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Abstract12

We study the problem of scheduling precedence-constrained jobs on heterogenous machines in the presence13

of non-uniform job and machine communication delays. We are given a set of n unit size precedence-ordered14

jobs, and a set of m related machines each with size mi (machine i can execute at most mi jobs at any time).15

Each machine i has an associated in-delay ρin
i and out-delay ρout

i . Each job v also has an associated in-delay ρin
v16

and out-delay ρout
v . In a schedule, job v may be executed on machine i at time t if each predecessor u of v is17

completed on i before time t or on any machine j before time t − (ρin
i + ρout

j + ρout
u + ρin

v ). The objective is to18

construct a schedule that minimizes makespan, which is the maximum completion time over all jobs.19

We consider schedules which allow duplication of jobs as well as schedules which do not. When duplication20

is allowed, we provide an asymptotic polylog(n)-approximation algorithm. This approximation is further21

improved in the setting with uniform machine speeds and sizes. Our best approximation for non-uniform delays is22

provided for the setting with uniform speeds, uniform sizes, and no job delays. For schedules with no duplication,23

we obtain an asymptotic polylog(n)-approximation for the above model, and a true polylog(n)-approximation24

for symmetric machine and job delays. These results represent the first polylogarithmic approximation algorithms25

for scheduling with non-uniform communication delays.26

Finally, we consider a more general model, where the delay can be an arbitrary function of the job and the27

machine executing it: job v can be executed on machine i at time t if all of v’s predecessors are executed on i by28

time t − 1 or on any machine by time t − ρv,i. We present an approximation-preserving reduction from the29

Unique Machines Precedence-constrained Scheduling (UMPS) problem, first defined in [15], to this job-machine30

delay model. The reduction entails logarithmic hardness for this delay setting, as well as polynomial hardness if31

the conjectured hardness of UMPS holds.32

This set of results is among the first steps toward cataloging the rich landscape of problems in non-uniform33

delay scheduling.34
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363:2 Scheduling under Non-Uniform Job and Machine Delays

1 Introduction44

With the increasing scale and complexity of scientific and data-intensive computations, it is often45

necessary to process workloads with many dependent jobs on a network of heterogeneous computing46

devices with varying computing capabilities and communication delays. For instance, the training and47

evaluation of neural network models, which involves iterations of precedence constrained jobs, is often48

distributed over diverse devices such as CPUs, GPUs, or other specialized hardware. This process,49

commonly referred to as device placement, has gained significant interest [18, 21, 32, 33]. Similarly,50

many scientific workflows are best modeled precedence constrained jobs, and the underlying high-51

performance computing system as a heterogeneous networked distributed system with communication52

delays [3, 44, 49].53

Optimization problems associated with scheduling under communication delays have been studied54

extensively, but provably good approximation bounds are few and several challenging open problems55

remain [1, 4, 14, 23, 26, 34, 35, 37, 39, 40, 43]. With a communication delay, scheduling a set of56

precedence constrained uniform size jobs on identical machines is already NP-hard [40, 43], and57

several inapproximability results are known [4, 23]. However, the field is still underexplored and58

scheduling under communication delay was listed as one of the top ten open problems in scheduling59

surveys [5, 45]. While there has been progress on polylogarthmic-approximation algorithms for the60

case of uniform communication delays [16, 26, 29, 31], little is known for more general delay models.61

This paper considers the problem of scheduling precedence-constrained jobs on machines con-62

nected by a network with non-uniform communication delays. In general, the delay incurred in63

communication between two machines could vary with the machines as well as with the data being64

communicated, which in turn may depend on the jobs being excuted on the machines. For many65

applications, however, simpler models suffice. For instance, the machine delays model, where the66

communication between two machines incurs a delay given by the sum of latencies associated with67

the two machines, is suitable when the bottleneck is primarily at the machine interfaces. On the other68

hand, job delays model scenarios where the delay incurred in the communication between two jobs69

running on two different machines is a function primarily of the two jobs. This is suitable when the70

communication is data-intensive. Recent work in [15] presents a hardness result for a model in which71

jobs are given as a DAG and any edge of the DAG separating two jobs running on different machines72

causes a delay, providing preliminary evidence that obtaining sub-polynomial approximation factors73

for this model may be intractable. Given polylogarithmic approximations for uniform delays, a natural74

question is which, if any, non-uniform delay models are tractable.75

1.1 Overview of our results76

A central contribution of this paper is to explore and catalog a rich landscape of problems in non-77

uniform delay scheduling. We present polylogarithmic approximation algorithms for several models78

with non-uniform delays, and a hardness result in the mold of [15] for a different non-uniform delay79

model. Figure 2 organizes various models in this space, with pointers to results in this paper and80

relevant previous work.81

ρouti ρinji j

Figure 1 Communicating a result from i

to j takes ρout
i + ρin

j time.

Machine delays and job delays (Section 2). We begin82

with a natural model where the delay incurred in commu-83

nication from one machine to another is the sum of delays84

at the two endpoints. Under machine delays, each machine85

i has an in-delay ρin
i and out-delay ρout

i , and the time taken86

to communicate a result from i to j is ρout
i + ρin

j . This87

model, illustrated in Figure 1, is especially suitable for88

environments where data exchange between jobs occurs via the cloud, an increasingly common mode89
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General Delays
Delays can depend on features of machines, features of jobs, or features of the schedule

Job-Job
For u ≺ v, delay from u to v on a
different machine is a function of

(u, v) [15]

Machine-Machine
Delay from machine i to j is a

function of (i, j)

General Metric
Delay from i to j is given by a

metric over the machines

Job Delays & Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρoutj + ρinv + ρini
Theorems 1, 2

Machine Delays
The delay from machine i to

machine j is ρouti + ρinj
Corollary 1.1

Uniform Delay
Fixed delay ρ
[16,26,29,31]

Layered DAG Edge Delays
Jobs given as a layered DAG. For

any edge u→ v, delay from u to v
on a different machine is ρ

Job-Machine
Delay from any predecessor on a different

machine to v on i is a function of (i, v)
Theorem 4

Job Delays
For u ≺ v, delay from u to v on a

different machine is ρoutu + ρinv
Lemma 2.11

Job Delays & Symmetric Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρj + ρinv + ρi
Theorem 3

Figure 2 Selection of scheduling models with communication delays. a −� b indicates that a is a special
case of b. We present approximation algorithms for models with machine delays and job delays, and a hardness
of approximation result for the job-machine delays model. Theorems and citations point to results in this paper
and in previous work, respectively. Those problems backed in gray are ones for which approximation algorithms
are known. Those in the gray box are ones for which hardness results have been proven.

