P2|, vertices of P1 are migrated to C2. In this case, m = j. On341

the other hand, if m ̸= j there are two cases to consider. If U(C2) ≥ (1 + ϵ
4 )m − (1 + ϵ

4 )j
342

then vertices of P1 are migrated to C2. Else, vertices in P1 ∪ P2 are migrated to cluster C3343

where U(C3) ≥ (1 + ϵ
4 )m. In all cases, Pm is allocated a volume of (1 + ϵ

4 )m.344

Handling displacements. Consider the large merge case in which re-assignment of large345

components may displace small components. Each small component P assigned to a cluster C346

whose signature changes after a large merge is assigned to a cluster C ′ where U(C ′) ≥ (1+ ϵ
4 )i.347

Since only O(1) clusters change signatures, the total volume of small components that is348

displaced is bounded by O(k).349

Proof of Theorem 3: The migration cost of large and small merge cases is analyzed350

separately. For the large merge case, it follows by Lemma 10 that the total volume of large351

components migrated is O(k), since the assigned signatures change for only O(1) clusters.352

Let C′ ⊆ C denote the set of clusters whose signatures changed. The total volume of small353

components assigned to C′ is bounded by O(k). As a result, the total migration cost to354

reassign both small and large components is O(k) which is charged uniformly to all vertices355
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in Pm. Since Pm is large, each vertex in Pm is charged O(1). Noting that the number of356

large component classes, cℓ = O(1), the total amount charged to all vertices during the time357

they are part of large components is bounded by O(kℓ).358

For the small merge case involving components P1 and P2 (assigned to C1 and C2359

respectively), we consider two types of charges. If U(C2) is sufficient, vertices of the smaller360

component P1 are migrated to C2, and the migration cost of |P1| is charged to vertices in P1.361

Each vertex can be charged O(log k) many times in this manner before it is part of a large362

component. For all vertices, this type of charge amounts to O(kℓ log k). On the other hand,363

if U(C2) is insufficient and vertices in P1 ∪ P2 are migrated, the migration cost of O(|Pm|) is364

charged to all vertices in Pm. However, in this case m > j. Since cs = O(log k), the total365

charge of this type for all vertices across the phase is O(kℓ log k).366

As a result, the total migration cost during a phase for both small and large cases during367

any phase is bounded by O(kℓ log k).368

5 Lower bound for the learning model with arbitrary assignment369

In this section, we give a lower bound for any deterministic (resp. randomized) algorithm370

for the learning problem in which the initial assignment of vertices by an offline-optimal371

algorithm AOP T and an online algorithm can be arbitrary. Our argument follows an approach372

implicit in the Ω(log k) lower bound established in [12] for randomized OBGR in the learning373

model.374

Let ΓA = (V1, V2, ..., Vℓ) , where Vi ⊆ V and |Vi| = k for all i ∈ [ℓ] denote an initial375

assignment of vertices to clusters that an algorithm A begins with. The initial assignment376

of vertices that the algorithm AOP T begins with is analogously defined and denoted by377

Γ′
OPT = (V ′

1 , V ′
2 , ..., V ′

ℓ ). Let π : [ℓ] → [ℓ] denote a permutation of integers in [ℓ] and Π378

denote the set of all such permutations. Define d(ΓA, ΓOP T ) = min
π∈Π

∑ℓ
i=1 |Vπ(i)\V ′

π(i)| as379

the initial distance between vertex assignments that A and AOP T begin with respectively.380

Note that d(ΓA, ΓOP T ) ≤ kl. In the learning problem with arbitrary assignments, the initial381

distance can be arbitrary. We prove the following result.382

▶ Theorem 4. For any online deterministic (resp., randomized) algorithm with (1 + ε)-383

augmentation for the learning model where ε > 0 is an arbitrary constant, there exists a384

sequence of requests for which the cost (resp., expected cost) is Ω(αkℓ log k).385

Proof. Let A denote an algorithm that begins with an initial assignment ΓA. We show that386

there exists an assignment ΓOPT satisfying d(ΓA, ΓOP T ) = Θ(kl) such that A incurs at least387

