
Online Paging with Heterogeneous Cache Slots*1

Marek Chrobak†1, Samuel Haney‡2, Mehraneh Liaee§3, Debmalya Panigrahi¶4, Rajmohan2

Rajaraman||3, Ravi Sundaram**3, and Neal E. Young††1
3

1University of California at Riverside; Email:4

marek@cs.ucr.edu,neal.young@ucr.edu5

2Tumult Labs; Email: sam.m.haney@gmail.com6

3Northeastern University; Email: {mehraneh,rraj,koods}@ccs.neu.edu7

4Duke University; Email: debmalya@cs.duke.edu8

Abstract9

It is natural to generalize the online k-Server problem by allowing each request to specify not only10

a point p, but also a subset S of servers that may serve it. To initiate a systematic study of this gen-11

eralization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent to a12

generalization of Paging in which each request specifies not only a page p, but also a subset S of cache13

slots, and is satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous14

Paging.15

In realistic settings only certain subsets of cache slots or servers would appear in requests. Therefore16

we parameterize the problem by specifying a family S ⊆ 2[k] of requestable slot sets, and we establish17

bounds on the competitive ratio as a function of the cache size k and family S:18

• If all request sets are allowed (S = 2[k] \ {∅}), the optimal deterministic and randomized competi-19

tive ratios are exponentially worse than for standard Paging (S = {[k]}).20

• As a function of |S| and k, the optimal deterministic ratio is polynomial: at most O(k2|S|) and at21

least Ω(
√
|S|).22

• For any laminar family S of height h, the optimal ratios are O(hk) (deterministic) and O(h2 log k)23

(randomized).24

• The special case of laminar S that we call All-or-One Paging extends standard Paging by allowing25

each request to specify a specific slot to put the requested page in. The optimal deterministic ratio26

for weighted All-or-One Paging is Θ(k). Offline All-or-One Paging is NP-hard.27

Some results for the laminar case are shown via a reduction to the generalization of Paging in which28

each request specifies a set P of pages, and is satisfied by fetching any page from P into the cache. The29

optimal ratios for the latter problem (with laminar family of height h) are at most hk (deterministic) and30

hHk (randomized).31

*The conference version of this paper appears in STACS 2023 [25].
†Research partially supported by National Science Foundation grants CCF-1536026 and CCF-2153723.
‡Research partially supported by National Science Foundation grants CCF-1527084 and CCF-1535972.
§Research partially supported by National Science Foundation grants CCF-1535929 and CCF-1909363.
¶Research partially supported by National Science Foundation grants CCF-1527084, CCF-1535972, CCF-1750140, CCF-

1955703, an Army Research Office grant W911NF2110230, and the Indo-US Joint Center for Algorithms under Uncertainty.
||Research partially supported by National Science Foundation grants CCF-1535929 and CCF-1909363.

**Research partially supported by National Science Foundation grants CCF-1535929 and IIS-2039945.
††Research partially supported by National Science Foundation grant CCF-1619463.

1 Introduction32

The standard k-Server and Paging models assume homogenous (interchangeable) servers and cache slots.33

They don’t model applications where servers have different capabilities, nor the fact that modern cache34

systems often partition the slots, sometimes dynamically, with some parts exclusively accessible by specific35

processors, cores, processes, threads, or page sets (e.g., [30, 40, 47–49]).36

This motivates us to generalize the online k-Server problem to allow each request to specify not only a37

point p, but also a subset S of servers that may serve it. We call this generalization Heterogenous k-Server.38

To date, only a few special cases of this problem have been studied [22, 44]. Here, following the strategy39

taken for other hard generalizations of k-Server [6, 7, 12, 23, 31, 39], we initiate a systematic study of this40

problem by focusing on its restriction to uniform and star metrics. For uniform metrics, the problem is41

equivalent to a variant of Paging in which each request specifies a page p and a subset S of k cache slots, to42

be satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous Paging. For43

star metrics the problem reduces to a weighted variant where the cost of retrieving a page is the weight of the44

page. For reasons discussed below, we parameterize these problems by allowing the requestable sets S to be45

restricted to an arbitrary but pre-specified family S ⊆ 2[k]. (Restricting to S = {[k]} gives standard Paging46

and k-Server.) Next is a summary of our results, followed by a summary of related work.47

Slot-Heterogenous Paging (Section 3). As we point out, Slot-Heterogenous Paging easily reduces (preserv-48

ing the competitive ratio) to the Generalized k-Server problem in uniform metrics, for which upper bounds49

of k2k and O(k2 log k) on the deterministic and randomized ratios are known [7, 12].50

• We show that the optimal deterministic and randomized competitive ratios for Slot-Heterogenous Pag-51

ing are at least Ω(2k/
√
k) and Ω(k), respectively (Theorems 3.2 (i) and 3.3).52

Hence, the optimal ratios for Slot-Heterogenous Paging are exponentially worse than for standard Paging.53

The proofs of Theorems 3.2 and 3.3 employ some novel ideas that may be useful for other problems: the54

lower bound in Theorems 3.2 (i) uses an adversary argument that requires the construction of a set family55

not yet studied in the literature, while the proof of Theorem 3.3 is carried out via a reduction from standard56

Paging with a cache of size exp(Θ(k)).57

The large competitive ratios in these lower bounds occur only for instances that use exponentially many58

distinct request sets S. In realistic settings only certain subsets of cache slots or servers can appear in59

requests, namely those that represent capabilities or functionalities relevant in a given setting. This motivates60

us to study the optimal ratios as a function of the cache size k and the family S of requestable slot sets, and61

to try to identify natural families that admit more reasonable ratios.62

• We show that the optimal deterministic ratio is at most k2|S| for any family S (Theorem 3.1). Theo-63

rem 3.2 (ii) shows a complementary lower bound: for infinitely many families S, every deterministic64

online algorithm has competitive ratio Ω(
√
|S|).65

Together Theorems 3.1 and 3.2 (ii) imply that, as a function of |S| and k, the optimal deterministic ratio for66

Slot-Heterogenous Paging is polynomial.67

Page-Laminar Paging (Section 4). We take a brief detour to consider Page-Subset Paging, a natural gen-68

eralization of Paging in which each request is a set P of pages from an arbitrary but fixed family P , and69

is satisfiable by fetching any page from P into any slot in the cache. We focus on its special case of Page-70

Laminar Paging, where this set family P is laminar.71

• We show that the optimal deterministic and randomized ratios for Page-Laminar Paging are at most72

hk and hHk, where h is the height of the laminar family and Hk =
∑k

i=1 1/i = ln k + O(1) (Theo-73

rem 4.1).74

1

The proof is by a reduction that replaces each set request P by a request to one carefully chosen page in P ,75

yielding an instance of Paging, while increasing the optimal cost by at most a factor of h.76

Slot-Laminar Paging (Section 5). We then return to Slot-Heterogenous Paging, now considering the spe-77

cific structure of S, showing better bounds when S is laminar. This case, which we call Slot-Laminar Paging,78

models applications where slot (or server) capabilities are hierarchical. Laminarity implies that |S| < 2k, so79

(per Theorem 3.1 above) the optimal deterministic ratio is O(k3).80

• We show that the optimal deterministic and randomized ratios for Slot-Laminar Paging are O(h2k)81

and O(h2 log k), where h ≤ k is the height of S (Theorem 5.1). We next tighten the deterministic82

bound to O(hk) (Theorem 5.2).83

The proof of Theorem 5.1 is via a reduction to Page-Laminar Paging (discussed above), while the proof84

of Theorem 5.2 refines the generic algorithm from Theorem 3.1. The dependence on k in these bounds is85

asymptotically tight, as Slot-Laminar Paging generalizes standard Paging.86

Reducing Slot-Laminar Paging to Page-Laminar Paging. The reduction of Slot-Laminar Paging to Page-87

Laminar Paging in Theorem 5.1 is achieved via a relaxation of Slot-Laminar Paging that drops the constraint88

that each slot holds at most one page, while still enforcing the cache-capacity constraint of k. This relaxed89

instance is naturally equivalent to an instance of Page-Laminar Paging. The proof then shows how any90

solution for the relaxed instance can be “rounded” back to a solution for the original Slot-Laminar Paging91

instance, losing an O(h) factor in the cost and competitive ratio.92

All-or-One Paging (Section 6). All-or-One Paging is the restriction of Slot-Laminar Paging (with height93

h = 2) to S = {[k]}∪{{j}}j∈[k]. That is, only two types of requests are allowed: general requests (allowing94

the requested page to be anywhere in the cache), and specific requests (requiring the page to be in a specified95

slot). Specific requests don’t give the algorithm any choice, so may appear easy to handle, but in fact make96

the problem substantially harder than standard Paging. Recent independent work on All-or-One Paging [22]97

has shown that the optimal deterministic ratio is twice that of Paging, to within an additive constant.98

• We show that the optimal randomized ratio of All-or-One Paging is also at least twice that for Paging99

(Theorem 6.1), while Theorem 5.1 upper bounds the optimal randomized ratio to within a constant100

factor of that for Paging. We also show that the offline problem is NP-hard (Theorem 6.2), in sharp101

contrast to even k-Server, which can be solved in polynomial time for arbitrary metrics.102

Weighted All-Or-One Paging (Section 7). We initiate a study of Heterogenous k-Server in non-uniform103

metrics through Weighted All-Or-One Paging, which extends All-or-One Paging so that each page has a104

non-negative weight and the cost of each retrieval is the weight of the page instead of 1.105

• We show that the optimal deterministic ratio for Weighted All-Or-One Paging is O(k), matching the106

ratio for standard Weighted Paging up to a small constant factor (Theorem 7.1).107

The algorithm in the proof is implicitly a linear-programming primal-dual algorithm. With this approach108

the crucial obstacle to overcome is that the standard linear program for standard Weighted Paging does109

not force pages into specific slots. Indeed, doing so makes the natural integer linear program an NP-hard110

multicommodity-flow problem. (Section 7 has an example that illustrates the challenge.) We show how to111

augment the linear program to partially model the slot constraints.112

Related work. Paging and k-Server have played a central role in the theory of online computation since113

their introduction in the 1980s [13, 41, 46]. For k-Server, the optimal deterministic ratio is between k and114

2k−1 [38]. Recent work [29] offers hope for closing this gap, and substantial progress towards resolving the115

randomized case has been reported in [4, 18]. For Weighted Paging the optimal ratios are k (deterministic)116

and Θ(log k) (randomized) [1, 5, 32, 42, 46].117

2

problem set family S (or P) deterministic randomized where
Slot-Heterogenous Paging 2[k] \ {∅} ≤ k2k ≤ O(k2 log k) via [7, 12]

” arbitrary S ≤ kmin(|S∗|,mass(S)) Thm. 3.1

One-of-m Paging, m ≈ k/2
(
[k]
m

)
≥ Ω(2k/

√
k) ≥ Ω(k) Thms. 3.2(i), 3.3

One-of-m Paging, any m
(
[k]
m

)
≳ Ω((4k/m)m/2/

√
m) Thm. 3.2(ii)

Slot-Laminar Paging laminar S, height h ≤ (2h− 1)k ≤ 3h2Hk Thms. 5.1, 5.2

All-or-One Paging {[k]} ∪ {{s} : s ∈ [k]} ≥ 2k − 1 ≥ 2Hk − 1 [22, 35], Thm. 6.1
” ” ≤ 2k + 14 [22]

Weighted All-Or-One Paging {[k]} ∪ {{s} : s ∈ [k]} ≤ O(k) Thm. 7.1

Page-Subset Paging restricted to P =
(all pages

m

)
≥

(
k+m
k

)
− 1 [31]

” ≤ k(
(
k+m
k

)
− 1) ≤ O(k3 logm) [23]

Page-Laminar Paging P laminar, height h ≤ hk ≤ hHk Thm. 4.1

Table 1: Summary of upper (≤) and lower (≥) bounds on optimal competitive ratios. Here mass(S) = ∑
S∈S |S| and

S∗ =
⋃

S∈S 2S . The lower bound for One-of-m Paging holds for some but not all m and k—see Theorem 3.2(ii).
The upper bound for Slot-Laminar Paging in the deterministic case (Theorem 5.1) is in fact 2 ·mass(S)− k, which is
at most (2h − 1)k. Also, offline All-or-One Paging and its generalizations are NP-hard (Theorem 6.2), as is offline
Page-Subset Paging ([23]).