of operation in modern distributed systems [28, 30, 50]; ρin
i and ρout

i represent the cloud download90

and upload latencies, respectively, for machine i.91

The machine delays model does not account for heterogeneity among jobs, where different jobs92

may be producing or consuming different amounts of data, which may impact the delay between the93

processing of one job and that of another dependent job on a different machine. To model this, we94

allow each job u to have an in-delay ρin
u and an out-delay ρout

u .95

▶ Definition 1. (Scheduling under Machine Delays and Job Delays) We are given as input a set96

of n precedence ordered jobs and a set of m machines. For any jobs u and v with u ≺ v, machine i,97

and time t, u is available to v on i at time t if u is completed on i before time t or on any machine j98

before time t− (ρout
j + ρout

u + ρin
i + ρin

v ). (This model is illustrated in Figure 3.) If job v is scheduled99

time to
postprocess u

vi

time to upload a
result from j

time to download a
result to i

time to
preprocess v

ρoutu ρoutj ρini ρinv

uj

Figure 3 Communicating the result of job u on machine j to execute job v on machine i.
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363:4 Scheduling under Non-Uniform Job and Machine Delays

at time t on machine i, then all of its predecessors must be available to v on i at time t. We define100

ρmax = maxx∈V ∪M{ρin
x + ρout

x }. The objective is to construct a schedule that minimizes makespan.101

Remark. In our model of Definition 1, communication delay is defined over all pairs of precedence102

ordered jobs. An alternate model defines communication delay only over those pairs that are adjacent103

in the job DAG. The two settings differ in general but are equivalent in many scenarios, for instance,104

when the delays are given by an underlying metric space over the machines, or when communication105

delays are uniform. The models are equivalent if all delays are machine delays, so our machine delay106

results hold in the alternate model. The models differ in the presence of general job delays but are107

equivalent in several special cases, for instance in the setting where the job DAG is transitively closed,108

which has been extensively studied and proved useful in several important applications [2, 19, 46].109

Transitively closed DAGs capture scenarios where each job may be generating data used by upstream110

jobs, and an upstream job may need to check the results of any of its predecessors. Examples of such111

graphs arising in scheduling include interval orders [38], as well as Solution Order Graphs in the112

context of SAT solvers [8].113

We present the first approximation algorithms for scheduling under non-uniform communication114

delays. In the presence of delays, a natural approach to hide latency and reduce makespan is to115

duplicate some jobs (for instance, a job that is a predecessor of many other jobs) [1, 39]. We consider116

both schedules that allow duplication (which we assume by default) and those that do not. Our first117

result is a polylogarithmic asymptotic approximation for scheduling under machine and job delays118

when duplication is allowed.119

▶ Theorem 1. There exists a polynomial time algorithm for scheduling unit length, precedence
constrained jobs with duplication under machine and job delays, that produces a schedule with
makespan O((log9 n)(OPT + ρmax)).

We emphasize that if the makespan of any schedule includes the delays incurred in distributing120

the problem instance and collecting the output of the jobs, then the algorithm of Theorem 1 is, in121

fact, a true polylogarithmic approximation for makespan. (From a practical standpoint, in order to122

account for the time incurred to distribute the jobs and collect the results, it is natural to include in the123

makespan the in- and out-delays of every machine used in the schedule.)124

We note that when delays are uniform and duplication is not allowed, it is easy to check if125

OPT < ρ since any connected component of the job DAG must be placed on the same machine.126

This is demonstrated in our true approximation without duplication in Theorem 3. In the presence127

of duplication, the problem is closely related to the Min k-Union problem, for which conditional128

hardness proofs are known [12]. This motivates the additive ρmax in our approximation guarantee.129

Related machines and multiprocessors. Theorem 1 is based on a new linear programming framework130

for addressing non-uniform job and machine delays. We demonstrate the power and flexibility of this131

approach by incorporating two more aspects of heterogeneity: speed and number of processors. Each132

machine i has a number mi of processors and a speed si at which each processor processes jobs. We133

generalize Theorem 1 to obtain the following result.134

▶ Theorem 2. There exists a polynomial time algorithm for scheduling unit length, precedence
constrained jobs with duplication on related multiprocessor machines under machine and job
delays, that yields a schedule with makespan polylog(n)(OPT + ρmax)).

The exact approximation factor obtained depends on the non-uniformity of the particular model. For135

the most general model we consider in Theorem 2, our proof achieves a O(log15 n) bound. We obtain136

improved bounds when any of the three defining parameters—size, speed, and delay—are uniform.137

For instance, we obtain an approximation factor of O(log5 n) for scheduling uniform speed and138
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uniform size machines under machine delays alone, i.e., when there are no job delays (Corollary 12139

of Section 2). Further, with only job delays and uniform machine delays, we provide a combinatorial140

asymptotic O(log6 n) approximation (Lemma 15 of Section 2) which is improved to an asymptotic141

O(log n) approximation if the input contains no out-delays. We note that despite some uniformity,142

special cases can model certain two-level non-uniform network hierarchies with processors at the143

leaves, low delays at the first level, and high delays at the second level.144

No-duplication schedules. We next consider the problem of designing schedules that do not allow145

duplication. We obtain a polylogarithmic asymptotic approximation via a reduction to scheduling146

with duplication. Furthermore, if the delays are symmetric (i.e., ρout
i = ρin

i for all i, and ρout
v = ρin

v147

for all v) we are able to find a true polylogarithmic-approximate no-duplication schedule. To achieve148

this result, we present an approximation algorithm to estimate if the makespan of an optimal no-149

duplication schedule is at least the delay of any given machine; this enables us to identify machines150

that cannot communicate in the desired schedule.1151

▶ Theorem 3. There exists a polynomial time algorithm for scheduling unit length, precedence
constrained jobs on related multiprocessor machines under machine delays and job delays, which
produces a no-duplication schedule with makespan polylog(n)(OPT + ρmax). If ρin

i = ρout
i for

all i, then there exists a polynomial time polylog(n)-approximation algorithm for no-duplication
schedules.

Pairwise delays. All of the preceding results concern models where the communication associated152

with a precedence relation u ≺ v when u and v are executed on different machines i and j is an153

additive combination of delays at u, v, i, and j. Additive delays are suitable for capturing independent154

latencies incurred by various components of the system. A more general class of models considers155

pairwise delays where the delay is an arbitrary function of i and j (machine-machine), u and v156

(job-job), or either job and the machine on which it executes (job-machine). The machine-machine157

delay model captures classic networking scenarios, where the delay across machines is determined by158

the network links connecting them. Job-job delays model applications where the data that needs to be159

communicated from one job to another descendant job depends arbitrarily on the two jobs. The job-160

machine model is well-suited for applications where the delay incurred for communicating the data161

consumed or produced by a job executing on a machine is an arbitrary function of the size of the data162

and the bandwidth of the machine. Recent work in [15] shows that scheduling under job-job delays163

is as hard as the Unique Machine Precedence Scheduling (UMPS) problem, providing preliminary164

evidence that obtaining sub-polynomial approximation factors may be intractable. We show that165

UMPS also reduces to scheduling under job-machine delays, suggesting a similar inapproximability166

for this model.167

▶ Theorem 4 (UMPS reduces to scheduling under job-machine delays). There is a
polynomial-time approximation-preserving reduction from UMPS to the scheduling precedence
constrained jobs under job-machine delays.