Ω(kl log k) while AOP T incurs no cost. The idea is to construct a request sequence σ which388

is composed of batches Bj of requests for j = Ω(log k) such that A incurs cost Ω(kl) on each389

batch. For the sake of the proof, let k be a power of 2. We assume ϵ < ℓ− 1 is a constant390

and l ≥ 2.391

We give some terminology which will be useful. Let Pi denote the set of components392

induced by the set of requests ∪i
j=1Bj . Within any batch, we define a saturating sequence393

of requests between components P1 and P2 as a sequence of requests of the form (u, v)394

where u ∈ P1, v ∈ P2 for vertices u and v which are not currently co-located by A. By395

definition a saturating sequence of requests terminates once P1 and P2 are co-located by A.396

Let C0 = {{u}|u ∈ V denote the set of singletons before A services the first request.397

For the first batch of requests B1, each singleton component {u} is paired with another398

component {v} such that u and v are not co-located by A under the initial assignment ΓA.399

For all such pairs {u}, {v}, B1 consists of the union of all saturating sequence of requests400
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between {u} and {v} until they are co-located. If at any point in time while the current batch401

of requests is being served, A does not co-locate any pair of components P1, P2, a saturating402

sequence of requests is issued between P1 and P2. Observe that for A to be competitive, A403

must co-locate all request pairs. Moreover, P1 consists of kℓ
2 components of size 2.404

For any batch Bj for j > 1, we proceed similarly. Each component P of size k
2j−1 is405

paired with another component Q such that P and Q are not co-located by A before any406

request in batch Bj is issued. Thereafter for all pairs of components P and Q, a saturating407

sequence of requests is issued. Once all pairs have been co-located, the next batch of requests,408

Bj+1 is served.409

Note that since requests are issued between only two components of similar size with410

size less than k at any given time, there exists an assignment ΓOPT = (V ′
1 , V ′

2 , ...., V ′
k) which411

satisfies that for any u, v ∈ V ′
i for all i ∈ [ℓ], no request of the form (u, v) was included in σ.412

Thus, AOP T incurs zero cost.413

On the other hand, the migration cost incurred by A on any batch of requests Bj is414

Ω(kℓ). To this end, note that for all j ∈ [log k], Pj−1 consists of exactly kℓ
2j−1 components,415

each of size 2j−1. At any given point in time during which batch Bj is issued, A utilizes416

at least kℓ
(1+ϵ)k = Ω(ℓ) clusters to assign components. Thus, there exist Ω( kℓ

2j−1 ) pairs of417

components that are not co-located by A and communication requests during batch Bj418

necessitate migration of at Ω( kℓ
2j−1 ) components each of size 2j−1. Thus, the total migration419

cost incurred by A to service Bj is Ω(αkℓ). For all Ω(log k) batches, this amounts to420

Ω(αkℓ log k).421

A similar approach can be employed to construct a probability distribution over re-422

quest sequences for which every deterministic algorithm incurs an expected cost of at least423

Ω(αkℓ log k). From Yao’s minimax principle [23], this yields a lower bound on the expected424

cost of any randomized algorithm. The distribution of requests is as follows. As above, the425

sequence proceeds in batches. The probability distribution for a batch is dependent on the426

components constructed in the preceding batch. For every batch Bj , two components P427

and Q of size 2j−1 are selected at random. Next, all possible requests are issued between428

vertices in P (resp. Q) and repeated Ω(α) times. Then, requests of the form (u, v) where429

u ∈ P, v ∈ Q are issued for all possible u, v and repeated Ω(α) times. This is repeated for430

batch Bj until there are no components of size 2j−1. It can be shown that for any batch431

the expected total cost for any deterministic algorithm is Ω(αkℓ). Since there are Ω(log k)432

batches, this yields the desired Ω(αkℓ log k) lower bound, thus completing the proof. ◀433
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A From learning to the general model517