Restricted Caching is one previously studied model with heterogenous cache slots. It is the restriction118

of Slot-Heterogenous Paging in which each page p has one fixed set Sp ⊆ [k] of slots, and each request119

to p requires p to be in some slot in Sp. For this problem the optimal randomized ratio is O(log2 k) [20].120

Better bounds are possible given further restrictions on the sets, as in Companion Caching, which models a121

cache partitioned into set-associative and fully associative parts [16, 17, 33, 43]. It is natural to ask whether122

Restricted k-Server—the restriction of Heterogenous k-Server that requires each point p to be served by a123

server in a fixed set Sp—is easier than Heterogenous k-Server. While the two problems are different for124

many metric classes, they can be shown to be equivalent in metric spaces with no isolated points, such125

as Euclidean spaces. The NP-hardness result for Restricted Caching from [17] implies that offline Slot-126

Heterogenous Paging with S = {{s, k} : s ∈ [k − 1]} is NP-hard.127

Other sophisticated online caching models include Snoopy Caching, in which multiple processors each128

have their own cache and coordinate to maintain consistency across writes [37], Multi-Level Caching, where129

the cost to access a slot depends on the slot [26], and Writeback-Aware Caching, where each page has130

multiple copies, each with a distinct level and weight, and each request specifies a page and a level, and can131

be satisfied by fetching a copy of this page at the given or a higher level [8, 9]. (This is a special case of132

weighted Page-Laminar Paging where P consists of pairwise-disjoint chains.) Multi-Core Caching models133

the fact that faults can change the request sequence (e.g. [36]).134

Patel’s master thesis [44] studies Heterogenous k-Server with just two types of requests—general re-135

quests (to be served by any server) and specialized requests (to be served by any server in a fixed subset S′
136

of “specialized” servers)— and bounds the optimal ratios for uniform metrics and the line. Recent indepen-137

dent work on deterministic algorithms for online All-or-One Paging establishes a 2k − 1 lower bound and138

a 2k + 14 upper bound [22]. Earlier work in [35] presents a 2k − 1 lower bound and a 3k upper bound on139

deterministic algorithms.140

Heterogenous k-Server reduces (see Section 3) to the Generalized k-Server problem, in which each141

server moves in its own metric space, each request specifies one point in each space, and the request is142

satisfied by moving any one server to the requested point in its space [39]. For uniform metrics, the op-143

timal competitive ratios for this problem are between 2k and k2k (deterministic) and between Ω(k) and144

3

O(k2 log k) (randomized) [7,12]. These ratios are exponentially worse than the ratios for standard k-Server.145

Heterogenous k-Server, parameterized by S, provides a spectrum of problems that bridges the two extremes.146

Weighted k-Server is a restriction of Generalized k-Server in which servers move in the same metric147

space but have different weights, and the cost is the weighted distance [34]. For this problem (in non-148

uniform metrics) the deterministic and randomized ratios are at least (respectively) doubly exponential [6,7]149

and exponential [3, 24].150

For Page-Subset Paging restricted to m-element sets of pages, the optimal ratios are between
(
k+m
k

)
− 1151

and k(
(
k+m
k

)
− 1) (deterministic) and between Ω(log km) and O(k3 logm) (randomized) [23, 31]. This152

problem has been studied as uniform Metrical Service Systems with Multiple Servers (MSSMS). MSSMS is153

the generalization of k-Server where each request is a set of points, one of which needs to be covered by154

some server.155

The k-Chasing problem extends k-Server by having each request P be a convex subset of Rd, to be156

satisfied by moving any server to any point in P [19]. For k-Chasing, no online algorithm is competitive157

even for d = k = 2 [19], while for k = 1 the ratios grow with d [2, 45].158

In the k-Taxi problem each request (p, q) requires any server to move to p then (for free) to q. For this159

problem the optimal ratios are exponentially worse than for standard k-Server [21, 28].160

2 Formal Definitions161

Slot-Heterogenous Paging. A problem instance consists of a set [k] = {1, 2, . . . , k} of cache slots, a family162

S ⊆ 2[k] \ {∅} of requestable slot sets, and a request sequence σ = {σt}Tt=1, where each request has the163

form σt = ⟨pt, St⟩ for some page pt and set St ∈ S. A cache configuration C is a function that specifies164

the content of each slot s ∈ [k]; this content is either a single page (said to be assigned to the slot) or empty.165

Configuration C is said to satisfy a request ⟨p, S⟩ if it assigns page p to at least one slot in S. A solution166

for a given request sequence σ is a sequence {Ct}Tt=1 of cache configurations such that, for each t ∈ [T],167

Ct satisfies request σt. The objective is to minimize the number of retrievals, where a page p is retrieved in168

slot s at time t if Ct assigns p to s, but Ct−1 does not (or t = 1). An event when Ct−1 does not assign pt to169

any slot in St is called a fault. Obviously a fault triggers a retrieval but, while this is not strictly necessary, it170

is convenient to also allow an algorithm to make spontaneous retrievals, either by fetching into the cache a171

non-requested page or by moving pages within the cache.172

Slot-Laminar Paging. This is the restriction of Slot-Heterogenous Paging to instances where S is laminar:173

every pair R,R′ ∈ S of sets is either disjoint or nested. (This implies |S| ≤ 2k.) A laminar family S can174

be naturally represented by a forest (a collection of disjoint trees), with a set R being a descendant of R′ if175

R ⊆ R′. When discussing Slot-Laminar Paging we will routinely use tree-related terminology; for example,176

we will refer to some sets in S as leaves, roots, or internal nodes. The height h of a laminar family S is one177

more than the maximum height of a tree in S, that is the maximum h for which S contains a sequence of h178

strictly nested sets: R1 ⊊ R2 ⊊ . . . ⊊ Rh.179

All-or-One Paging. This is the restriction of Slot-Laminar Paging to instances with S = {[k]} ∪ {{j}}j∈[k].180

That is, there are two types of requests: general, of the form ⟨p, [k]⟩, requiring page p to be in at least one181

slot of the cache, and specific, of the form ⟨p, {j}⟩, j ∈ [k], requiring page p to be in slot j. For convenience,182

⟨p, ∗⟩ is a synonym for ⟨p, [k]⟩, while ⟨p, j⟩ is a synonym for ⟨p, {j}⟩.183

Weighted All-Or-One Paging. This is the natural extension of All-or-One Paging in which each page p is184

assigned a non-negative weight wt(p), and the cost of retrieving p is wt(p) instead of 1.185

One-of-m Paging. This is the restriction of Slot-Heterogenous Paging to instances with S =
(
[k]
m

)
= {S ⊆186

[k] : |S| = m}, that is, every request specifies a set of m slots.187

4

Page-Subset Paging. An instance consists of k cache slots, a collection P of requestable sets of pages, and188

a request sequence π = {Pt}Tt=1, where each Pt is drawn from P . A solution is a sequence {Ct}Tt=1 of189

cache configurations (as previously defined) such that, at each time t ∈ [T], Ct assigns at least one page190

in Pt to at least one slot. The objective is to minimize the number of retrievals. (Slots are interchangeable191

here, so a cache configuration could be defined as a multiset of at most k pages, but using slot assignments192

is technically more convenient.)193

Page-Laminar Paging. This is the restriction of Page-Subset Paging to instances where P is laminar.194

Generalized k-Server. In this variant of k-Server, each server moves in its own metric space; each request195

specifies one point in each space, and the request is satisfied by moving any one server to the requested point196

in its space [39].197

Approximation algorithms. An algorithm A for a given cost minimization problem is called a c-approximation198

algorithm if, for each instance σ, A satisfies costA(σ) ≤ c · opt(σ) + b, where costA(σ) is the cost of A on199

σ, opt(σ) is the optimum cost of σ, and b is a constant independent of σ. We follow the standard convention200

that when we are considering A as an offline algorithm, the constant b must be 0.201

Online algorithms and competitive ratio. In the online variants of the paging problems studied in this202

paper the requests arrive online, one per time step, and an online algorithm needs to satisfy each request203

before the next one is revealed. To simplify presentation we assume that the algorithm knows the underlying204

set family S (or P), but many of our algorithms work (or can be adapted to work) without knowing the set205

family in advance. An online algorithm A is called c-competitive if A is a c-approximation algorithm. As206

common in the literature, we will use the term “optimal deterministic (resp. randomized) competitive ratio”207

to refer to the optimal ratio of of a deterministic (resp. randomized) online algorithm for the given problem.208

3 Slot-Heterogenous Paging209

Any instance of Slot-Heterogenous Paging can be reduced to an instance of Generalized k-Server in uniform210

spaces, as follows. Represent each cache slot by a server in a uniform metric space whose points are the211

pages, then simulate each request ⟨p, S⟩ by a sufficiently long sequence of requests, each of which specifies212

point p for each server in S and alternates between two different points for the remaining servers, in [k] \ S.213

Composing this reduction with the upper bounds from [7] yields immediate upper bounds of O(k2k) and214

O(k3 log k) on the deterministic and randomized ratios for unrestricted Slot-Heterogenous Paging (that is,215

with S = 2[k] \ {∅}).216

Theorem 3.2 (i) (Section 3.2) and Theorem 3.3 (Section 3.3) show that these bounds are tight within217

poly(k) factors: the optimal ratios are at least Ω(2k/
√
k) and Ω(k), respectively. But restricting S allows218

better ratios: Theorem 3.1 (Section 3.1) shows an upper bound of k2|S| on the optimal deterministic ratio for219

any family S . For One-of-m Paging, Theorem 3.1 and Theorem 3.2 (ii) imply that the optimal deterministic220

ratio is O(km+1) and Ω((4k/m)m/2/
√
m).221

3.1 Upper bounds for deterministic Slot-Heterogenous Paging222

This section gives upper bounds on the optimal deterministic competitive ratio for Slot-Heterogenous Paging223

with any slot-set family S, as a function of mass(S) = ∑
S∈S |S| ≤ k|S| and |S∗|, where S∗ =

⋃
S∈S 2S .224

The first bound follows from an easy counting argument. The second bound uses a refinement of the rank225

method of [7], which bounds the number of steps of a natural exhaustive-search algorithm by the rank of a226

certain upper-triangular matrix.227

Theorem 3.1. Fix any S ⊆ 2[k] \ {∅}. The competitive ratio of Algorithm EXHSEARCH in Figure 1 for228

Slot-Heterogenous Paging with requestable sets from S is at most k ·min {|S∗|,mass(S)}.229

5

input: Slot-Heterogenous Paging instance (k,S, σ = (σ1, . . . , σT))

1. let the initial cache configuration C0 be arbitrary; let ℓ← 1 — ℓ is the start of the current phase

2. for each time t← 1, 2, . . . , T :

2.1. if current configuration Ct−1 satisfies request σt: ignore the request (set Ct = Ct−1)
2.2. else:

2.2.1. if any configuration satisfies all requests σℓ, σℓ+1, . . . , σt: let Ct be any such configuration
2.2.2. else: let ℓ← t; let Ct be any configuration satisfying σt — start the next phase

Figure 1: Online algorithm EXHSEARCH for Slot-Heterogenous Paging.

The theorem implies that the competitive ratio of One-of-m Paging is polynomial in k when m is con-230

stant.231

Proof of Theorem 3.1. Assume without loss of generality that the algorithm faults in each step t, that is Ct−1232

does not satisfy σt = ⟨pt, St⟩. (Otherwise first remove such requests; this doesn’t change the algorithm’s233

cost or increase the optimal cost.)234

We first bound the maximum length of any phase. The argument is the same for each phase. To ease235

notation assume the phase is the first (with ℓ = 1). LetL be the length of the phase. By the initial assumption,236

the following holds:237

(UT) For each time t ∈ [L], configuration Ct−1 satisfies requests σ1, σ2, . . . , σt−1, but not σt.238

The final configuration CL in the phase satisfies all requests in the phase. In particular, for each S ∈ S,239

for each request ⟨p, S⟩ in the phase, CL has p in some slot in S, so (i) there are at most |S| distinct requests240

in the phase that use any given set S ∈ S . Property (UT) implies that (ii) every request σt in this phase is241

distinct (indeed, for any t′ < t, Ct−1 satisfies σt′ but not σt). Observations (i) and (ii) imply the following242

bound L ≤∑
S∈S |S| = mass(S).243

(As an aside, the above argument uses only that every request in the phase is distinct, a weaker condition244

than (UT). Given only that property, the above bound on L is tight for every S in the following sense:245

consider any configuration C that puts a distinct page in each slot s ∈ [k], and a request sequence σ that246

requests in any order every pair ⟨p, S⟩ such that S ∈ S and C assigns p to a slot in S. Then σ is satisfied by247

a single configuration, while having mass(S) distinct requests.)248

Next we give a second bound on L that is tighter for some families S . Identify each page pwith a distinct
but arbitrary real number. For each cache configuration Ct, let Ci

t ∈ R denote the page in slot i, if any, else
0. Define matrix M ∈ RL×L by

Mst =
∏
i∈St

(Ci
s−1 − pt),

so that Mst = 0 if and only if Ci
s−1 = pt for some i ∈ St, that is, if and only if Cs−1 satisfies σt. So249

Property (UT) implies that M is upper-triangular and non-zero on the diagonal. So M has rank L.250

Expanding the formula for Mst, we obtain

Mst =
∑
S⊆St

(∏
i∈S

Ci
s−1

)
·
(∏

i∈St\S

−pt
)

=
∑
S⊆St

(∏
i∈S

Ci
s−1

)
· (−pt)|St|−|S| =

∑
S∈S∗

AsS ·BSt ,

where matrices A ∈ RL×S∗
and B ∈ RS∗×L are defined by

AsS =
∏
i∈S

Ci
s−1 and BSt =

{
(−pt)|St|−|S| if S ⊆ St
0 otherwise.