1.2 Overview of our techniques168

Our approximation algorithms for scheduling under job delays and machine delays (Theorem 1 proved169

in Section 2) and the generalization to related machines and multiprocessors (Theorem 2 proved170

1 We note that the corresponding problem for duplication schedules is a min-max partitioning variant of the Minimum
k-Union problem and related to the Min-Max Hypergraph k-Partitioning problem, both of which have been shown to
be Densest-k-Subgraph-hard [9, 11]; this might suggest a similar hardness result for deriving a true approximation
when duplication is allowed.

ICALP 2023



363:6 Scheduling under Non-Uniform Job and Machine Delays

in [42]) rely on a framework composed of a carefully crafted linear programming relaxation and a171

series of reductions that help successively reduce the level of heterogeneity in the problem. While172

each individual component of the framework refines established techniques or builds on prior work,173

taken together they offer a flexible recipe for designing approximation algorithms for scheduling174

precedence-ordered jobs on a distributed system of heterogeneous machines with non-uniform delays.175

Given the hardness conjectures of [15] for the job-job delay setting (and for the job-machine setting176

via Theorem 4), we find it surprising that a fairly general model incorporating both job delays and177

machine delays on related machines is tractable.178

Previous results on scheduling under (uniform) communication delays are based on three different179

approaches: (a) a purely combinatorial algorithm of [26] that works only for uniform delay machines;180

(b) an LP-based approach of [31] that handles related machines and uniform delays, assuming jobs181

can be duplicated, and then extends to no-duplication via a reduction; and (c) an approach of [16]182

based on a Sherali-Adams hierarchy relaxation followed by a semi-metric clustering, which directly183

tackles the no-duplication model. At a very high level, our main challenge, which is not addressed in184

any of the previous studies, is to tackle the multi-dimensional heterogeneity of the problem space: in185

the nature of delays (non-uniform values, in- and out-delays, job delays, machine delays) as well as186

the machines (delay, speed, and size).187

We pursue an LP-based framework, which significantly refines the approach of [31]. Their188

algorithm organizes the computation in phases, each phase corresponding to a (uniform) delay189

period, and develops a linear program that includes delay constraints capturing when jobs have to190

be phase-separated and phase constraints bounding the amount of computation within a phase. In191

non-uniform delay models, the delay constraints for a job v executing on a machine i depend not192

only on the predecessors of v, but also on the machines on which they may be scheduled. While193

there is a natural way to account for non-uniform in-delays in the LP, incorporating out-delays or194

even symmetric delays poses technical difficulties. We overcome this hurdle by first showing that195

out-delays can be eliminated by suitably adjusting in-delays, at the expense of a polylogarithmic196

factor in approximation, thus allowing us to focus on in-delays.197

Despite the reduction to in-delays, extending the LP of [31] by replacing the uniform delay198

parameter by the non-uniform delay parameters of our models fails and yields a high integrality199

gap. This is because their algorithm crucially relies on an ordering of the machines (on the basis of200

their speeds), which is exploited both in the LP (in the delay and phase constraints) as well as how201

jobs get assigned and moved in the computation of the final schedule. Given the multi-dimensional202

heterogeneity of the problems we study, there is no such natural ordering of the machines. To203

address the above hurdle, we organize the machines and jobs into groups based on their common204

characteristics (delay, speed, size), and introduce new variables for assigning jobs to groups without205

regard to any ordering among them. This necessitates new load and delay constraints and a change206

in rounding and schedule construction. We now elaborate on these ideas, as we discuss our new207

framework in more detail.208

Reduction to in-delays. The first ingredient of our recipe is an argument that any instance of the209

problem with machine delays and job delays can be reduced to an instance in which all out-delays210

are 0, meaning that in the new instance delays depend only on the machine and job receiving the211

data, at the expense of a polylogarithmic factor in approximation. This reduction is given in Lemma212

37 and Algorithm 2 in [42]. To convert from a given schedule with out-delays to one without, we213

subtract ρout
i + ρout

v from the execution time of every job v on machine i. However, in order to214

avoid collisions, we expand the given schedule into phases of different length, organized in particular215

sequence so that the execution times within each phase may be reduced without colliding with prior216

phases. This transforms the schedule into one where the in-delay of every machine i is ρin
i + ρout

i217

and every job v is ρin
v + ρout

v . This transformation comes at a constant factor cost for machine delays218
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and an O(log2 ρmax) cost for job delays. A similar procedure converts from an in-delay schedule to219

one with in- and out-delays, completing the desired reduction.220

The linear program (Sections 2.1-2.2). Before setting up the linear program, we partition the221

machines and the jobs into groups of uniform machines and jobs, respectively; i.e. each machine in a222

group can be treated as having the same in-delay, speed, and size (to within a constant factor), and223

each job in a group can be treated as having the same in-delay. The final approximation factor for the224

most general model grows as K3 and L, where L is the number of job groups and K is the number225

of machine groups, which depends on the extent of heterogeneity among the machines. We bound226

K by O(log3 n) in the case when the speeds, sizes, and delays of machines are non-uniform. We227

emphasize that, even with the machines partitioned in this way, we must carefully design our LP to228

judiciously distribute jobs among the groups depending on the precedence structure of the jobs and229

the particular job and machine parameters.230

Our LP is inspired by that of [31], though significant changes are necessary to allow for non-231

uniform delays. The key constraints of each LP are presented below (with the constraints from [31]232

rewritten to include machine group variables). Here, C∗ represents the makespan of the schedule233

and Cv represents the earliest execution time of job v. xv,k indicates if v is placed on a machine234

in group ⟨k⟩ (= 1) or not (= 0). zu,v,k indicates whether xv,k = 1 and Cv − Cu is less the time it235

takes to communicate the result of u from a different machine. yv,k takes the maximum of xv,k and236

maxu{zv,u,k} to indicate whether some copy of v is executed on a machine in group ⟨k⟩ (= 1) or237

not (= 0). Other notation used in the linear program is explained in Section 2.238

One main difference between our LP and that of [31] is in the constraint that regulates the239

completion time of precedence ordered jobs in the presence of communication delay.240

Delay Constraint in [31] New Delay Constraint241

Cv ≥ Cu + ρ
( ∑

k′≤k

xv,k′ − zu,v,k

)
⇒ Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k)242

∀u, v, k : u ≺ v ∀u, v, k, ℓ : u ≺ v and v ∈ JℓK243
244

The constraint of [31] states that if u ≺ v and v is executed on a machine in speed group k, then the245

completion time of v is at least ρ greater than the completion time of u unless some duplicate of u is246

executed on group k. The summation over machine groups orders the groups by increasing speeds247

(similar to [13]). It turns out that the rounding technique which uses this ordering of machine groups,248

which is used to eliminate a log factor in [13, 31], does not straightforwardly work in our context.249

The new constraint has an interpretation similar to that of the delay constraint in [31]: if u ≺ v and250

v is executed on delay group k, then the completion time of v is at least the in-delay of k plus the251

in-delay of v greater than the completion time of u, unless some duplicate of u is also executed on252

group k. However, in the new constraint, the summation over machine groups has been replaced by a253

single machine group assignment variable.254

The next change to the linear program regards the constraint which governs how many jobs can255

be duplicated within a communication phase for a single job.256

Phase Constraint in [31] New Phase Constraint257

ρ ≥
∑
u≺v

zu,v,k ∀v, k ⇒ (ρ̄k + ρ̄ℓ)
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK258