▶ Observation 1. Any ρ-competitive algorithm for OBGR in the learning model can be518

transformed to a O(ρkℓ)-competitive algorithm for OBGR in the general model.519

Proof. We give an a ρkl-competitive algorithm A for OBGR in the general model which520

uses the ρ-competitive algorithm AL as a subroutine. We say an assignment Γ : V → C is521

perfect if every cluster is assigned exactly k vertices. The algorithm partitions the request522

sequence into phases, and treats each phase as an independent sequence of requests. Here,523

the definition of a phase is slightly different: phase p of σ is a maximal sub-sequence of524

requests such that there exists a perfect assignment of vertices which satisfies the property525

that for all (u, v) ∈ p, Γ(u) = Γ(v), i.e. u and v are assigned to the same cluster. Before526

a new phase begins, A sets P to the set of singletons and migrates vertices so that every527

cluster has exactly k vertices. During a phase p, A simply simulates AL; AL starts with the528

same assignment of vertices as A at the beginning of p. Let AOP T denote an offline-optimal529

algorithm.530

It is easy to observe that the cost incurred by AOP T increases by at least 1 in every531

phase. We claim that A incurs a cost no more than ρkℓ. To this end, suppose A incurred a532

cost more than ρkℓ. Consider an algorithm which an identical assignment of vertices as A at533

the beginning of phase p and immediately moves to a perfect assignment Γ of vertices such534

that for any (u, v) ∈ p, Γ(u) = Γ(v) and incurs no cost thereafter throughout p. The cost of535

this algorithm is at most kℓ which contradicts that AL is ρ-competitive. ◀536

B The case of general α537

In this section, we show how to adapt our algorithms which were given for α = 1 to arbitrary538

α without a degradation in the asymptotic competitive ratio.539

▶ Theorem 11. Let A ∈ {AS ,AG} denote a O(ρ) competitive algorithm for OBGR for540

α = 1, where ρ = Ω(kℓ log k). Then, A can be modified to an O(ρ) competitive algorithm541

AM to handle the case of arbitrary α.542
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Proof. In the case of arbitrary α, it may be worthwhile to merge two components only when543

sufficient number of requests have been encountered between them. Let w(Pi, Pj) denote544

the number of requests encountered of the form (ut, vt) between components Pi and Pj545

where ut ∈ Pi, vt ∈ Pj during a phase. AM initializes a phase by setting P to the set of546

singletons and w({u}, {v}) = 0 for all u, v ∈ V . For components Pi and Pj where w.l.o.g.547

|Pi| ≤ |Pj |, AM only merges them into Pm when w(Pi, Pj) ≥ α|Pi|. For every component548

Pr ≠ Pi, Pj , w(Pm, Pr) is set to w(Pi, Pr) + w(Pj , Pr). Due to this reason, it is possible Pr549

may become eligible to be merged with Pm. A request (ut, vt) is special if it leads to one or550

more component merges.551

During any phase, AM works as follows: on any request (ut, vt) between components Pi552

and Pj it first increments w(Pi, Pj). Next, it determines whether the request is special. If it553

is special, AM simulates A on this request. Note that if Pi ad Pj are in the same cluster,554

then nothing needs to be done besides updating data structures and merging Pi and Pj into555

Pm. However, if this makes a component Pr eligible to be merged with Pm, AM creates an556

artificial request (uA, vA) where uA ∈ Pm, vA ∈ r and simulates the action of A on (uA, vA).557

Recursive component merges are handled similarly. A phase of AM ends whenever a phase558

of A ends. Note that requests to A only consist of special and artificial requests.559

We bound the total communication and migration cost incurred by AM during a phase.560

Since A incurs a cost of O(ρ) per phase, the migration cost of AM is bounded by O(αρ). We561

claim the communication cost per phase of AM is O(αkℓ log k). For this purpose, consider562

charging any vertex in a small component Pi a cost of α whenever Pi is merged with Pj .563

This is sufficient to bound the total communication cost, which is α|Pi| incurred due to564

communication between vertices in Pi and Pj . Thus, every vertex is charged O(α log k) per565

phase yielding a total communication cost of O(αkℓ log k).566

To lower bound the cost of an optimal offline algorithm during the phase, note that either567

it migrated a vertex or not. If a vertex was migrated during the phase, then OPT ≥ α. On568

the other hand, if no vertex was migrated, a communication cost of at least α must have569

been incurred. To see why, note that at the termination of the phase, the ILP 1 solved by A570

determines that no feasible solution exists. Each edge in the graph that A maintains during571

the phase corresponds to at least α paid communication requests handled by AM . Thus, for572

both cases OPT ≥ α per phase.573

This yields O(ρ+kℓ log k) competitiveness. Since ρ = Ω(kℓ log k), the theorem follows. ◀574
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