6

That is, M = AB; A and B (and M) have rank at most |S∗|. And M has rank L, so L ≤ |S∗|. To251

bound the optimum cost, consider any phase other than the last. Let t′ and t′′ be the start and end times.252

Suppose for contradiction that the optimal solution incurs no cost (has no retrievals) during [t′ + 1, t′′ + 1].253

Then its configuration at time t′ satisfies all requests in [t′, t′′ + 1], contradicting the algorithm’s condition254

for terminating the phase. So the optimal solution pays at least 1 per phase (other than the last). In any phase255

of length L the algorithm pays at most kL (at most k per step). This and the two upper bounds on L imply256

Theorem 3.1.257

3.2 Lower bounds for deterministic Slot-Heterogenous Paging258

We establish our lower bounds for Slot-Heterogenous Paging and One-of-m Paging given in Table 1.259

Theorem 3.2. (i) For all odd k, the optimal deterministic ratio for One-of-m Paging with m = (k + 1)/2260

is at least
(
k
m

)
= Ω(2k/

√
k). For all k, the optimal ratio with m = ⌊(k + 1)/2⌋ is Ω(2k/

√
k). (ii) For any261

even m ≥ 2 and any k > m that is an odd multiple of m − 1, the optimal deterministic ratio for One-of-m262

Paging is at least
(
m−1
m/2

)(
k

m−1

)m/2
= Θ((4k/m)m/2/

√
m) = Ω(

√
|S|), where S =

(
[k]
m

)
.263

Before proving Theorem 3.2, we prove Lemma 3.1. It states that for any S the existence of a family264

Z ⊆ 2[k] with certain properties implies a lower bound of |Z| on the competitive ratio. The proof of the265

theorem then constructs such families Z for appropriate families S of requestable sets. Throughout this266

section X denotes the complement of set X ⊆ [k], that is X = [k] \X .267

Lemma 3.1. For some S ⊆ 2[k], suppose there are two set families G ⊆ S and Z ⊆ 2[k] such that268

(gz0) For each X ⊆ [k] there is S ∈ G such that S ⊆ X or S ⊆ X .269

(gz1) If Z ∈ Z then Z /∈ Z .270

(gz2) For each S ∈ G there is Y ∈ Z such that S ̸⊆ Z and S ̸⊆ Z for all Z ∈ Z \ {Y }.271

Then the optimal deterministic ratio for Slot-Heterogenous Paging with family S is at least |Z|.272

Proof. The proof is an adversary argument based on the following idea. At each step, the adversary chooses273

a request that forces the algorithm to fault but causes at most two faults total among a fixed set of 2|Z|274

other solutions. At the end, the algorithm’s total cost is at least |Z| times the average cost of these other275

solutions, so its competitive ratio is at least |Z|. This general approach is common for lower bounds on276

deterministic online algorithms (see e.g. lower bounds on the optimal ratios for k-Server [41], for Metrical277

Task Systems [15] and for Generalized k-Server on uniform metrics [39]).278

Here are the details. Let A be any deterministic online algorithm for Slot-Heterogenous Paging with279

slot-set family S. The adversary will request just two pages, p0 and p1. For a set X ⊆ [k], let CX denote the280

cache configuration where the slots in X contain p0 and the slots in X contain p1. Without loss of generality281

assume that each slot of A’s cache always holds p0 or p1—its cache configuration is CX for some X .282

At each step, if the current configuration of A is CX , the adversary chooses S ∈ G such that either283

S ⊆ X or S ⊆ X . (Such an S exists by Property (gz0).) If S ⊆ X , then all slots in S hold p0, and the284

adversary requests ⟨p1, S⟩, causing a fault. Otherwise, S ⊆ X , so all slots in S hold p1. In this case the285

adversary requests ⟨p0, S⟩, causing a fault. The adversary repeats this K times, where K is arbitrarily large.286

Since A faults at each step, the overall cost of A is at least K.287

It remains to bound the optimal cost. Let Z̃ =
{
Z : Z ∈ Z

}
. By (gz1), we have Z̃ ∩ Z = ∅. For each288

Z ∈ Z ∪ Z̃ define a solution called the Z-strategy, as follows. The solution starts in configuration CZ . It289

stays in CZ for the whole computation, except that on requests ⟨pa, S⟩ that are not served by CZ (that is,290

when all slots of CZ in S contain p1−a), it retrieves pa to any slot j ∈ S, serves the request, then retrieves291

p1−a back into slot j, restoring configuration CZ . This costs 2.292

7

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6

2
1

7

3

4 5

6
B1 B2 B3 B4 B5

Figure 2: Illustration of the proof of Theorem 3.2 Part (ii) for k = 35,m = 6, and ℓ = 7. The figure shows the partition
of all slots into m − 1 = 5 sets B1, . . . , B5, each represented by a cycle. To avoid clutter, each slot bec is represented
by its index c within Be. The picture shows set S = {b12, b13, b26, b27, b44, b45} ∈ G, marked by dashed ovals. It also shows
ZS′ ∈ Z , represented by orange/shaded circles, for S′ = {b12, b13, b34, b35, b47, b41}.

We next observe that in each step at most one Z-strategy faults (and pays 2). Assume that the request293

at a given step is to p0 (the case of a request to p1 is symmetric). Let this request be ⟨p0, S⟩, where S ∈ G.294

Let Y ⊆ [k] be the set from Property (gz2). For all Z ∈ (Z ∪ Z̃) \ {Y, Y }, then, S ∩ Z ̸= ∅, implying295

that configuration CZ has a slot in S that contains p0—in other words, configuration CZ satisfies S. Also,296

either S ∩ Y ̸= ∅ or S ∩ Y ̸= ∅, so one of the configurations CY or CY also satisfies S. Therefore only one297

Z-strategy (Y or Y) might not satisfy S. So, in each step, at most one Z-strategy faults (and pays 2).298

Thus the combined total cost for all Z-strategies (not counting the cost of at most k for moving to Z at299

the beginning) is at most 2K. There are 2|Z| such strategies, so their average cost is at most (2K+k)/2|Z|.300

The cost of A is at least K, so the ratio is at least K
(2K+k)/2|Z| =

|Z|
1+k/2K . Taking K arbitrarily large, the301

lemma follows.302

Proof of Theorem 3.2. Part (i). Recall that m = ⌊(k + 1)/2⌋. First consider the case when k is odd. Apply303

Lemma 3.1, taking both G and Z to be
(
[k]
m

)
. Properties (gz0) and (gz1) follow directly from k being odd304

and the definitions of G and Z . Property (gz2) also holds with Y = S. (For any S ∈ G, every Z ∈ Z305

satisfies |Z| = |S| > |Z|, so S ̸⊆ Z, while S ⊆ Z implies Z = S.) Thus, by Lemma 3.1, the ratio is at least306

|Z| =
(

k
(k+1)/2

)
= Ω(2k/

√
k). This proves Part (i) for odd k.307

For even k, let k′ = k − 1. Then apply Part (i) to k′ using just cache slots in [k′], that is, using slot-set308

family S ′ =
(
[k′]
m

)
⊆

(
[k]
m

)
= S, with slot k playing no role as it is never requested. This proves Part (i).309

Part (ii). Fix such an m and k. Let ℓ = k/(m − 1) so ℓ ≥ 3 is odd. Recall that S =
(
[k]
m

)
is310

the family of requestable slot sets. Partition [k] arbitrarily into m − 1 disjoint subsets B1, B2, . . . , Bm−1,311

each of cardinality ℓ. For each Be, order its slots arbitrarily as Be = {be1, be2, . . . , beℓ}. For any index312

c ∈ {1, 2, . . . , ℓ} and an integer i, let c⊕ i denote ((c+ i− 1) mod ℓ)+ 1. In other words, we view each Be
313

as an odd-length cycle, and this cyclic structure is important in the proof. Any consecutive pair {bec, bec⊕1} of314

slots on this cycle is called an edge. Thus each cycle Be has ℓ edges.315

First we define G ⊆ S for Lemma 3.1. The sets S in G are those obtainable as follows: choose any m/2316

edges, no two from the same cycle, then let S contain the m slots in those m/2 chosen edges. (The six slots317

inside the three dashed ovals in Figure 2 show one S in G.) This set of m/2 edges uniquely determines S,318

and vice versa.319

We verify that G has Property (gz0) from Lemma 3.1. Indeed, consider any X ⊆ [k]. Call the slots in X320

white and the slots in X black. Each cycle Be has odd length, so has an edge {bec, bec⊕1} that is white (with321

two white slots) or black (with two black slots). So either (i) at least half the cycles have a white edge, or (ii)322

at least half have a black edge. Consider the first case (the other is symmetric). There are m− 1 cycles, and323

m is even, so at least m/2 cycles have a white edge. So there are m/2 white edges with no two in the same324

cycle. The set S comprised of the m white slots from those edges is in G, and is contained in X (because its325

slots are white). So G has Property (gz0).326

8

Next we define Z ⊆ 2[k] for Lemma 3.1. The set Z contains, for each set S′ ∈ G, one set ZS′ , defined327

as follows. For each of the m/2 cycles Be having an edge {bec, bec⊕1} in S′, add to ZS′ the two slots on that328

edge, together with the (ℓ − 3)/2 slots bec⊕3, b
e
c⊕5, . . . , b

e
c⊕(ℓ−2). For each of the m/2 − 1 remaining cycles329

Be, add to ZS′ the (ℓ − 1)/2 slots be1, b
e
3, . . . , b

e
ℓ−2. (The orange/shaded slots in Figure 2 show one set ZS′330

in Z .) Then ZS′ contains exactly m/2 edges (the ones in S′) while its complement ZS′ contains exactly331

m/2− 1 edges (one from each cycle with no edge in S′). This implies Property (gz1). Note that ZS′ ̸= ZS′′332

for different sets S′, S′′ ∈ G.333

Next we show Property (gz2). Given any set S ∈ G, let Y = ZS ∈ Z . Consider any ZS′ ∈ Z such334

that S ⊆ ZS′ or S ⊆ ZS′ . We need to show ZS′ = ZS , i.e., S′ = S. It cannot be that S ⊆ ZS′ , because335

S contains m/2 edges, whereas ZS′ contains m/2 − 1 edges. So S ⊆ ZS′ . But S and ZS′ each contain336

exactly m/2 edges, which therefore must be the same. It follows from the definition of ZS′ that S′ = S. So337

Property (gz2) holds.338

So G and Z have Properties (gz0)-(gz2) from Lemma 3.1. Directly from definition we have |Z| = |G|,339

while |G| =
(
m−1
m/2

)
ℓm/2 because there are

(
m−1
m/2

)
ways to choose m/2 distinct cycles, and then for each340

of these m/2 cycles there are ℓ ways to choose one edge. Lemma 3.1 and ℓ = k/(m − 1) imply that the341

optimal deterministic ratio is at least f(m, k) =
(
m−1
m/2

)
(k/(m − 1))m/2. To complete the proof of part (ii)342

we lower-bound f(m, k). We observe that343

4m = Ω(
√
m (k/(k −m))k−m+1/2). (1)

This can be verified by considering two cases: If k ≥ m+ 2 then, using 1 + z ≤ ez , we have
√
m (k/(k −

m))k−m+1/2 =
√
m(1 +m/(k −m))k−m+1/2 ≤ √m · e5m/4 ≤ 2 · 4m, for all m ≥ 1. In the remaining

case, for k = m+1, we have
√
m(k/(k−m))k−m+1/2 =

√
m(1+m)3/2 ≤ 2 · 4m. Thus (1) indeed holds.

Now, recalling that f(m, k) =
(
m−1
m/2

)
(k/(m− 1))m/2, we derive

f(m, k) = Θ
(
(2m/

√
m) · (k/(m− 1))m/2

)
(Stirling’s approximation)

= Θ
(
(4k/m)m/2 · (1 + 1/(m− 1))m/2/

√
m
)

(rewriting)

= Θ
(
(4k/m)m/2/

√
m
)

((1 + 1/(m− 1))m/2 ≤ e) (2)

This gives us one estimate on the competitive ratio in Theorem 3.2(ii). To obtain a second estimate, squaring
both sides of (2), we obtain

f(m, k)2 = Ω
(
(4k/m)m/m

)
= Ω

(
(k/m)m · 4m/m

)
= Ω

(
(k/m)m · (k/(k −m))k−m+1/2/

√
m
)

(using (1))

= Ω(
(
k
m

)
) = Ω(|S|) (Stirling’s approximation)

Therefore f(m, k) = Ω(
√
|S|), as claimed, completing the proof of Theorem 3.2(ii).344

3.3 Lower bound for randomized Slot-Heterogenous Paging345

Next we present a lower bound on the optimal competitive ratio for randomized algorithms:346

Theorem 3.3. The optimal randomized ratio for One-of-m Paging with m = ⌊k/2⌋ is Ω(k).347

The proof is by a reduction from standard Paging with some N pages and a cache of size N − 1. For348

any N , this problem has optimal randomized competitive ratio HN−1 = Θ(logN) [32]. This and the next349

lemma imply the theorem.350

9

Lemma 3.2. Every f(k)-competitive (randomized) online algorithm A for One-of-m Paging with m =351

⌊k/2⌋ can be converted into an O(f(k))-competitive (randomized) online algorithm B for standard Paging352

with N pages and a cache of size N − 1, where N = 2Θ(k).353

Proof. Fix a sufficiently large k. Assume without loss of generality that k is even (otherwise apply the354

construction below to slots in [k − 1], ignoring slot k as it is never requested). Take N = ⌊ek/16⌋.355

To ease exposition, view the Paging problem with N pages and a cache of size N − 1 as the following356

equivalent online Cat and Rat game on any set H of N holes (see e.g. [14, §11.3]). The input is a sequence357

µ = (R0, C1, . . . , CT) of holes (i.e.,R0 ∈ H andCt ∈ H for all t). A solution is any sequence (R1, . . . , RT)358

of holes such that Rt ̸= Ct for all t ∈ [T]. Informally, at each time t ∈ [T], the cat inspects hole Ct, and359

if the rat’s hole Rt−1 at time t − 1 was Ct, the rat is required to move to some other hole Rt ∈ H \ {Ct}.360

(For the solution to be online, Rt must be independent of Ct+1, Ct+2, . . . , CT for all t ≥ 1.) The goal is to361

minimize the number of times the rat moves, that is |{t ∈ [T] : Rt ̸= Rt−1}|.362

The claimed algorithm B for Paging will work by reducing a given instance µ on a set H of N holes to363

an instance σ of One-of-(k/2) Paging, simulating A on σ, and converting its solution to a solution for µ.364

This instance σ uses just two pages, p0 and p1. To describe the reduction, we need a few more definitions365

and observations.366

For two disjoint sets S0, S1 ⊆ [k], by Q(S0, S1) we denote the cache configuration that assigns p0 to slots367

in S0 and p1 to slots in S1, with the remaining slots empty. A configuration Q(S0, S1) is called balanced368

if |S0| = |S1| = k/2. (This obviously implies that S0 = S1, where S0 = [k] \ S0.) The following easy369

observation will be useful:370

Observation 3.3. Let S ⊆ [k] with |S| = k/2. Any request ⟨p0, S⟩ is satisfied by every balanced configura-371

tion except Q(S, S), and any request ⟨p1, S⟩ is satisfied by every balanced configuration except Q(S, S).372

For any set C of cache configurations, a forcing sequence for C is a request sequence such that the cache373

configurations that satisfy all requests in this sequence without cost are exactly those in C.374

Claim 3.4. Let C be a set of balanced cache configuration such that any two configuration in C are at375

distance at least 3. Then there is a request sequence ψ(C) that is forcing for C.376