259

Both the old and new constraints state that the amount of duplication that can be performed for a260

single job within a single communication phase on a given group of machines is at most the length of261

the phase. The new constraint also incorporates the machine and job in-delays.262

ICALP 2023



363:8 Scheduling under Non-Uniform Job and Machine Delays

The final change is to the constraints which lower bound the makespan of the schedule by the263

total load placed on a single machine.264

Load Constraint in [31] New Load Constraints265

C∗ · |⟨k⟩| ≥
∑

v

xv,k ∀k ⇒ C∗ · |⟨k⟩| ≥
∑

v

yv,k ∀k266

yv,k ≥ xv,k ∀v, k267

yu,k ≥ zu,v,k ∀u, v, k268
269

Both constraints state that the makespan is at least the total number of jobs placed on any group270

divided by the size of the group. The old constraint uses xv,k as the sole indicator of whether or271

not a job is placed on machine group k, and does not need to account for duplicates because of the272

optimized rounding scheme which utlizes the ordering of job groups by increasing speed. Because273

the new constraint cannot rely on this ordering, we use the y-variables to account for all duplicates as274

well.275

In [31], the ordering of the groups was leveraged to construct the final schedule by always placing276

a job on higher capacity groups than the one to which it is assigned by the LP. Since the LP assigns277

all jobs to some group, we can infer that the total load over all groups does not increase by more278

than a constant factor. With multidimensional heterogenous machines, there is no clear ordering279

of machine groups to achieve a similar property (e.g. one set of jobs may be highly parallelizable,280

while another requires a single fast machine). Using the new LP, our solution is to place all jobs on281

those groups to which the LP assigns them, along with any predecessors indicated by the z-variables.282

However, such a construction could vastly exceed the value of the LP unless the load contributed283

by the z-variables is counted toward the LP makespan. To this end, we introduce the y-variables284

and associated constraints, which account for this additional, duplicated load. In the most general285

setting, we also introduce constraints which govern the amount of duplication possible within a single286

communication phase. These additional constrains model an optimal schedule of the duplicated jobs287

on the uniform machines within a single group.288

Rounding the LP solution and determining final schedule (Sections 2.3-2.4). The next component289

rounds an optimal LP solution to an integer solution by placing each job on the group for which290

the job’s LP mass is maximized. We also place duplicate predecessors of each job v on its group291

according to the z-variables for v’s predecessors. This indicates a key difference with [31], where the292

load contributed by duplicates was handled by the ordering of the machines. A benefit of our simple293

rounding is that it accommodates many different machine and job properties as long as the number294

of groups can be kept small. Finally, we construct a schedule using the integer LP solution. This295

subroutine divides the set of jobs assigned to each group into phases and constructs a schedule for296

each phase by invoking a schedule for the uniform machines case, appending each schedule to the297

existing schedule for the entire instance.298

No-duplication schedules. The proof of the first part of Theorem 3 extends an asympototic polylog-299

arithmic approximation to no-duplication schedules for machine delays and job delays. The theorem300

follows from the structure of the schedule designed in Theorem 2 and a general reduction in [31]301

from duplication to no-duplication schedules in the uniform delay case. Avoiding the additive delay302

penalty of the first part of Theorem 3 to achieve a true approximation is much more difficult. When303

delays are symmetric (i.e., in-delays equal out-delays), we can distinguish those machines whose304

delay is low enough to communicate with other machines from those machines with high delay. One305

of the central challenges is then to distribute jobs among the high-delay machines. We overcome this306

difficulty by revising the LP in the framework of Theorem 2 to partition the jobs among low- and307

high-delay machines, and rounding the corresponding solutions separately.308
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We then must distinguish between those jobs with delay low enough to communicate with other309

jobs from those with high delay. We note that any predecessor or successor of a high delay job must310

be executed on the same machine as that job. We leverage this fact to construct our schedule, first311

placing all high delay jobs with their predecessors and successors on individual machines. We then312

run our machine and job delay algorithm with the remaining jobs on the low delay machines. This313

schedule is placed after the execution of the downward closed high-delay components, and before the314

upward closed high-delay components, ensuring that the schedule is valid.315

We note that the design of no-duplication schedules via a reduction to duplication schedules316

incurs a loss in approximation factor of an additional polylogarithmic factor. While this may not be317

desirable in a practical implementation, our results demonstrate the flexibility of the approach and318

highlight its potential for more general delay models.319

Hardness for job-machine delay model. The algorithmic framework outlined above incorporates320

non-uniform job and machine delays that combine additively. It is natural to ask if the techniques321

extend to other delay combinations or more broadly to pairwise delay models. In the job-machine322

delay model we study, when a job u executed on machine i precedes job v executed on machine j,323

then a delay ρv,j between the two executions is incurred. Our reduction from UMPS to the job-machine324

delay problem follows the approach of [15] by introducing new jobs with suitable job-machine delay325

parameters that essentially force each job to be executed on a particular machine. This reduction does326

not require the flexibility of assigning different delays for different job-job pairs, but it is unclear327

if the same technique can be applied to machine-machine delay models. Delineating the boundary328

between tractable models and those for which polylogarithmic approximations violate conjectured329

complexity lower bounds is a major problem of interest.330

1.3 Related work331

Precedence constrained scheduling. The problem of scheduling precedence-constrained jobs332

was initiated in the classic work of Graham who gave a constant approximation algorithm for333

uniform machines [20]. Jaffe presented an O(
√

m) makespan approximation for the case with334

related machines [24]. This was improved upon by Chudak and Shmoys who gave an O(log m)335

approximation [13], then used the work of Hall, Schulz, Shmoys, and Wein [22] and Queyranne336

and Sviridenko [41] to generalize the result to an O(log m) approximation for weighted completion337

time. Chekuri and Bender [10] proved the same bound as Chudak and Shmoys using a combinatorial338

algorithm. In subsequent work, Li improved the approximation factor to O(log m/ log log m) [27].339

The problem of scheduling precedence-constrained jobs is hard to approximate even for identical340

machines, where the constant depends on complexity assumptions [6, 25, 47]. Also, Bazzi and341

Norouzi-Fard [7] showed a close connection between structural hardness for k-partite graph and342

scheduling with precedence constraints.343

Precedence constrained scheduling under communication delays. Scheduling under communic-344

ation delays has been studied extensively [39, 43, 48]. For unit size jobs, identical machines, and345

unit delay, a (7/3)-approximation is given in [35], and [23] proves the NP-hardness of achieving346

better than a 5/4-approxmation. Other hardness results are given in [4,40,43]. More recently, Davies,347

Kulkarni, Rothvoss, Tarnawski, and Zhang [16] give an O(log ρ log m) approximation in the identical348

machine setting using an LP approach based on Sherali-Adams hierarchy, which is extended to include349

related machines in [17]. Concurrently, Maiti, Rajaraman, Stalfa, Svitkina, and Vijayaraghavan [31]350

provide a polylogarithmic approximation for uniform communication delay with related machines as351

a reduction from scheduling with duplication. The algorithm of [31] is combinatorial in the case with352

identical machines.353

Davies, Kulkarni, Rothvoss, Sandeep, Tarnawski, and Zhang [15] consider the problem of354