To verify the claim, take ψ(C) to be the sequence formed by (any ordering of) all those allowed requests377

that are satisfied by all configurations in C. Specifically, ψ(C) consists of all requests ⟨pi, S⟩ such that378

i ∈ {0, 1} and |S| = k/2, with S ∩ Si ̸= ∅ for all Q(S0, S1) ∈ C. By definition, each configuration in C379

satisfies all requests in ψ(C).380

It remains to show that for any configuration Q(S′
0, S

′
1) /∈ C there is a request in ψ(C) not satisfied381

by Q(S′
0, S

′
1). In the case that Q(S′

0, S
′
1) is balanced, we can take this request to be ⟨p1, S′

0⟩, because, by382

Observation 3.3, it is included in ψ(C) but it is not satisfied by Q(S′
0, S

′
1).383

Next consider the case that Q(S′
0, S

′
1) is not balanced. Assume without loss of generality that |S′

0| > k/2.384

Let B0 and B′
0 be any two size-k/2 subsets of S′

0 such that |B0 \ B′
0| = |B′

0 \ B0| = 1. Then Q(B0, B0)385

and Q(B′
0, B

′
0) are at Hamming distance 2 so both cannot be in C. Assume without loss of generality386

that Q(B0, B0) is not in C. Then request ⟨p1, B0⟩ is satisfied by every configuration in C because, by387

Observation 3.3, the only balanced configuration that doesn’t satisfy this request is Q(B0, B0), which is388

not in C. So ⟨p1, B0⟩ is in ψ(C). On the other hand, since B0 ⊆ S′
0, request ⟨p1, B0⟩ is not satisfied by389

Q(S′
0, S

′
1). This proves Claim 3.4.390

We now describe how Algorithm B computes its solution R = (R1, . . . , RT) for a given request se-391

quence µ. To streamline presentation, we present it first as an offline algorithm. At the beginning B chooses392

any collection C of N balanced configurations such that the Hamming distance between every two distinct393

configurations in C is at least k/16. Such a collection C can be constructed using a greedy method, as394

in [12]. (Here we only need existence, which can be also established by a probabilistic proof: if one forms C395

10

<latexit sha1_base64="fGIBy3mllBGrjRB468eKtUrO9qI=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFt24bME+oB1KJs20sZkHSUYoQ7/AjQtF3OofuRF/wy8wbRVU9MCFwzn3cs+9XsyZVAi9GQuLS8srq5k1c31jc2s7u7PblFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1vdD71W9dUSBaFl2ocUzfAg5D5jGClpfpZL5tDFnIKTjkPkWXnS/liQROnhIr5MrQtNEPu9L0SP7+alVov+9LtRyQJaKgIx1J2bBQrN8VCMcLpxOwmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+SU3ZWGcKBqS+SI/4VBFcHo17DNBieJjTTARTGeFZIgFJkr/xtRP+LoU/k+ajmUfW3bdzlVPwBwZsA8OwBGwQRFUwQWogQYggIIbcAfujSvj1ngwHuetC8bnzB74AePpA+C5kK0=</latexit>

B

<latexit sha1_base64="VYNFX7FDNhCPRFGSQGru1wWjThE=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsVty4bME+oB1KJs20sZkHSUYoQ7/AjQtF3OofuRF/wy8wbRVU9MCFwzn3cs+9XsyZVAi9GQuLS8srq5k1c31jc2s7u7PblFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1vdD71W9dUSBaFl2ocUzfAg5D5jGClpfpZL5tDFnIKTjkPkWXnS/liQROnhIr5MrQtNEPu9L0SP7+alVov+9LtRyQJaKgIx1J2bBQrN8VCMcLpxOwmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+SU3ZWGcKBqS+SI/4VBFcHo17DNBieJjTTARTGeFZIgFJkr/xtRP+LoU/k+ajmUfW3bdzlVPwBwZsA8OwBGwQRFUwQWogQYggIIbcAfujSvj1ngwHuetC8bnzB74AePpA981kKw=</latexit>

A

<latexit sha1_base64="lu7Pi15qpMO0asJYsSW8gcsl5wA=">AAAB6HicdVDLSsNAFJ34rPFVdelmsAiuQpIW24LFQjcuW7APaEOZTCft2MkkzEyEEvoFblwo4lb/yI34G36B01ZBRQ9cOJxzL/fc68eMSmXbb8bS8srq2npmw9zc2t7Zze7tt2SUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj2szv31NhKQRv1STmHghGnIaUIyUlhq1fjZnW7ZbcMt5aFtOvpQvFjRxS3YxX4aOZc+RO3+vxM+vZqXez770BhFOQsIVZkjKrmPHykuRUBQzMjV7iSQxwmM0JF1NOQqJ9NJ50Ck81soABpHQxRWcq98nUhRKOQl93RkiNZK/vZn4l9dNVFDyUsrjRBGOF4uChEEVwdnVcEAFwYpNNEFYUJ0V4hESCCv9G1M/4etS+D9puZZzajkNJ1c9AwtkwCE4AifAAUVQBRegDpoAAwJuwB24N66MW+PBeFy0LhmfMwfgB4ynD+I9kK4=</latexit>

C
<latexit sha1_base64="FiogW2Udpafmkt8YEpZKkPO3vNg=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFnThsgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVlurnvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBRegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+PBkK8=</latexit>

D

<latexit sha1_base64="uLMkSjk05IFBaF7yf+61bRkzGr8=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFkRw2YJ9QDuUTJppYzMPkoxQhn6BGxeKuNU/ciP+hl9g2iqo6IELh3Pu5Z57vZgzqRB6MxYWl5ZXVjNr5vrG5tZ2dme3KaNEENogEY9E28OSchbShmKK03YsKA48Tlve6Gzqt66pkCwKL9U4pm6AByHzGcFKS/XzXjaHLOQUnHIeIsvOl/LFgiZOCRXzZWhbaIbc6Xslfn41K7Ve9qXbj0gS0FARjqXs2ChWboqFYoTTidlNJI0xGeEB7Wga4oBKN50FncBDrfShHwldoYIz9ftEigMpx4GnOwOshvK3NxX/8jqJ8ktuysI4UTQk80V+wqGK4PRq2GeCEsXHmmAimM4KyRALTJT+jamf8HUp/J80Hcs+tuy6nauegDkyYB8cgCNggyKoggtQAw1AAAU34A7cG1fGrfFgPM5bF4zPmT3wA8bTB+VFkLA=</latexit>

E

<latexit sha1_base64="jrHUZL4j01GnAqE3edHoZe20VVc=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFgRx2YJ9QDuUTJppYzMPkoxQhn6BGxeKuNU/ciP+hl9g2iqo6IELh3Pu5Z57vZgzqRB6MxYWl5ZXVjNr5vrG5tZ2dme3KaNEENogEY9E28OSchbShmKK03YsKA48Tlve6Gzqt66pkCwKL9U4pm6AByHzGcFKS/XzXjaHLOQUnHIeIsvOl/LFgiZOCRXzZWhbaIbc6Xslfn41K7Ve9qXbj0gS0FARjqXs2ChWboqFYoTTidlNJI0xGeEB7Wga4oBKN50FncBDrfShHwldoYIz9ftEigMpx4GnOwOshvK3NxX/8jqJ8ktuysI4UTQk80V+wqGK4PRq2GeCEsXHmmAimM4KyRALTJT+jamf8HUp/J80Hcs+tuy6nauegDkyYB8cgCNggyKoggtQAw1AAAU34A7cG1fGrfFgPM5bF4zPmT3wA8bTB+bJkLE=</latexit>

F
<latexit sha1_base64="8DY3TOcnuDplQfGfnuyKuY9TxA4=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFlzosgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVlurnvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBRegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+hNkLI=</latexit>

G

<latexit sha1_base64="Jc6JWSDzzNyNvm3PyFYVF00h8rM=">AAAB6HicdVDLSsNAFJ34rPFVdelmsAiuQpIW24LFgpsuW7APaEOZTCft2MkkzEyEEvoFblwo4lb/yI34G36B01ZBRQ9cOJxzL/fc68eMSmXbb8bS8srq2npmw9zc2t7Zze7tt2SUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttjy9mfvuaCEkjfqkmMfFCNOQ0oBgpLTVq/WzOtmy34Jbz0LacfClfLGjiluxivgwdy54jd/5eiZ9fzUq9n33pDSKchIQrzJCUXceOlZcioShmZGr2EklihMdoSLqachQS6aXzoFN4rJUBDCKhiys4V79PpCiUchL6ujNEaiR/ezPxL6+bqKDkpZTHiSIcLxYFCYMqgrOr4YAKghWbaIKwoDorxCMkEFb6N6Z+wtel8H/Sci3n1HIaTq56BhbIgENwBE6AA4qgCmqgDpoAAwJuwB24N66MW+PBeFy0LhmfMwfgB4ynD+nRkLM=</latexit>

H
<latexit sha1_base64="mPiXIyRiH+2l8Kt8beF9LQsaoec=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtzorgX7gHYomTTTxmYeJBmhDP0CNy4Ucat/5Eb8Db/AtFVQ0QMXDufcyz33ejFnUiH0ZiwsLi2vrGbWzPWNza3t7M5uU0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa80dnUb11TIVkUXqpxTN0AD0LmM4KVluoXvWwOWcgpOOU8RJadL+WLBU2cEirmy9C20Ay50/dK/PxqVmq97Eu3H5EkoKEiHEvZsVGs3BQLxQinE7ObSBpjMsID2tE0xAGVbjoLOoGHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5ZfclIVxomhI5ov8hEMVwenVsM8EJYqPNcFEMJ0VkiEWmCj9G1M/4etS+D9pOpZ9bNl1O1c9AXNkwD44AEfABkVQBeegBhqAAApuwB24N66MW+PBeJy3LhifM3vgB4ynD+tVkLQ=</latexit>

I
<latexit sha1_base64="KoHSTb88NVEsemy5NMcPCjWuT/o=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtyIqxbsA9qhZNJMG5t5kGSEMvQL3LhQxK3+kRvxN/wC01ZBRQ9cOJxzL/fc68WcSYXQm7GwuLS8sppZM9c3Nre2szu7TRklgtAGiXgk2h6WlLOQNhRTnLZjQXHgcdryRmdTv3VNhWRReKnGMXUDPAiZzwhWWqpf9LI5ZCGn4JTzEFl2vpQvFjRxSqiYL0PbQjPkTt8r8fOrWan1si/dfkSSgIaKcCxlx0axclMsFCOcTsxuImmMyQgPaEfTEAdUuuks6AQeaqUP/UjoChWcqd8nUhxIOQ483RlgNZS/van4l9dJlF9yUxbGiaIhmS/yEw5VBKdXwz4TlCg+1gQTwXRWSIZYYKL0b0z9hK9L4f+k6Vj2sWXX7Vz1BMyRAfvgABwBGxRBFZyDGmgAAii4AXfg3rgybo0H43HeumB8zuyBHzCePgDs2ZC1</latexit>

J

<latexit sha1_base64="XPHD8frMxHjrXwVOLX/DMKf3vPU=">AAAB7nicdVBLSgNBEO2Jvxh/URcu3DSGgIswzCeYyS7gxmUE84FkCD09PUmTng/dPUIYsvMCblwo4taTeAB3egBP4AHsJAoq+qDg8V4V9aq8hFEhDeNFyy0tr6yu5dcLG5tb2zvF3b22iFOOSQvHLOZdDwnCaERakkpGugknKPQY6Xjj05nfuSRc0Di6kJOEuCEaRjSgGEkldVDFq+CKPyiWDN2wqlbdhoZu2o5dqypiOUbNrkNTN+YoNQ7KV+9Pb6/NQfG578c4DUkkMUNC9EwjkW6GuKSYkWmhnwqSIDxGQ9JTNEIhEW42jzuFZaX4MIi5qkjCufp9IkOhEJPQU50hkiPx25uJf3m9VAaOm9EoSSWJ8GJRkDIoYzi7HfqUEyzZRBGEOVVZIR4hjrBUHyqoJ3xdCv8nbUs3T3Tz3Cw1HLBAHhyCI3AMTFADDXAGmqAFMBiDa3AL7rREu9HutYdFa077nNkHP6A9fgCct5OM</latexit>

a, b, c, d

<latexit sha1_base64="zk2TeLtmgjEv794uaULvpx1j1eM=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYymwyZfTAzK4SQztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uuddPOJMKoRcjs7C4tLySXc2trW9sbuW3dxoyTgWhdRLzWLR8LClnEa0rpjhtJYLi0Oe06Q9Ppn7zkgrJ4uhCjRLqhbgfsYARrLR0jo/8br6ATGSX7IoDkWk5rlMuaWK7qOxUoGWiGQrVveLV+9Pba62bf+70YpKGNFKEYynbFkqUN8ZCMcLpJNdJJU0wGeI+bWsa4ZBKbzyLOoFFrfRgEAtdkYIz9fvEGIdSjkJfd4ZYDeRvbyr+5bVTFbjemEVJqmhE5ouClEMVw+ndsMcEJYqPNMFEMJ0VkgEWmCj9nZx+wtel8H/SsE3r2LTOrELVBXNkwT44AIfAAmVQBaegBuqAgD64BrfgzuDGjXFvPMxbM8bnzC74AePxA1C/kkU=</latexit>

a, b
<latexit sha1_base64="87yjMVjfrxdKnC+c4b6Y1ED3IyE=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUp308gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIN5kd4=</latexit>

c
<latexit sha1_base64="Y+5c5e+/ZORtogz6rw1KQ/rxF20=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtewjmE1lwMYyAfOAZAmzs7PJmNkHM7NCWFJa2VgoYutX+B12foM2/oGTREFFD1w4nHMv99zrJYwKaRgvWm5hcWl5Jb9aWFvf2Nwqbu+0RJxyTJo4ZjHveEgQRiPSlFQy0kk4QaHHSNsbnU799iXhgsbRuRwnxA3RIKIBxUgqqeH3iyVDN6yyVbWhoZu2Y1fKiliOUbGr0NSNGUon769X+0+Nt3q/+NzzY5yGJJKYISG6ppFIN0NcUszIpNBLBUkQHqEB6SoaoZAIN5sFncBDpfgwiLmqSMKZ+n0iQ6EQ49BTnSGSQ/Hbm4p/ed1UBo6b0ShJJYnwfFGQMihjOL0a+pQTLNlYEYQ5VVkhHiKOsFS/KagnfF0K/yctSzePdbNhlmoOmCMP9sABOAImqIAaOAN10AQYEHANbsGddqHdaPfaw7w1p33O7IIf0B4/AIT9kd8=</latexit>