ICALP 2023



363:10 Scheduling under Non-Uniform Job and Machine Delays

scheduling precedence-constrained jobs on uniform machine in the presence of non-uniform, job-355

pairwise communication delays. That is, if u ≺ v and u and v are scheduled on different machines,356

then the time between their executions is at least ρu,v. The authors reduce to this problem from357

Unique-Machines Precedence-constrained Scheduling (UMPS) in which there is no communication358

delay, but for each job there is some particular machine on which that job must be placed. The authors359

show that UMPS is hard to approximate to within a logarithmic factor by a reduction from job-shop360

scheduling, and conjecture that UMPS is hard to approximate within a polynomial factor.361

Precedence constrained scheduling under communication delays with job duplication. Using362

duplication with communication delay first studied by Papadimitriou and Yannakakis [39], who give363

a 2-approximation for DAG scheduling with unbounded processors and fixed delay. Improved bounds364

for infinite machines are given in [1, 14, 36, 37]. Approximation algorithms are given by Munier and365

Hanen [34, 35] for special cases in which the fixed delay is very small or very large, or the DAG366

restricted to a tree. The first bounds for a bounded number of machines are given by Lepere and367

Rapine [26] who prove an asymptotic O(log ρ/ log log ρ) approximation. Recent work has extended368

their framework to other settings: [31] uses duplication to achieve an O(log ρ log m/ log log ρ)369

approximation for a bounded number of related machines, and Liu, Purohit, Svitkina, Vee, and370

Wang [29] improve on the runtime of [26] to a near linear time algorithm with uniform delay and371

identical machines.372

1.4 Discussion and open problems373

Our results indicate several directions for further work. First, we conjecture that our results extend374

easily to the setting with non-uniform job sizes. We believe the only barriers to such a result are the375

techinical difficulties of tracking the completion times of very large jobs that continue executing long376

after they are placed on a machine. Also, while our approximation ratios are the first polylogarithmic377

guarantees for scheduling under non-uniform delays, we have not attempted to optimize logarithmic378

factors. There are obvious avenues for small reductions in our ratio, e.g. the technique used in [26] to379

reduce the ratio by a factor of log log ρ. More substantial reduction, however, may require a novel380

approach. Additionally, in the setting without duplication, we incur even more logarithmic factors381

owing to our reduction to scheduling with duplication. These factors may be reduced by using a more382

direct method, possibly extending the LP-hierarchy style approach taken in [16, 17].383

Aside from improvements to our current results, our techniques suggest possible avenues to solve384

related non-uniform delay scheduling problems. A special case of general machine metrics is a385

machine hierarchy, where machines are given as leaves in a weighted tree. Our incorporation of386

parallel processors allows our results to apply to a two-level machine hierarch. We would like to387

explore extensions of our framework to constant-depth hierarchies and tree metrics. More generally,388

scheduling under metric and general machine-machine delays remains wide open (see Figure 2).389

We also believe there are useful analogs to these machine delay models in the job-pairwise regime.390

A job v with in-delay ρin
v and out-delay ρout

v has the natural interpretation of the data required to391

execute a job, and the data produced by a job. A job tree hierarchy could model the shared libraries392

required to execute certain jobs: jobs in different subtrees require different resources to execute, and393

downloading these additional resources incurs a delay. Given the hardness conjectures of [15] and394

our hardness result for the job-machine delay model, further refining Figure 2 and exploring the395

tractability boundary would greatly enhance our understanding of scheduling under non-uniform396

delays.397

Finally, recall that our notion of job delays is defined in terms of the precedence relation over the398

jobs. Another natural notion of job delay may be to consider a DAG defined over the jobs, with a399

delay incurred only if there is a directed edge u→ v (rather than u ≺ v). In this setting, while our400

results do not hold in the presence of general job delays, they do hold for some significant special401
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cases. These include instances where the job DAG is transitively closed, or where job delays are402

uniform, or where job delays of predecessors are at most that of their successors (i.e. u ≺ v implies403

ρout
u ≤ ρout

v and ρin
u ≤ ρin

v ), or where there are only machine delays. However, resolving the most404

general case is an interesting open problem since this family of delay models provides an intuitive405

and important set of problems.406

2 Machine Delays and Job Delays407

In this section, we present an asymptotic approximation algorithm for scheduling under machine408

delays and job delays for unit speed and size machines. As discussed in Section 1.2, we can focus on409

the setting with no out-delays, at the expense of a polylogarithmic factor in approximation; Lemma410

37 of [42] presents the reduction to in-delays. Therefore, in this section, we assume that ρout
i = 0 for411

all machines i and ρout
v = 0 for all jobs v. For convenience, we use ρi to denote the in-delay ρin

i of412

machine i and ρv to denote the in-delay ρin
v of machine v. Let ρmax = max{maxv{ρv}, maxi{ρi}}.413

2.1 Partitioning machines and jobs into groups414

In order to simplify our exposition and analysis, we introduce a new set of machines M ′ with rounded415

delays. For each i ∈M , if 2k−1 ≤ ρi < 2k, we introduce i′ ∈M ′ with ρi′ = 2k. We then partition416

M ′ according to machine delays: machine i ∈ M ′ is in ⟨k⟩ if ρi = 2k; we set ρ̄k = 2k. We also417

introduce a new set of jobs V ′ with rounded delays. For each v ∈ V , if 2ℓ−1 ≤ ρv < 2ℓ, we418

introduce v′ ∈ V ′ with ρv′ = 2ℓ. We then partition V ′ according to job delays: job v ∈ V ′ is in JℓK if419

ρv = 2ℓ = ρ̄ℓ. For the remainder of the section, we work with the machine set M ′ and the job set V ′,420

ensuring that all machines or jobs within a group have identical delays. As shown in the following421

lemma, this partitioning is at the expense of at most a constant factor in approximation.422

▶ Lemma 2. The optimal makespan over the machine set V ′, M ′ is no more than a factor of 2423

greater than the optimal solution over V, M .424

Proof. Consider any schedule σ on the machine set M . We first show that increasing the delay of425

each machine by a factor of 2 increases the makespan of the schedule by at most a factor of 2. We426

define the schedule σ′ as follows. For every i, t, if (i, t) ∈ σ(v), then (i, 2t) ∈ σ′(v). It is easy to see427

that σ′ maintains the precedence ordering of jobs, and that the time between the executions of any428

two jobs has been doubled. Therefore, σ′ is a valid schedule with all communication delays doubled,429

and with the makespan doubled. ◀430

We can assume that maxk{ρ̄k} ≤ n since if we ever needed to communicate to a machine with delay431

greater than n we could schedule everything on a single machine in less time. Therefore, we have432

K ≤ log n machine groups. Similarly, maxℓ{ρ̄ℓ} ≤ n, implying that we have L ≤ log n job groups.433

2.2 The linear program434

In this section, we design a linear program LPα—Equations (1-11)—parametrized by α ≥ 1, for435

machine delays. Following Section 2.1, we assume that the machines and jobs are organized in436

groups, where each group ⟨k⟩ (resp., JℓK) is composed of machines (resp., jobs) that have identical437

delay.438
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C∗
α ≥ Cv ∀v (1)

C∗
α · |⟨k⟩| ≥

∑
v

yv,k ∀k (2)

Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k) ∀u, v, k, ℓ : (3)

u ≺ v, v ∈ JℓK

Cv ≥ Cu + 1 ∀u, v : u ≺ v (4)

α(ρ̄k + ρ̄ℓ) ≥
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK (5)

∑
k

xv,k = 1 ∀v (6)

Cv ≥ 0 ∀v (7)

xv,k ≥ zu,v,k ∀u, v, k (8)

yv,k ≥ xv,k ∀v, k (9)

yu,k ≥ zu,v,k ∀u, v, k(10)

zu,v,k ≥ 0 ∀u, v, k(11)

439

Variables. C∗
α represents the makespan of the schedule. For each job v, Cv represents the earliest440

completion time of v. For each job v and group ⟨k⟩, xv,k indicates whether or not v is first executed441

on a machine in group ⟨k⟩. For each ⟨k⟩ and pair of jobs u, v such that u ≺ v and v ∈ JℓK, zu,v,k442

indicates whether v is first executed on a machine in group ⟨k⟩ and the earliest execution of u is less443

that ρ̄k + ρ̄ℓ time before the execution of v. Intuitively, zu,v,k indicates whether there must be a copy444

of u executed on the same machine that first executes v. For each job v and group ⟨k⟩, yv,k indicates445

whether xv,k = 1 or zu,v,k = 1 for some u; that is, whether or not some copy of v is placed on group446

⟨k⟩. Constraints (7 - 11) guarantee that all variables are non-negative.447

Makespan (2, 1). Constraint 1 states that the makespan is at least the maximum completion time of448

any job. Constraint 2 states that the makespan is at least the load on any single group.449

Delays (3, 5). Constraint 3 states that the earliest completion time of v ∈ JℓK must be at least ρ̄k + ρ̄ℓ450

after the earliest completion time of any predecessor u if v is first executed on a machine in group451

⟨k⟩ and no copy of u is duplicated on the same machine as v. Constraint 5 limits the amount of452

duplication that can be done to improve the completion time of any job: if v ∈ JℓK first executes on a453

machine in group ⟨k⟩ at time t, then the number of predecessors that may be executed in the ρ̄k + ρ̄ℓ454

steps preceding t is at most ρ̄k.455

The remaining constraints enforce standard scheduling conditions. Constraint 4 states that the456

completion time of v is at least the completion time of any of its predecessors, and constraint 6 ensures457

that every job is executed on some group. Constraints 6 and 8 guarantee that zu,v,k ≤ 1 for all u, v, k.458

This is an important feature of the LP, since a large z-value could be used to disproportionately reduce459

the delay between two jobs in constraint 3.460

▶ Lemma 3. (LP1 is a valid relaxation) The minimum of C∗
1 is at most OPT.461

Proof. Consider an arbitrary schedule σ with makespan Cσ , i.e. Cσ = maxv,i,t{t : (i, t) ∈ σ(v)}.462

LP solution. Set C∗
1 = Cσ. For each job v, set Cv to be the earliest completion time of v in σ,463

i.e. Cv = mini,t{t : (i, t) ∈ σ(v)}. Set xv,k = 1 if ⟨k⟩ is the group that contains the machine464

on which v first completes (choosing arbitrarily if there is more than one) and 0 otherwise. For465

u, v, k, set zu,v,k = 1 if u ≺ v, xv,k = 1, v ∈ JℓK, and Cv − Cu < ρ̄k + ρ̄ℓ (0 otherwise). Set466

yu,k = max{xu,k, maxv{zu,v,k}}.467

Feasibility. We now establish that the solution defined is feasible. Constraints (1, 7–11) are easy to468

verify. We now establish constraints (2–5). Consider constraint 2 for fixed group ⟨k⟩.
∑

v yv,k is469

upper bound by the total load Λ on ⟨k⟩. The constraint follows from C∗
α ≥ Cσ ≥ Λ/|⟨k⟩|.470

Consider constraint 3 for fixed u, v, k where u ≺ v. Let X = xv,k and let Z = zu,v,k. If471

(X, Z) = (0, 0), (0, 1), or (1, 1) then the constraint follows from constraint 4. If (X, Z) = (1, 0),472

then by the assignment of zu,v,k we can infer that Cv − Cu ≥ ρ̄k + ρ̄ℓ, which shows the constraint is473

satisfied.474
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Consider constraint 5 for fixed v, k. If xv,k = 0 then the result follows from the fact that475

zu,v,k = 0 for all u. If xv,k = 1, then we can infer that v ∈ JℓK. So, at most ρ̄k + ρ̄ℓ predecessors of476

v that can be scheduled in the ρ̄k + ρ̄ℓ time before Cv , ensuring that the constraint is satisfied. ◀477

2.3 Deriving a rounded solution to the linear program478

▶ Definition 4. (C, x, y, z) is a rounded solution to LPα if all values of x, y, z are either 0 or 1.479

Let LP1 be defined over machine groups ⟨1⟩, ⟨2⟩, . . . , ⟨K⟩ and job groups J1K, J2K, . . . , JLK.480

Given a solution (Ĉ, x̂, ŷ, ẑ) to LP1, we construct an integer solution (C, x, y, z) to LP2K as follows.481

For each v, k, set xv,k = 1 if k = maxk′{x̂v,k′} (if there is more than one maximizing k, arbitrarily482

select one); set to 0 otherwise. Set zu,v,k = 1 if xv,k = 1 and ẑu,v,k ≥ 1/(2K); set to 0 otherwise.483

For all u, k, yu,k = max{xu,k, maxv{zu,v,k}}. Set Cv = 2K · Ĉv . Set C∗
2K = 2K · Ĉ∗

1 .484

▶ Lemma 5. If (Ĉ, x̂, ŷ, ẑ) is a valid solution to LP1, then (C, x, y, z) is a valid solution to LP2K .485

Proof. By constraint (6),
∑

k x̂v,k is at least 1, so maxk{x̂v,k} is at least 1/K. Therefore, xv,k ≤486

Kx̂v,k for all v and k. Also, zu,v,k ≤ 2Kẑu,v,k for any u, v, k by definition. By the setting of Cv487

for all v, yv,k for all v, k, and C∗
2K , it follows that constraints (1, 4-11) of LP1 imply the respective488

constraints of LP2K . We first establish constraint (2). For any fixed group ⟨k⟩,489