d

<latexit sha1_base64="zm7gi/FztiHB+hp4eoKnyMPSnPY=">AAAB+HicdVDLSsNAFJ34rPXRqAsXbgZLwUUISVtsuiu4cVnBPqANZTKdtGMnD2YmQg3d+RduXCji1o/wA9zpB/gFfoDTVkFFD1w4nHMv997jxYwKaVkv2sLi0vLKamYtu76xuZXTt3eaIko4Jg0csYi3PSQIoyFpSCoZacecoMBjpOWNjqd+64JwQaPwTI5j4gZoEFKfYiSV1NNzxPCNgTE0qHFujAzW0/OWaRXLxWoJWqZdckqVsiJFx6qUqtA2rRnytb3C1fvT22u9pz93+xFOAhJKzJAQHduKpZsiLilmZJLtJoLECI/QgHQUDVFAhJvODp/AglL60I+4qlDCmfp9IkWBEOPAU50BkkPx25uKf3mdRPqOm9IwTiQJ8XyRnzAoIzhNAfYpJ1iysSIIc6puhXiIOMJSZZVVIXx9Cv8nzaJpH5n2qZ2vOWCODNgHB+AQ2KACauAE1EEDYJCAa3AL7rRL7Ua71x7mrQva58wu+AHt8QP965Z3</latexit>

e, f, g, h, i, j, k, l

<latexit sha1_base64="W1ubFOW2FA7Kb7diLnz0PhTQAbw=">AAAB8HicdVBLSgNBEO3xG+Mv6sKFm8YQcDEM8wlmsgu4cRnBfCQZQk+nJ2nS86G7RwhDdt7AjQtF3HoQD+BOD+AJPICdREFFHxQ83quiXpWfMCqkab5oC4tLyyurubX8+sbm1nZhZ7cp4pRj0sAxi3nbR4IwGpGGpJKRdsIJCn1GWv7oZOq3LgkXNI7O5TghXogGEQ0oRlJJF0QP9IE+1GmvUDQN0y7bVQeahuW4TqWsiO2aFacKLcOcoVjbL129P7291nuF524/xmlIIokZEqJjmYn0MsQlxYxM8t1UkAThERqQjqIRConwslngCSwppQ+DmKuKJJyp3ycyFAoxDn3VGSI5FL+9qfiX10ll4HoZjZJUkgjPFwUpgzKG0+thn3KCJRsrgjCnKivEQ8QRlupHefWEr0vh/6RpG9axYZ1ZxZoL5siBA3AIjoAFKqAGTkEdNAAGIbgGt+BO49qNdq89zFsXtM+ZPfAD2uMH5VSURQ==</latexit>

e, f, g, h, i

<latexit sha1_base64="Jc6k9Uf0A8pbvOWvg/ZqPxALGYo=">AAAB7HicdVC7SgNBFJ2NrxhfUQsLm8EQsAjLPoJJuoCNZQQ3CSQhzE5mkyGzs8vMrBCWdPY2ForY+il+gJ1+gF/gBzhJFFT0wIXDOfdyz71+zKhUlvViZJaWV1bXsuu5jc2t7Z387l5TRonAxMMRi0TbR5IwyomnqGKkHQuCQp+Rlj8+nfmtSyIkjfiFmsSkF6IhpwHFSGnJI6WgNOznC5ZpOWWn5kLLtN2qWylr4lStiluDtmnNUagfFK/en95eG/38c3cQ4SQkXGGGpOzYVqx6KRKKYkamuW4iSYzwGA1JR1OOQiJ76TzsFBa1MoBBJHRxBefq94kUhVJOQl93hkiN5G9vJv7ldRIVVHsp5XGiCMeLRUHCoIrg7HI4oIJgxSaaICyozgrxCAmElf5PTj/h61L4P2k6pn1i2ud2oV4FC2TBITgCx8AGFVAHZ6ABPIABBdfgFtwZ3Lgx7o2HRWvG+JzZBz9gPH4Ah66S9A==</latexit>

e, f, g
<latexit sha1_base64="4xnMGO6O6w99x7wWyDwcj+TZ7so=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYySYbMPpiZFcKSztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uudePOZMKoRcjs7C4tLySXc2trW9sbuW3dxoySgShdRLxSLR8LClnIa0rpjhtxYLiwOe06Y9Opn7zkgrJovBCjWPqBXgQsj4jWGnpfHjEuvkCMpFdsisORKbluE65pIntorJTgZaJZihU94pX709vr7Vu/rnTi0gS0FARjqVsWyhWXoqFYoTTSa6TSBpjMsID2tY0xAGVXjqLOoFFrfRgPxK6QgVn6veJFAdSjgNfdwZYDeVvbyr+5bUT1Xe9lIVxomhI5ov6CYcqgtO7YY8JShQfa4KJYDorJEMsMFH6Ozn9hK9L4f+kYZvWsWmdWYWqC+bIgn1wAA6BBcqgCk5BDdQBAQNwDW7BncGNG+PeeJi3ZozPmV3wA8bjB2YFklM=</latexit>

h, i

<latexit sha1_base64="LAAEBsvzKZJNHGsYy1cn5jdEZNk=">AAAB7HicdVC7SgNBFJ31GeMramFhMxgCFmGZ3Q0m6QI2lhHcJJCEMDuZJGNmZ5eZWSGEdPY2ForY+il+gJ1+gF/gBzhJFFT0wIXDOfdyz71BzJnSCL1YC4tLyyurqbX0+sbm1nZmZ7emokQS6pOIR7IRYEU5E9TXTHPaiCXFYcBpPRieTP36JZWKReJcj2LaDnFfsB4jWBvJv8gP87yTySIbuQW37EFkO17JKxYMcUuo6JWhY6MZspX93NX709trtZN5bnUjkoRUaMKxUk0Hxbo9xlIzwukk3UoUjTEZ4j5tGipwSFV7PAs7gTmjdGEvkqaEhjP1+8QYh0qNwsB0hlgP1G9vKv7lNRPdK7XHTMSJpoLMF/USDnUEp5fDLpOUaD4yBBPJTFZIBlhios1/0uYJX5fC/0nNtZ1j2zlzspUSmCMFDsAhOAIOKIIKOAVV4AMCGLgGt+DOEtaNdW89zFsXrM+ZPfAD1uMHnoiTAw==</latexit>

j, k, l

<latexit sha1_base64="qZZJ5OzNgG+HaF4Bd92B4IoAxAQ=">AAAB6nicdVC7SgNBFJ31GeMramFhMxgCFrLsI5hNF7CxjGgekCxhdjJJxszOLjOzQljS2dpYKGLrt/gBdvoBfoEf4CRRUNEDFw7n3Ms99wYxo1JZ1osxN7+wuLScWcmurq1vbOa2tusySgQmNRyxSDQDJAmjnNQUVYw0Y0FQGDDSCIbHE79xSYSkET9Xo5j4Iepz2qMYKS2dXRwOO7m8ZVpO0Sm70DJt13NLRU0czyq5ZWib1hT5ym7h6v3p7bXayT23uxFOQsIVZkjKlm3Fyk+RUBQzMs62E0lihIeoT1qachQS6afTqGNY0EoX9iKhiys4Vb9PpCiUchQGujNEaiB/exPxL6+VqJ7np5THiSIczxb1EgZVBCd3wy4VBCs20gRhQXVWiAdIIKz0d7L6CV+Xwv9J3THtI9M+tfMVD8yQAXtgHxwAG5RABZyAKqgBDPrgGtyCO4MZN8a98TBrnTM+Z3bADxiPH2wZklc=</latexit>

j, k
<latexit sha1_base64="TnVwi3ECJnBlPpxbMdCe6mvf2iA=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUp338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AJEdkec=</latexit>

l

<latexit sha1_base64="lTlDgkpoO/BBW1xKTnc5BVkWPLU=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsJBldjeYTRewsYxoHpAsYXYymwyZfTAzK4SQztbGQhFbv8UPsNMP8Av8ACeJgooeuHA4517uuddPOJMKoRcjs7C4tLySXc2trW9sbuW3dxoyTgWhdRLzWLR8LClnEa0rpjhtJYLi0Oe06Q9Ppn7zkgrJ4uhCjRLqhbgfsYARrLR0To+Cbr6ATGSX7IoDkWk5rlMuaWK7qOxUoGWiGQrVveLV+9Pba62bf+70YpKGNFKEYynbFkqUN8ZCMcLpJNdJJU0wGeI+bWsa4ZBKbzyLOoFFrfRgEAtdkYIz9fvEGIdSjkJfd4ZYDeRvbyr+5bVTFbjemEVJqmhE5ouClEMVw+ndsMcEJYqPNMFEMJ0VkgEWmCj9nZx+wtel8H/SsE3r2LTOrELVBXNkwT44AIfAAmVQBaegBuqAgD64BrfgzuDGjXFvPMxbM8bnzC74AePxA1znkk0=</latexit>

e, f
<latexit sha1_base64="AmKrzOFq/S+JY7fp3nskgeEzM7s=">AAAB6HicdVC7SgNBFJ2NrxhfUQsLm8EQsFpms8FsuoCNZQLmAckSZiezyZjZBzOzQljS2dlYKGLrx/gBdvoBfoEf4CRRUNEDFw7n3Ms993oxZ1Ih9GJklpZXVtey67mNza3tnfzuXktGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vfHpzG9fUiFZFJ6rSUzdAA9D5jOClZYaw36+gExUKpeqNkSmZTt2paxJyUEVuwotE81RqB0Ur96f3l7r/fxzbxCRJKChIhxL2bVQrNwUC8UIp9NcL5E0xmSMh7SraYgDKt10HnQKi1oZQD8SukIF5+r3iRQHUk4CT3cGWI3kb28m/uV1E+U7bsrCOFE0JItFfsKhiuDsajhgghLFJ5pgIpjOCskIC0yU/k1OP+HrUvg/aZVM68S0Glah5oAFsuAQHIFjYIEKqIEzUAdNQAAF1+AW3BkXxo1xbzwsWjPG58w++AHj8QM32JGp</latexit>

g

<latexit sha1_base64="Mvk5aWTvEJdIbIQDn2kG+V+VYHc=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFtwIblqwD2iHkkkzbWzmQZIRytAvcONCEbf6R27E3/ALTFsFFT1w4XDOvdxzrxdzJhVCb8bC4tLyympmzVzf2Nzazu7sNmWUCEIbJOKRaHtYUs5C2lBMcdqOBcWBx2nLG51N/dY1FZJF4aUax9QN8CBkPiNYaal+0cvmkIWcglPOQ2TZ+VK+WNDEKaFivgxtC82QO32vxM+vZqXWy750+xFJAhoqwrGUHRvFyk2xUIxwOjG7iaQxJiM8oB1NQxxQ6aazoBN4qJU+9COhK1Rwpn6fSHEg5TjwdGeA1VD+9qbiX14nUX7JTVkYJ4qGZL7ITzhUEZxeDftMUKL4WBNMBNNZIRligYnSvzH1E74uhf+TpmPZx5Zdt3PVEzBHBuyDA3AEbFAEVXAOaqABCKDgBtyBe+PKuDUejMd564LxObMHfsB4+gDuXZC2</latexit>

K

<latexit sha1_base64="ZQC4wMIsGvuA/FfsLdeWKDvEjek=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFty4cNGCfUA7lEyaaWMzD5KMUIZ+gRsXirjVP3Ij/oZfYNoqqOiBC4dz7uWee72YM6kQejMWFpeWV1Yza+b6xubWdnZntymjRBDaIBGPRNvDknIW0oZiitN2LCgOPE5b3uhs6reuqZAsCi/VOKZugAch8xnBSkv1i142hyzkFJxyHiLLzpfyxYImTgkV82VoW2iG3Ol7JX5+NSu1Xval249IEtBQEY6l7NgoVm6KhWKE04nZTSSNMRnhAe1oGuKASjedBZ3AQ630oR8JXaGCM/X7RIoDKceBpzsDrIbytzcV//I6ifJLbsrCOFE0JPNFfsKhiuD0athnghLFx5pgIpjOCskQC0yU/o2pn/B1KfyfNB3LPrbsup2rnoA5MmAfHIAjYIMiqIJzUAMNQAAFN+AO3BtXxq3xYDzOWxeMz5k98APG0wfv4ZC3</latexit>

L
<latexit sha1_base64="21NtPofHGgsygD1wp/ckY+ZfjVk=">AAAB6HicdVDLSgMxFM34rOOr6tJNsAiuhsy02BYsFty4EVqwD2iHkkkzbWzmQZIRytAvcONCEbf6R27E3/ALTFsFFT1w4XDOvdxzrxdzJhVCb8bC4tLyympmzVzf2Nzazu7sNmWUCEIbJOKRaHtYUs5C2lBMcdqOBcWBx2nLG51N/dY1FZJF4aUax9QN8CBkPiNYaal+0cvmkIWcglPOQ2TZ+VK+WNDEKaFivgxtC82QO32vxM+vZqXWy750+xFJAhoqwrGUHRvFyk2xUIxwOjG7iaQxJiM8oB1NQxxQ6aazoBN4qJU+9COhK1Rwpn6fSHEg5TjwdGeA1VD+9qbiX14nUX7JTVkYJ4qGZL7ITzhUEZxeDftMUKL4WBNMBNNZIRligYnSvzH1E74uhf+TpmPZx5Zdt3PVEzBHBuyDA3AEbFAEVXAOaqABCKDgBtyBe+PKuDUejMd564LxObMHfsB4+gDxZZC4</latexit>

M

Figure 3: An example of a laminar family P of height 4.

by randomly and uniformly sampling N times with replacement from the balanced configurations, then by396

a standard Chernoff bound and the naïve union bound C has the required property with positive probability.)397

Algorithm B letsH = C, identifying holes with cache configurations. Then, for each time t ∈ [T], it replaces398

the requestCt in µ by ψ(C\{Ct})k, that is, k repetitions of the forcing sequence for C\{Ct}. (This sequence399

exists if k is large enough, by Claim 3.4 and the choice of C.) This will produce sequence σ, an instance400

of One-of-m Paging. Next, B simulates A on σ. Given a solution D for σ produced by A, algorithm B401

produces a solution R for µ as follows: For each t ∈ [T], as D responds to ψ(C \{Ct})k, it either incurs cost402

at least k, or uses at least one configuration P ∈ C \ {Ct}. Assume without loss of generality that only the403

latter case occurs (otherwise modify D to move into any configuration in C \ {Ct} at the end of its response404

to ψ(C \ {Ct})k; these modifications at most double D’s cost), and let Rt = P . The produced sequence405

R = (R1, . . . , RT) is a valid solution to µ, because Rt ∈ C \ {Ct} for t ∈ [T].406

To complete the description of B, it remains to observe that R can be indeed produced in an online407

fashion, since Rt does not depend on any future requests in µ. If A is deterministic then so is B.408

Claim 3.5. opt(σ) ≤ k opt(µ).409

To prove this claim, given an optimal solution (R∗
1, . . . , R

∗
T) for µ = (R0, C1, . . . , CT), consider the410

corresponding solution D∗ for σ that starts in configuration R∗
0 = R0, then, for each t ∈ [T], responds to411

ψ(C \ {Ct})k by having its cache in configuration R∗
t ∈ C \ {Ct} for all requests in ψ(C \ Ct)

k. For each412

t ∈ [T], its response to ψ(C \ {Ct})k costs D∗ 0 if R∗
t−1 = R∗

t (the rat didn’t move) and otherwise at most413

k (to transition the cache from R∗
t−1 to R∗

t). This proves Claim 3.5.414

Claim 3.6. Algorithm B is O(f(k))-competitive.415

Since A is a f(k)-competitive, cost(D) ≤ f(k)opt(σ) + O(1). Whenever the rat moves (i.e., Rt−1 ̸=416

Rt), by the definition of B, the Hamming distance betweenRt−1 andRt is Ω(k), soD paid Ω(k) to transition417

from Rt−1 to Rt (possibly in multiple steps). Using Claim 3.5, we obtain that cost(R) = O(cost(D)/k) =418

O(f(k)opt(σ)/k) = O(f(k)opt(µ)). That is, R is an O(f(k))-competitive solution for µ. This proves419

Claim 3.6, completing the proof of the lemma.420

4 Upper Bounds for Page-Laminar Paging421

Recall that Page-Laminar Paging generalizes Paging by allowing each request to be a set P of pages. The422

request P is satisfiable by having any page p ∈ P in the cache. We require P ∈ P , whereP is a pre-specified423

laminar collection of sets of pages, whose height we denote by h. (See the example in Figure 3.) To our424

knowledge, this problem has not been yet studied in the literature. In particular, we do not know whether the425

optimum solution can be computed in polynomial time.426

11

Theorem 4.1. Page-Laminar Paging admits the following polynomial-time algorithms: an hk-competitive427

deterministic online algorithm, an hHk-competitive randomized online algorithm, and an offline h-approximation428

algorithm.429

The proof is by reduction to standard Paging. Known polynomial-time algorithms for standard Paging430

include an optimal offline algorithm [10], a deterministic k-competitive online algorithm [46] and a ran-431

domized Hk-competitive online algorithm [1]. Theorem 4.1 follows directly from composing these known432

results with the following lemma.433

Lemma 4.1. Every f(k)-approximation algorithm A for Paging can be converted into an hf(k)-approximation434

algorithm B for Page-Laminar Paging, preserving the following properties: being polynomial-time, online,435

and/or deterministic.436

Proof. Let A be any (possibly online, possibly randomized) f(k)-approximation algorithm for Paging. Let437

Page-Laminar Paging instance π be the input to algorithm B. For any time step t and set P ∈ P , let ct(P)438

denote the child of P whose subtree contains π’s most recent request to a proper descendant of P . This is439

the child c of P such that Pt′ ⊆ c, where t′ = max{i ≤ t : Pi ⊂ P}. If there is no such request (t′ is440

undefined or P is a leaf), then define ct(P) = P . Define pt(P) inductively via pt(P) = pt(ct(P)) when441

ct(P) ̸= P , and otherwise pt(P) is an arbitrary (but fixed) page in P . Call ct(P) and pt(P) the preferred442

child and preferred page of P at time t. At any time, P ’s preferred page can be found by starting at P and443

tracing the path down through preferred children.444

Define a Paging instance σ from the given instance π by replacing each request Pt in π by its preferred445

page pt(Pt) (so σt = pt(Pt)). Algorithm B just simulates Paging algorithm A on input σ, and maintains446

its cache exactly as A does. (Note that σ can be computed online, deterministically, in polynomial time.)447

Algorithm B is correct because any solution to σ is also a solution to π (because σt = pt(Pt) ∈ Pt). And448

cost(B(π)) = cost(A(σ)). To finish proving the lemma, we show opt(σ) ≤ h opt(π).449

For any requested set P , define a P -phase of π to be a maximal contiguous interval [i, j] ⊆ [1, T] such450

that πt ̸⊂ P for t ∈ [i + 1, j]. The P -phases for a given P partition [1, T]. Each P -phase [i, j] (except451

possibly the first, with i = 1) starts with a request to a proper descendant of P , but there are no such requests452

during [i + 1, j]. It follows that ci(P) and pi(P) remain the preferred child and page of P throughout the453

phase, that the preferred child ci(P) of P also has the same preferred page pi(P) throughout the phase,454

and that P -phase [i, j] is contained in some ci(P)-phase. By definition of σ, each request to P in the given455

instance π in interval [i, j] is replaced in σ by a request to P ’s preferred page, pi(P).456

Example. Consider the laminar family P in Figure 3. Consider also a request sequence π whose requests457

π61, π62, . . . , π79 are shown in the table below:458

time step: . . . 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 . . .
sequence π: . . . A B H E C K A I D E M B H A D E G A F . . .
E-phases: . . . – – H – – K – I – – M – H – – – G – F . . .
F -phases: . . . – – H – – – – I – – M – H – – – – – – . . .
sequence σ: . . . a a e e c l c h d h g a g a d g l d g . . .

459

The third row in the table shows E-phases, marking the beginning of each phase with the request at that step.460

The fourth row shows F -phases. Assume that at time 61 the preferred page of each set in P is the leftmost461

page in the leftmost leaf of its subtree. For example, p61(E) = e. Then the fifth row shows the sequence of462

preferred pages that forms the resulting sequence σ.463

To prove that opt(σ) ≤ h opt(π), we will start with an optimal solution for π and convert it into a464

solution of σ while increasing the cost at most by a factor of h. So let C = (C1, . . . , CT) be an optimal465

solution for π. The conversion ofC into a solution for σ is given in Figure 4, and is described as an algorithm466

12

1. Initialize the current instance π′ and current solution C ′ to the given instance π and its solution C.
2. Incrementally modify π′ and C ′ by repairing each phase, as follows.
3. While there is an unrepaired phase, choose any unrepaired P -phase [i, j] such that all proper descen-
dants of P have already been repaired, then repair the chosen phase as follows:

3.1. Modify the current instance π′ by replacing each request to P during [i, j] in π′ by a request to P ’s
preferred page p = pi(P). (So, after all phases are repaired, the current instance π′ will equal σ.)

3.2. Modify the current solution C ′ during [i, j] accordingly, to ensure that C ′ continues to satisfy π′. To
do that, we will establish a stronger property throughout [i, j], namely: whenever C ′ has at least one
page in P cached, C ′ has p cached.

Say that time t ∈ [i, j] needs repair if, at time t, C ′ caches at least one page in P , but not p. For
t ← i, i + 1, . . . , j, if time t needs repair, modify what C ′ caches at time t by replacing one of its
currently cached pages qt ∈ P by p, where qt is defined greedily as follows

qt =

{
qt−1 if qt−1 is defined and still cached at time t
any page in P cached at time t otherwise.

This completes the repair of this P -phase [i, j]. The algorithm terminates after it has repaired all phases.

Figure 4: The algorithm that transforms (π,C) into (σ,C ′), by repairing each phase.

that incrementally modifies, or “repairs”, both C and π, phase by phase. It maintains the invariant that the467

current solution, denoted C ′, is always correct for the current instance, denoted π′. (In π′, some requests will468

be to a page, rather than a set. Any such request is satisfied only by having the requested page in the cache.)469

At the end the modified instance π′ will equal σ, so that the modified solution C ′ will be a correct solution470

for σ.471

Specifically, we will show the following claim (whose proof we postpone):472

Claim 4.2. The repair algorithm maintains the invariant that the current solutionC ′ is correct for the current473

instance π′, so at termination C ′ is a correct solution for σ.474

Next we bound the cost, as follows. Call a phase costly if its repair increases the cost of C ′, and free475

otherwise. We show that the number of costly phases is at most (h− 1)cost(C), and that the repair of each476

phase increases the cost of C ′ by at most 1. This implies that the final cost of C ′ is at most cost(C) +477

(h− 1)cost(C) = h cost(C), as desired. Specifically, we will show the following claims (whose proofs we478

postpone):479

Claim 4.3. For any requested set P , the repair of any P -phase [i, j] increases the cost of C ′ by at most 1,480

and only if j ̸= T .481

Claim 4.4. For any non-leaf set P , the number of costly P -phases is at most the cost paid by C for pages in482

P (that is, the number of retrievals of pages in P by C).483

By the definition of P -phases, each leaf set P has only one P -phase [1, T], so by Claim 4.3 only non-leaf484

sets have costly phases. Each page p is in at most h − 1 non-leaf sets P , so Claim 4.4 implies that the total485

number of costly phases is at most (h − 1)cost(C). This and Claim 4.3 imply that the final cost of C ′ is at486

most h cost(C) = h opt(π), proving Lemma 4.1.487

It remains only to prove the three claims.488

13

Proof of Claim 4.2. The invariant holds initially when C ′ = C and π′ = π, just because by definition C is489

an (optimal) solution for π. Suppose the invariant holds just before the repair of some P -phase [i, j]. We490

will show that it continues to hold after. The repair modifies π′ by replacing each request to P during [i, j]491

by a request to its preferred page p = pi(P).492

Consider any time t ∈ [i, j]. First consider the case that (before the repair) π′ requested P at time t.493

In this case, C ′ cached some page in P , so (by Step 3.2 of the repair algorithm) after the repair C ′ has the494

preferred page p cached, and thus C ′ satisfies the modified request (for p).495

The other case is when π′ requested page at time t is not P . Then the repair doesn’t modify the request496

in π′ at time t. In this case, either the repair doesn’t modify the cache at time t (in which case C ′ continues497

to satisfy π′), or the repair replaces some page qt in the cache by p. If that happens, the page qt is also in498

P . Also, the request in π at time t cannot be to a proper descendant of P (by definition of P -phase), so the499

request in π′ at time t is either to an ancestor of P , a set disjoint from P , or an already repaired page not in500

P . (We use here that no proper ancestors of P have yet had their phases repaired.) In all three cases, after501

swapping p for qt (with p, qt ∈ P), the request must still be satisfied. So the invariant holds after the repair.502

At termination the invariant holds so C ′ is correct for σ.503

Proof of Claim 4.3. Consider the repair of any P -phase [i, j] for any requested set P . This repair modifies504

the cache only at times in [i, j]. Recall that the cost of C ′ at time t is the number of retrievals at time t, where505

a retrieval is a page that C ′ caches at time t but not at time t− 1.506

At each time t ∈ [i, j] that needed repair (as defined in Step 3.2 of the algorithm), the repair of the phase507

replaced some page qt in the cache at time t by the preferred page p = pi(P). This can increase the cost508

only at times in [i, j + 1], and by at most 1 at each such time.509

We claim the cost cannot increase at time i. Indeed, in the case that i = 1, the cost at time i equals the510

number of pages cached at time i, which a repair at time 1 doesn’t change. In the case that i > 1, at time i no511

repair is done, because π requests a proper descendant d of P , and the d-phase containing [i, j] has already512

been repaired, so π′ requests pi(d) at time i, and now our invariant implies that C ′ already caches pi(d) at513

time i. But by definition pi(P) = pi(d), so C ′ already caches P ’s preferred page p at time i. Thus the cost514

cannot increase at time i.515

Next, consider any time t ∈ [i + 1, j]. To prove the claim, we show that the repair didn’t increase the516

cost at time t. The repair can introduce up to two new retrievals at time t: a new retrieval of p, and/or a new517

retrieval of qt−1. We show that, for each retrieval that the repair introduced, it removed another one.518

Suppose it introduced a new retrieval of p at time t. That is, it replaced qt by p in the cache at time t and519

(after modification) C ′ doesn’t cache p at time t − 1. The latter property (by inspection of Step 3.2 of the520

algorithm) implies that C ′ caches no pages in P at time t − 1 (before or after modification). It follows that521

the repair removed one retrieval of qt at time t.522

Now suppose the repair introduced a new retrieval of qt−1 at time t. That is, it removed qt−1 from the523

cache at time t − 1 (replacing it by p) and (after modification) C ′ caches qt−1 at time t. The latter property524

implies that time t did not need repair (because if it did the repair would have taken qt = qt−1). So C ′ cached525

p at time t (before and after modification). Thus the repair removed a retrieval of p at time t.526

Overall, for each retrieval introduced at times in [i, j], another was removed, and therefore the cost at527

times in [i, j] didn’t increase. The cost increase at time j+1, if any, can only be caused by the repair at time528

t = j that replaced qj by p, so this increase is at most 1. This completes the proof of the claim.529