2KĈ1 · |⟨k⟩| ≥ 2K
∑

v

ŷv,k = 2K
∑

v

max{x̂v,k, max
u
{ẑv,u,k}} by constraints 2, 11 of LP1490

≥ 2K
∑

v

xv,k + maxu{zv,u,k}
2K

≥
∑

v

yv,k by definition of yv,k491

492

which entails constraint (2) by C∗
2K = 2KĈ∗

1 . It remains to establish constraint (3) for fixed u, v, k.493

We consider two cases. If xv,k − zu,v,k ≤ 0, then the constraint is trivially satisfied in LP2K . If494

xv,k − zu,v,k = 1, then, by definition of x and z, x̂v,k − ẑu,v,k is at least 1/(2K). This entails495

that Ĉv ≥ Ĉu + ((ρ̄k + ρ̄ℓ)/2K) which establishes constraint (3) of LP2K by definition of Cv and496

Cu. ◀497

▶ Lemma 6. C2K ≤ 4K · OPT.498

Proof. Lemma 2 shows that our grouping of machines does not increase the value of the LP by more499

than a factor of 2. Therefore, by Lemmas 3 and 5, C2K = 2K · Ĉ1 ≤ 4K · OPT. ◀500

2.4 Computing a schedule given an integer solution to the LP501

Suppose we are given a partition of M into K groups such that group ⟨k⟩ is composed of identical502

machines (i.e. for all i, j ∈ ⟨k⟩, ρi = ρj). Also, suppose we are given a partition of V into503

L groups such that group JℓK is composed of jobs with identical in-delay. Finally, we are given504

a rounded solution (C, x, y, z) to LPα defined over machine groups ⟨1⟩, . . . , ⟨K⟩ and job groups505

J1K, . . . JLK. In this section, we show that we can construct a schedule that achieves an approximation506

for machine delays in terms of α, K, and L. The combinatorial subroutine that constructs the schedule507

is defined in Algorithm 1. In the algorithm, we use a subroutine UDPS-Solver for Uniform Delay508

Precedence-Constrained Scheduling. An O(log ρ/ log log ρ)-asympototic approximation is given509

in [26]. For completeness, we use the UDPS-Solver presented and analyzed in [42], which generalizes510

the algorithm of [26] to incorporate non-uniform machine sizes.511

We now describe Algorithm 1 informally. The subroutine takes as input the rounded LPα solution512

(C, x, y, z) and initializes an empty schedule σ and global parameters T, θ to 0. For a fixed value of513

T , we iterate through all machine groups ⟨k⟩ and job groups JℓK, with decreasing ℓ. For a fixed value514
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Algorithm 1 Machine Delay Scheduling with Duplication

Init: ∀v, σ(v)← ∅; T ← 0; θ ← 0
1 while T ≤ C∗

α do
2 forall machine groups ⟨k⟩ do
3 for job group JℓK = JLK to J1K: ∃ integer d, T = d(ρ̄k + ρ̄ℓ) do
4 Vk,ℓ,d ← {v ∈ JℓK : xv,k = 1 and T ≤ Cv < T + ρ̄k + ρ̄ℓ}
5 Uk,ℓ,d ← {u : ∃v ∈ Vk,ℓ,d, u ≺ v and T ≤ Cu < T + ρ̄k + ρ̄ℓ}
6 σ′ ← UDPS-Solver on (Vk,ℓ,d ∪ Uk,ℓ,d, ⟨k⟩, ρ̄k + ρ̄ℓ)
7 ∀v, i, t, if (i, t) ∈ σ′(v) then σ(v)← σ(v) ∪ {(i, θ + ρ̄k + ρ̄ℓ + t)}
8 θ ← θ + 2(ρ̄k + ρ̄ℓ)

9 T ← T + 1

of T, k, ℓ, we check if there is some integer d such that T = d(ρ̄k + ρ̄ℓ). If so, we define Vk,ℓ,d and515

Uk,ℓ,d as in lines 4 and 5. Vk,ℓ,d represents the set of jobs in JℓK assigned by the LP to machine group516

⟨k⟩ in a single phase of length ρ̄k + ρ̄ℓ. Uk,ℓ,d represents predecessors of Vk,ℓ,d whose LP completion517

times are within ρ̄k + ρ̄ℓ of their successor in Vk,ℓ,d. We then call UDPS-Solver to construct a UDPS518

schedule σ′ on jobs Vk,ℓ,d ∪ Uk,ℓ,d, machines in ⟨k⟩, and delay ρ̄k + ρ̄ℓ. We then append σ′ to σ.519

Once all values of k, ℓ have been checked, we increment T and repeat until all jobs are scheduled.520

The structure of the schedule produced by Algorithm 1 is depicted in Figure 4. Lemma 7 (entailed by521

Lemma 45 of [42]) provides guarantees for the UDPS-Solver subroutine.522

▶ Lemma 7. Let U be a set of η jobs such that for any v ∈ U, |{u ∈ U : u ≺ v}| ≤ αδ. Given523

input U , a set of µ identical machines, and delay δ, UDPS-Solver produces, in polynomial time, a524

valid UDPS schedule with makespan at most 3αδ log(αδ) + (2η/µ).525

▶ Lemma 8. Algorithm 1 outputs a valid schedule in polynomial time.526

Proof. It is easy to see that the algorithm runs in polynomial time, and Lemma 7 entails that527

precedence constraints are obeyed on each machine. Consider a fixed v, k, d such that v ∈ Vk,ℓ,d. By528

line 7, we insert a communication phase of length ρ̄k + ρ̄ℓ before appending the schedule of any set of529

jobs Vk,ℓ,d ∪Uk,ℓ,d on any machine group ⟨k⟩. So, by the time Algorithm 1 executes any job in Vk,ℓ,d,530

every job u such that Cu < d(ρ̄k + ρ̄ℓ) is available to all machines, including those in group ⟨k⟩.531

So the only predecessors of v left to execute are those jobs in Uk,ℓ,d. Therefore, all communication532

constraints are satisfied. ◀533

▶ Lemma 9. If (C, x, y, z) is a rounded solution to LPα then Algorithm 1 outputs a schedule with534

makespan at most 12α log(ρmax)(KLC∗
α + ρmax(K + L)).535

Proof. Fix any schedule σ. Note that the schedule produced by the algorithm executes a single job536

group on a single machine group at a time. Our proof establishes a bound for the total time spent537

executing a single job group on a single machine group, then sums this bound over all K machine538

groups and L job groups.539

▷ Claim 10. For any v, u, k, ℓ, d, if v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ) then zu,v,k,ℓ = 1.540

Proof. Fix u, v, k, ℓ, d such that v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ). By the definition of Vk,ℓ,d,541

xv,k is 1. By constraint 3, Cv ≥ Cu + ρ̄k(1 − zu,v,k), implying that zu,v,k cannot equal 0. Since542

zu,v,k is either 0 or 1, we have zu,v,k = 1. ◀543
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〈1〉
〈2〉
〈3〉

〈1〉
〈2〉
〈3〉

V1,1 V1,2 V1,3 V1,4 V1,5 V1,6 V1,7 V1,8

. . .V2,1 V2,2 V2,3 V2,4

V3,1 V3,2

. . .

LPα solution

Schedule

σ1,1

σ2,1

σ3,1

σ1,2 σ1,3

σ2,2

σ1,4 σ1,5

σ2,3

σ3,2

σ1,6 σ1,7

σ2,4

σ1,8

Figure 4 Structure of the schedule produced by Algorithm 1. σk,d denotes a schedule of Vk,ℓ,d on the
machines in group ⟨k⟩. The algorithm scans the LPα solution by increasing time (left to right). At the start of
each Vk,ℓ,d, the algorithm constructs a schedule of the set and appends it to the existing schedule.

▷ Claim 11. For any k, ℓ, we show (a)
∑

d |Vk,ℓ,d ∪ Uk,ℓ,d| ≤ C∗
α · |⟨k⟩| and (b) for any d and544

v ∈ Vk,ℓ,d, the number of v’s predecessors in Vk,ℓ,d ∪ Uk,ℓ,d is at most α(ρ̄k + ρ̄ℓ).545

Proof. Fix k, ℓ. We first prove (a). For any v in Vk,ℓ,d we have xv,k = 1 by the definition of546

Vk,ℓ,d. Consider any u in Uk,ℓ,d. By definition, there exists a v′ ∈ Vk,ℓ,d such that xv′,k = 1 and547

Cv < Cu + (ρ̄k + ρ̄ℓ); fix such a v′. By claim 10, zu,v′,k = 1. So, by constraint 10, yv,k = 1 for548

every job v ∈ Vk,ℓ,d ∪ Uk,ℓ,d. For any d′ ̸= d, Vk,ℓ,d and Vk,ℓ,d′ are disjoint. So
∑

d |Vk,ℓ,d ∪ Uk,ℓ,d|549

is at most the right-hand side of constraint 2, which is at most C∗
α · |⟨k⟩|.550

We now prove (b). Fix v, d such that v ∈ Vk,ℓ,d. Consider any u in Vk,ℓ,d ∪ Uk,d such that u ≺ v.551

By definition of Vk,ℓ,d and Uk,ℓ,d, Cv < Cu + (ρ̄k + ρ̄ℓ). By Claim 10, zu,v,k = 1. The claim then552

follows from constraint (5). ◀553

By Lemma 7 and Claim 11(b), the time spent executing jobs in JℓK on machines in ⟨k⟩ is at most554

∑
d

(
3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)) + 2 · |Vk,ℓ,d ∪ Uk,ℓ,d|

|⟨k⟩|

)
555

556

The summation over the first term is at most ⌈C∗
α/(ρ̄k + ρ̄ℓ)⌉ 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)) which557

is at most 3C∗
αα log(α(ρ̄k + ρ̄ℓ)) + 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)). The summation over the second558

term is at most 2C∗
α by claim 11(a). Summing over all K machine groups and L job groups, and559

considering K, L ≤ log ρmax, the total length of the schedule is at most 12α log(ρmax)(KLC∗
α +560

ρmax(K + L)). ◀561

▶ Theorem 1 (Job Delays and Machine Delays). There exists a polynomial time algorithm to562

compute a valid machine delays and job precedence delays schedule with makespan O((log n)9(OPT+563

ρmax)).564

Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that565

C∗
2K ≤ 4K · OPT. With α = 2K, Lemma 9 entails that the makespan of our schedule is at most566

12α log(ρmax)(KLC∗
α + ρmax(K + L)) = 48(log ρmax)5OPT + 24(log ρmax)3ρmax for the case567

with no out-delays. By Lemma 37 of [42], the length of our schedule is O((log ρmax)9(OPT + ρmax)568

The theorem is entailed by ρmax ≤ n. This proves the theorem. ◀569

▶ Corollary 12 (Machine Delays). There exists a polynomial time algorithm to compute a valid570

machine delays schedule with makespan O((log n)5 · (OPT + ρ)).571
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Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that572

C∗
2K ≤ 4K · OPT. With α = 2K, Lemma 9 entails that the makespan of our schedule is at most573

12α log(ρmax)(KLC∗
α + ρmax(K + L)) = 48(log ρmax)5OPT + 24(log ρmax)3ρmax for the case574

with no out-delays. By Lemma 41 of [42], the length of our schedule is O((log ρmax)5(OPT + ρmax)575

The theorem is entailed by ρmax ≤ n. ◀576

2.5 Combinatorial Algorithm for Uniform Machine Delays577

The only noncombinatorial subroutine of our algorithm is solving the linear program. In this section,578

we describe how to combinatorially construct a rounded solution to LP1 when machine delays are579

uniform (i.e. for all i, j, ρin
i = ρout

i = ρin
j = ρout

j ), machine speeds are unit, and machine capacities580

are unit. We let δ represent the uniform machine delay. By Lemma 37 of [42], we focus on the case581

where all job out-delays are 0. We let ρv = δ + ρin
v for any job v.582

Since delays, speeds, and capacities are uniform, there is only one machine group: ⟨1⟩. Set xv,1 =583

yv,1 = 1 for all v. For each job v, we define Cv as follows. If v has no predecessors, we set Cv = 0.584

Otherwise, we order v’s predecessors such that Cui ≥ Cui+1 . We define Cv = max1≤i≤ρv{Cui + i}.585

We set C∗ = max{n/m, maxv{Cv}}. We set zu,v,1 = 1 if u ≺ v and Cv − Cu < ρv; and set to 0586

otherwise.587

▶ Lemma 13. C∗ ≤ OPT.588

Proof. Consider an arbitrary schedule in which tv is the earliest completion time of any job v. We589

show that, for any v, tv ≥ Cv , which is sufficient to prove the lemma.590

We prove the claim by induction on the number of predecessors of v. The claim is trivial591

if v has no predecessors. Suppose that the claim holds for all of v’s predecessors and let y =592

arg max1≤i≤ρv{Cui + i}. Then Cv = Cuy + y ≤ tuy + y (by IH) = ty + |{ux : 0 ≤ x ≤ y}| ≤593

ty +ρv . This entails that all jobs u1, . . . uy must be executed on the same machine as v. Now suppose,594

for the sake of contradiction, that tv < Cv. Then all jobs u ∈ {ux : 0 ≤ x < y}| must be executed595

serially in the time tv − tuy
< Cv − tuy

= |{ux : 0 ≤ x ≤ y}| which gives us our contradiction. ◀596

▶ Lemma 14. (C, x, y, z) is a rounded solution to LP1.597

Proof. It is easy to see that constraints (1, 2, 3, 4, 6, 7, 8, 9, 10 11) are satisfied by the assignment.598

So we must only show that constraint (5) is satisfied for fixed v. We can see from the definition of Cv ,599

that maximum number of predecessors u such that Cv −Cu < ρv + ρ is at most ρv + ρ. This proves600

the lemma. ◀601

▶ Lemma 15 (Combinatorial Algorithm for Job Delays). There exists a purely combinatorial,602

polynomial time algorithm to compute a schedule for Job Delays with makespan O((log n)6(OPT +603

maxv{ρv})).604

Proof. Lemma 9 entails that the length of the schedule is at most 12(log ρmax)2(OPT +ρmax) for the605

problem with job in-delays. By Lemma 37 of [42] we achieve a makespan of O((log ρmax)6(OPT +606

ρmax)) for job in- and out-delays. ◀607
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