Proof of Claim 4.4. Fix any non-leaf set P . First consider the repair of any P -phase [i, j] with i > 1. Let530

c = ci(P) ̸= P and p = pi(P) = pi(c) be the preferred child and page throughout the phase. When the531

repair starts, the c-phase containing [i, j] has already been repaired. By inspection, that repair established532

the following property of C ′ throughout [i, j]: whenever C ′ has at least one page in c cached, C ′ has c’s533

preferred page p cached. None of the ancestors of c (including P) have had their phases repaired since then,534

so this property still holds just before the repair of P .535

14

Since i > 1, the definition of P -phases implies that at time i the instance π requests a descendant of c,536

so C caches at least one page p′ in c. Suppose that C doesn’t evict p′ during [i + 1, j]. Then, at every time537

during [i, j], C caches at least one page in c. Each repair for c or a descendant of c preserves this property538

(because such a repair only replaces cached pages in c by other pages in c). Throughout [i, j], then, C ′ also539

caches at least one page in c and, by the previous paragraph, must cache P ’s preferred page p. (Recall that P540

and c have the same preferred page throughout [i, j].) In this case, by inspection of the algorithm the repair541

of this P -phase does not change C ′, and the phase is not costly. We conclude that, for the phase to be costly,542

C must evict p′ during [i+ 1, j].543

Note that p′ ∈ c ⊂ P . Also, by Claim 4.3, this is not the final P -phase (that is, j < T). It follows that544

the number of costly P -phases [i, j] with i > 1 is at most the number of evictions of pages in P by C, before545

the final P -phase (with j = T).546

Regarding the P -phase [i, j] with i = 1, if it is costly, then j < T and, by the reasoning in the paragraph547

before last, in the final P -phase, there is a page p′ in P that C either evicts or leaves in the cache at time T .548

By the above reasoning, the number of costly P -phases is at most the number of evictions by C of pages549

in P , plus the number of pages left cached by C at time T . This sum is the number of retrievals of pages in550

P by C, proving Claim 4.4.551

As explained earlier, Claims 4.2, 4.3 and 4.4 imply the lemma, thus the proof is now complete.552

5 Slot-Laminar Paging553

In this section we prove upper bounds for Slot-Laminar Paging given in Table 1. Recall that in Slot-Laminar554

Paging the family S is assumed to be a laminar family of slot sets whose height we denote by h. Theorem 5.1555

bounds the optimal ratios by 3h2k (deterministic), 3h2Hk (randomized) and 3h2 (offline polynomial-time556

approximation). The proof of Theorem 5.1 (Section 5.1) is by a reduction of Slot-Laminar Paging to Page-557

Laminar Paging, studied in Section 4. Theorem 5.2, presented in Section 5.2, tightens the deterministic558

upper bound to 2hk.559

5.1 Upper bounds for randomized and offline Slot-Laminar Paging560

Theorem 5.1. Slot-Laminar Paging admits the following polynomial-time algorithms: a deterministic 3h2k-561

competitive online algorithm, a randomized 3h2Hk-competitive online algorithm, and an offline 3h2-approximation562

algorithm.563

Our focus here is on uniform treatment of the three variants of Slot-Laminar Paging in the above theorem.564

The ratios in this theorem have not been optimized. For example, in Section 5.2 we give a better deterministic565

algorithm. For the special case when h = 2 the problem can be reduced to All-or-One Paging, for which the566

ratio can be improved even further [22].567

The proof of Theorem 5.1 is by a reduction of Slot-Laminar Paging to Page-Laminar Paging, in Lemma 5.1.568

The reduction uses a relaxation of Slot-Laminar Paging that relaxes the constraint that each slot hold at most569

one page (but still enforces the cache-capacity constraint), yielding an instance of Page-Laminar Paging.570

The reduction simulates the given Page-Laminar Paging algorithm on multiple instances of Page-Laminar571

Paging— one for each set S ∈ S, obtained by relaxing the subsequence that contains just those requests con-572

tained in S — then aggregates the resulting Page-Laminar Paging solutions to obtain the global Slot-Laminar573

Paging solution. Lemma 5.1 and Theorem 4.1 (for Page-Laminar Paging) immediately imply Theorem 5.1.574

Lemma 5.1. Every fh(k)-approximation algorithm A for Page-Laminar Paging can be converted into a575

3hfh(k)-approximation algorithm B for Slot-Laminar Paging, preserving the following properties: being576

polynomial-time, online, and/or deterministic.577

15

Proof. We first define the Page-Laminar Paging relaxation of a given Slot-Laminar Paging instance. The578

idea is to relax the constraint that each slot can hold at most one page, while keeping the cache-capacity579

constraint. The relaxed problem is equivalent to a Page-Laminar Paging instance over “virtual” pages v(p, s)580

corresponding to page/slot pairs (p, s). This virtual page can be placed in any slot, although it represents581

page p being in slot s.582

Formally, this relaxation is defined as follows. Fix any k-slot Slot-Heterogenous Paging instance σ =583

(σ1, . . . , σT) with requestable slot-set family S. For any page p and S ∈ S, define V (p, S) = {v(p, s) : s ∈584

S}, where v(p, s) is a virtual page for the pair (p, s). Define the relaxation of σ to be the k-slot Page-Subset585

Paging instance π = (P1, . . . , PT) defined by Pt = V (pt, St) (where σt = ⟨pt, St⟩, for t ∈ [T]). The586

requestable-set family for π is P =
{
V (p, S) : p is any page and S ∈ S

}
. Crucially, if S is slot-laminar587

with height h, then P is page-laminar with the same height h.588

Instance π is a relaxation of σ in the sense that for any solution C for σ there is a solution D for π with589

cost(D) ≤ cost(C). (Namely, have D keep in its cache the virtual pages v(p, s) such that C has page p590

cached in slot s.) It follows that opt(π) ≤ opt(σ).591

Next we define the algorithm B. Fix an fh(k)-approximation algorithm A for Page-Laminar Paging. Fix592

the input σ with σt = ⟨pt, St⟩ (for t ∈ [T]) to Slot-Laminar Paging algorithm B. We assume for ease of593

presentation that Algorithm A is an online algorithm, and present Algorithm B as an online algorithm. If A594

is not online, B can easily be executed as an offline algorithm instead.595

Assume that the family S has just one rootRwith |R| ≤ k. (This is without loss of generality, as multiple596

roots, being disjoint, naturally decouple any Slot-Laminar Paging instance into independent problems, one597

for each root.)598

For each S ∈ S , define S’s Slot-Laminar Paging subinstance σS to be obtained from σ by deleting all599

requests that are not subsets of S. Let πS denote the (Page-Laminar Paging) relaxation of σS . Algorithm B600

on input σ executes, simultaneously, A(πS) for every requestable set S ∈ S, giving each execution A(πS)601

its own independent cache of size |S| composed of copies of the slots in S.602

For each such S, Algorithm B will build its own solution, denoted B(σS), for σS , also using its own603

independent cache of size |S| composed of copies of the slots in S. The desired solution to σ will then be604

B(σR) (note that σ = σR).605

For internal bookkeeping purposes only, in presenting Algorithm B, we consider each virtual page v(p, s)606

(as defined for Page-Laminar Paging) to be a copy of page p, and we have B maintain cache configurations607

that place these virtual pages in specific slots, with the understanding that the actual cache configurations are608

obtained by replacing each virtual page v(p, s) (in whatever slot it’s in) by a copy of page p. This virtual609

copy v(p, s) is functionally equivalently to p; for example, if placed in slot s′, it will satisfy any request610

⟨p, S′⟩ with s′ ∈ S′. When we analyze the cost, we will consider two copies v(p, s) and v(p′, s′) to be611

distinct unless (p′, s′) = (p, s). In particular, if B evicts v(p, s) while retrieving v(p, s′) (with s′ ̸= s) in the612

same slot, this contributes 1 to the cost of B. We will upper bound B’s cost overestimated in this way.613

Correctness. Algorithm B will somehow maintain the following invariant over time:614

For each requestable set S, for each virtual page v(p, s) currently cached by A(πS):615

1. the solution B(σS) caches v(p, s) in some slot in S, and616

2. if S has a child c with s ∈ c, and B(σc) has v(p, s) in its cache c, then in B(σS) copy v(p, s) is617

in the same slot as in B(σc).618

The invariant suffices to guarantee correctness of the solution B(σS) for each instance σS . Indeed, when619

B(σS) receives a request ⟨pt, St⟩, its relaxation A(πS) has just received the request {v(pt, s) : s ∈ St},620

so A(πS) is caching a virtual page v(pt, s) (for some s ∈ St) in S. By Condition 1, then, B(σS) also has621

v(pt, s) in some slot in S. In the case S = St, this suffices for B(σS) to satisfy the request. In the remaining622

16

before
slot s1 slot s′ slot s2

root R : x1 y1 z1
...

...
...

xi yi zi
parent B(σP) : xi+1 yi+1 v(p, s)

B(σS) : xi+2 v(p, s) zi+2

child B(σc) : v(p, s) yi+3 zi+3

=⇒

after

slot s1 slot s′ slot s2
z1 x1 y1
...

...
...

zi xi yi
v(p, s) xi+1 yi+1

v(p, s) xi+2 zi+2

v(p, s) yi+3 zi+3

Figure 5: “Rotating” slots in B(σS) and ancestors to preserve the invariant. Pages in grey are not moved.

case S has a child c with St ⊆ c, and B(σC) just received the same request, so (assuming inductively that623

B(σc) is correct for σc) B(σc) has v(pt, s) in some slot s′ in St, so by Condition 2 of the invariant B(σS) has624

v(pt, s) in the same slot s′ in St, as required. In particular, B(σR) will be correct for σR.625

To maintain the invariant B does the following for each requestable set S. Whenever the relaxed solution626

A(πS) evicts a page v(p, s), the solution B(σS) also evicts v(p, s). After this eviction both Conditions 1627

and 2 will be preserved. Whenever A(πS) retrieves a page v(p, s), the solution B(σS) also retrieves v(p, s),628

into any vacant slot in S (there must be one, because A(σS) caches at most |S| pages). This retrieval can629

cause up to two violations of Condition 2 of the invariant: one at B(σS), because v(p, s) is already cached630

by a child B(σc) but in some slot s1 ̸= s′; the other at the parent B(σP) of B(σS) (if any), because v(p, s) is631

already cached by the parent, but in some slot s2 ̸= s′. In the case that the retrieval does create two violations632

(and s1 ̸= s2), B restores the invariant by “rotating” the contents of the slots s1, s′, and s2 in B(σS) and in633

each ancestor, as shown in Figure 5. Note that yi+3 and zi+2 cannot be v(p, s), so moving v(p, s) out of slots634

s′ and s2 doesn’t introduce a violation there. Thus this rotation indeed restores the invariant, at the expense635

of three retrievals at the root. (The retrievals at other nodes only modify the internal state of B.) There are636

three other cases: two violations with s1 = s2, one violation at B(σS), or one violation at its parent, but all637

these three cases can be handled similarly, also with at most three retrievals (in fact at most two) at the root.638

Total cost. Each retrieval by A(πS) causes at most 3 retrievals in B(σR), so cost(B(σR)) is at most

≤
∑
S∈S

3 cost(A(πS)) ≤
∑
S∈S

3 fh(|S|)opt(πS) ≤ 3fh(k)
∑
S∈S

opt(σS) ≤ 3hfh(k) opt(σR).

The second step uses that A(πS) is fh(|S|)-competitive for πS . The third step uses that πS is a relaxation of639

σS so opt(πS) ≤ opt(σS), and that |S| ≤ k so fh(|S|) ≤ fh(k).1 The last step uses that the sets within any640

given level i ∈ {1, 2, . . . , h} of the laminar family are disjoint, so opt(σR) is at least the sum, over the sets641

S within level i, of opt(σS). This shows that B is a 3hfh(k)-approximation algorithm. To finish, we observe642

that B is polynomial-time, online, and/or deterministic if A is.643

5.2 Improved upper bound for deterministic Slot-Laminar Paging644

For Slot-Laminar Paging, this section presents a deterministic algorithm with competitive ratio O(hk), im-645

proving upon the bound of O(h2k) from Theorem 5.1. The algorithm, REFSEARCH, refines EXHSEARCH.646

Like EXHSEARCH, it is phase-based and maintains a configuration that can satisfy all requests in a phase;647

however, in order to satisfy the next request in the current phase, the particular configuration is chosen by648

judiciously moving pages in certain slots that are serving requests along a path in the laminar hierarchy.649

1We assume here that fh(k′) ≤ fh(k) for k′ ≤ k, which is without loss of generality as one can simulate a cache of size k′

using a cache of size k by introducing artificial requests that force k − k′ slots to be continuously occupied.

17

input: Slot-Laminar Paging instance (k,S, σ = (σ1, . . . , σT))

1. for t← 1, 2, . . . , T , respond to the current request σt = ⟨p, S⟩ as follows:

1.1. if t = 1 or Rt−1 ∪ {σt} is not satisfiable: let Rt−1 = ∅ and empty the cache — start new phase

1.2. let Rt = Rt−1 ∪ {σt}
1.3. if Ct−1 satisfies σt = ⟨p, S⟩: let Ct = Ct−1 — redundant request

1.4. else: — non-redundant request

1.4.1. find sequences ⟨s1, . . . , sm⟩, ⟨S0 = S, S1, . . . , Sm−1⟩, and ⟨p0 = p, p1, . . . , pm−1⟩ s.t.
(i) Si−1 ⊊ Si and slot si ∈ Si−1 of Ct−1 satisfies ⟨pi, Si⟩ ∈ rep(Rt−1), for 1 ≤ i < m, and
(ii) slot sm ∈ Sm−1 of Ct−1 either

(ii.1) does not satisfy any requests in rep(R), or
(ii.2) satisfies a request ⟨p, S′⟩ ∈ rep(Rt−1) such that S′ ⊋ Sm−2

1.4.2. to obtain Ct and satisfy ⟨pi−1, Si−1⟩, place pi−1 in slot si, for 1 ≤ i ≤ m

Figure 6: Deterministic online Slot-Laminar Paging algorithm REFSEARCH. Note that in Step 1.4.1 we have m ≤
k + 1 − |S|, and that in (ii), if sm satisfies ⟨p, S′⟩ ∈ rep(Rt−1) then m ≥ 2 (because Ct−1 does not satisfy σt); thus
Sm−2 is well-defined.

Theorem 5.2. For Slot-Laminar Paging, Algorithm REFSEARCH (Fig. 6) has competitive ratio at most650

2 ·mass(S)− k ≤ (2h− 1)k.651

We begin by defining the terminology used in the algorithm and the proof, and establish some useful652

properties. Recall that a configuration D satisfies a request r = ⟨p, S⟩ if there exists a slot s in S such that653

s holds p in D; in this case, we also say that slot s satisfies r in D. A configuration D is said to satisfy654

a set R of requests if it satisfies every request in R. A set R of requests will be called satisfiable if there655

exists a configuration that satisfies R. To determine if a set R of requests is satisfied by a configuration, it656

is sufficient (and necessary) to examine the maximal subset of “deepest” requests in the laminar hierarchy.657

Formally, a request ⟨p, S⟩ is an ancestor (resp., descendant) of ⟨p, S′⟩ if S ⊇ S′ (resp., S ⊆ S′). For any set658

R of requests, define rep(R) as the set of requests in R that do not have any proper descendants in R. That659

is, rep(R) = {⟨p, S⟩ ∈ R : ∀S′ ⊊ S, ⟨p, S′⟩ /∈ R}. For r = ⟨p, S⟩, define anc(r,R) = {⟨p, S′⟩ ∈ R : S ⊆660

S′}. Lemma 5.2 establishes some basic properties of rep(R).661

Lemma 5.2. Let R be a set of requests. Then,662

(i) In any configuration, each slot can satisfy at most one request in rep(R).663

(ii) A configuration satisfies R if and only if it satisfies rep(R).664

(iii) R is satisfiable iff for any requestable set S, rep(R) has at most |S| requests to subsets of S.665

Proof. (i) This part holds because any two requests in rep(R) request either different pages or disjoint slot666

sets. (ii) Since rep(R) ⊆ R, if R is satisfiable, so is rep(R). On the other hand, if a configuration D satisfies667

rep(R) then D satisfies R, because every r in R is an ancestor of some r′ in rep(R) and can be satisfied by668

the slot satisfying r′.669

(iii) Suppose that R is satisfiable. If D is a configuration that satisfies R then it also satisfies rep(R),670

by (ii). By (i), for any requestable set S, all requests in rep(R) to subsets of S must be satisfied in D by671

different slots of S, so there can be at most |S| such requests. To prove the reverse implication, assume that672

for any requestable set S there are at most |S| requests in rep(R) to subsets of S. We construct D top-down.673

Let T be the root of the laminar hierarchy S. (We could assume that T = [k], but it’s not necessary.) By674

our assumption, there are at most |T | requests in rep(R). The children of T in S are disjoint, so we can675

distribute these requests to the children of T in such a way that each child Q is assigned at most |Q| requests676

from rep(R), and each request assigned to Q is to a subset of Q. Continuing this recursively down the tree,677

18

we will end up with requests assigned to leaves. Then, for any leaf L we can satisfy its assigned requests by678

different slots in L.679

Algorithm REFSEARCH is given in Figure 6. It consists of phases. The first phase starts in time step 1,680

and each phase ends when adding the current request to the request set from this phase makes it unsatisfiable.681

Within a phase, redundant requests, that is those satisfied by the current configuration, are ignored (Step 1.3).682

To serve a non-redundant request σt = ⟨p, S⟩, the cache content is rearranged to free a slot in S. This683

rearrangement involves shifting the content of some slots that serve requests in rep(R) along the path from684

S to the root, to find a slot that is either unused or holds p (Step 1.4.2).685

For technical reasons, in the analysis of Algorithm REFSEARCH it will be useful to introduce a slightly686

refined concept of configurations. Given a request set R, an R-configuration is a configuration D in which687

each request in rep(R) is served by exactly one slot. (By Lemma 5.2(i), each slot can serve only one688

request in rep(R), but in general in a configuration serving R there may be multiple slots that serve the same689

request in rep(R).) Slots in D that do not serve requests in rep(R) are called free in D. Observe that each690

configuration Ct of Algorithm REFSEARCH implicitly is an Rt-configuration – due to the assignment of691

slots in Step 1.4.2. Also, if the slot sm chosen by the algorithm in Step 1.4.1 satisfies condition (ii.1) then692

sm is a free slot of D, according to our definition.693

The following helper claim, which characterizes when a particular request is not satisfied by a given694

configuration, follows directly from Lemma 5.2(iii).695

Claim 5.3. Let R be a set of requests and D be an R-configuration. Let also r = ⟨p, S⟩ be a request such696

that D does not satisfy r, yet R ∪ {r} is satisfiable. Then D has a slot s in S that is either free or satisfies a697

request ⟨p′, S′⟩ ∈ rep(R) where S ⊊ S′.698

The following lemma establishes the validity of Steps 1.4.1 and 1.4.2 of Algorithm REFSEARCH.699

Lemma 5.4. Let R be a set of requests and D be an R-configuration. Let r = ⟨p0, S0⟩ be a request700

such that r is not satisfied by D and R ∪ {r} is satisfiable. Then there exist sequences ⟨s1, . . . , sm⟩,701

⟨S0, S1, . . . , Sm−1⟩, and ⟨p0, p1, . . . , pm−1⟩ such that (i) Si−1 ⊊ Si and si ∈ Si−1 is currently satisfying702

request ⟨pi, Si⟩ ∈ rep(R), for 1 ≤ i < m, and (ii) sm ∈ Sm−1 is either a free slot or is currently satisfying703

⟨p0, S′⟩ ∈ rep(R) for some S′ ⊋ Sm−2. Furthermore, transforming D by moving page pi−1 to slot si (and704

modifying the slot assignment in D accordingly), for 1 ≤ i ≤ m, yields an (R ∪ {r})-configuration.705

Proof. The proof is by induction on the depth of S0 in the laminar hierarchy. For the induction base, consider706

S0 = [k]. Since r is not satisfied by D, R ∪ {r} is satisfiable, and every requestable slot set is subset of [k],707

we obtain from Claim 5.3 that there is a free slot s1 ∈ S0. The desired claim of the lemma holds with m = 1708

and sequences ⟨s1⟩, ⟨S0⟩ and ⟨p0⟩ which satisfy (i). Since s1 is free, bringing page p0 to slot s1 yields a709

(R ∪ {r})-configuration.710

We now establish the induction step. Let R, D, and r = ⟨p0, S0⟩ be as given. By Claim 5.3 there are711

two cases. In the first case, there is a free slot s1 ∈ S0 in D. Then the desired claim holds with m = 1, and712

sequences ⟨s1⟩, ⟨S0⟩ and ⟨p0⟩. Furthermore, as in the base case, since s1 is free, bringing page p0 to slot s1713

yields an (R ∪ {r})-configuration.714

The remainder of this proof concerns the second case, in which there is a slot s1 ∈ S0 currently satisfying715

a request r′ = (p1, S1) in rep(R) with S0 ⊊ S1. Let D′ denote the configuration that is identical to D except716

that D has p0 in slot s1. Since D is an R-configuration, no other slot satisfies r′ in D; the same holds in717

D′. Hence, D′ does not satisfy r′. Furthermore, D′ satisfies every request in rep(R) other than r′. Let718

R′ = R ∪ {r} \ anc(r′, R). In D′, s1 satisfies r. Consider any request x in R \ anc(r′, R). By definition of719

rep(R), there exists a request x′ in rep(R) that is a descendant of x. Since R′ does not include any ancestors720

of r′, x′ is not r′ and hence is satisfied by some slot inD′. We thus obtain thatD′ satisfiesR′ and, in factD′ is721

an R′-configuration. In D′ slot s1 is assigned to r, and if there is a request (p, S′) in rep(R) then its assigned722

19

slot is designated as free in D′. At the same time, D′ does not satisfy r′. Further, since R′ ∪ {r′} is a subset723

of R ∪ {r}, which is satisfiable, R′ ∪ {r′} is also satisfiable. Since S1 ⊋ S0, by the induction hypothesis,724

there are sequences ⟨s2, . . . , sm⟩, ⟨S1, S2, . . . Sm−1⟩ and ⟨p1, p2, . . . , pm−1⟩ such that (i) Si−1 ⊊ Si and725

si ∈ Si−1 is currently satisfying (pi, Si) ∈ rep(R′), for 2 ≤ i < m; and either (ii.1) sm is a free slot in D′ or726

(ii.2) is currently satisfying a request (p1, S′) ∈ rep(R′) for some S′ ⊋ S1. Note, however, that sm has to be727

a free slot in D′ since (ii.2) above cannot hold: any request (p1, S′) is in anc(r′, R), all requests of which are728

excluded from R′. Furthermore, transforming D′ to D′′ by moving page pi−1 to si for 2 ≤ i ≤ m, satisfies729

R′ ∪ {r′}.730

We now establish the desired claim forD,R, and r. Consider sequences ⟨s1, . . . , sm⟩, ⟨S0, S1, . . . Sm−1⟩731

and ⟨p0, . . . , pm−1⟩. The desired condition (i) follows from (i) of the induction hypothesis above and the fact732

that in D, s1 ∈ S0 is currently satisfying a request (p1, S1) in rep(R) with S0 ⊊ S1. For (ii), note that733

since sm is a free slot in D′, either sm is a free slot in D or (p0, S′) is in rep(R) for some S′ ⊋ Sm−2, thus734

establishing (ii). Finally, transforming D to D′′ by moving pi−1 to si for 1 ≤ i ≤ m, satisfies R′ ∪ {r′}.735

Since any request satisfying r′ also satisfies all ancestors of r′, we have rep(R ∪ {r}) = rep(R′ ∪ {r′}),736

implying that D′′ also satisfies R ∪ {r}. This completes the induction step and the proof of the lemma.737

Proof of Theorem 5.2. We first argue that at any time t, configuration Ct of REFSEARCH satisfies the set Rt738

of requests from the current phase of the algorithm. The proof is by induction on the number of steps within739

a phase. When the phase is about to start at time t then Rt−1 is set to ∅, so the claim holds. For the induction740

step, consider a step t within a phase and assume that Ct−1 satisfies Rt−1. If Ct−1 satisfies new request σt,741

then by Step 3.3, Ct satisfies Rt. Otherwise, Rt−1 ∪ {σt} is satisfiable but Ct−1 does not satisfy σt. Then,742

by Lemma 5.4, Steps 1.4.1 and 1.4.2 derive a configuration Ct satisfying Rt, completing the induction step743

and the argument that at any time t, Ct satisfies Rt.744

We next analyze the competitive ratio. We first show that the number of page retrievals during a phase745

of REFSEARCH is at most 2 · mass(S). Let R denote the set of requests in the current phase. We charge746

the cost in this phase to the depths of the requests in rep(R). The cost of Step 1.4.2 is m. If sm satisfies747

condition (ii.1), then rep(R ∪ {σt}) = rep(R)∪ {σt} and the depth of S is at least m, so the charge per unit748

depth is at most 1. Otherwise, condition (ii.2) holds and rep(R ∪ {σt}) = rep(R)∪ {σt} \ {⟨p, S′⟩}. In this749

case we have σt inherit the charges to ⟨p, S′⟩, and we charge the cost ofm to the difference in depths of S and750

S′, which is at least m− 1 (because Sm−2 ⊊ S′), so the charge per unit of depth is at most m/(m− 1) ≤ 2.751

(Note that in this case m ≥ 2.) When the phase ends, a request at depth d was charged at most d times, and752

these charges include at least one unit charge, so its total charge is most 2d−1. Thus the algorithm’s cost per753

phase is at most 2 ·mass(S)− k ≤ (2h− 1)k. The optimal cost in a phase is at least 1 as no configuration754

satisfies all requests in the phase and the request that starts the next phase. The theorem follows.755

6 All-or-One Paging756

Recall that All-or-One Paging is the extension of standard Paging that allows two types of requests: A general757

request for a page p, denoted ⟨p, ∗⟩, can be served by having p in any cache slot. A specific request ⟨p, j⟩,758

where j ∈ [k], must be served by having p in slot j of the cache. (Section 2 gives a formal definition.) It is a759

restriction of Slot-Laminar Paging with h = 2.760

For All-or-One Paging, this section first shows that the optimal randomized ratio is at least 2Hk −O(1).761

It then shows that the offline problem is NP-hard.762

6.1 Lower bound for randomized All-or-One Paging763

Theorem 6.1. Every online randomized algorithm A for the All-or-One Paging problem has competitive764

ratio at least 2Hk − 1.765

20

Proof. We establish our lower bound by giving a probability distribution on the input sequences for which766

any deterministic algorithm A has expected cost at least 2Hk − 1 times the optimum cost. Without loss767

of generality we can assume that A is lazy, in the sense that it retrieves a page only when it is necessary to768

satisfy a request. We use some fixed k+1 pages p1, p2, . . . , pk+1 and the random input sequence will consist769

of L phases, where L is some large integer.770

Consider any phase. To ease notation, by symmetry, assume without loss of generality that when the
phase starts the adversary has pages p1, p2, . . . , pk in the cache, with each page pi in slot i, for i = 1, 2, . . . , k.
To start the phase, the adversary chooses a random permutation pi1 , pi2 , . . . , pik of these k pages, replaces
pik in its cache by pk+1, at cost 1, then makes request ⟨pk+1, ∗⟩, followed by k − 1 stages. Each stage
s = 1, 2, . . . , k − 1 consists of L · (2Hk − 1) repetitions of the request sequence

⟨pi1 , i1⟩ , ⟨pi2 , i2⟩ , . . . , ⟨pis , is⟩ , ⟨pk+1, ∗⟩ ,

which costs the adversary nothing.771

It remains to bound the expected cost of A. Let E denote the event that for every phase and every stage s772

in the phase, the configuration of A at the end of the stage has each page pir , for r = 1, 2, . . . , s− 1, in slot773

ir and one of the slots in [k] \ {i1, . . . , is−1} contains pk+1. We will separately bound the expected cost of774

A conditioned on E, and the expected cost of A conditioned on E.775

We first analyze the expected cost of A conditioned on E. Consider any stage s of any phase. If this776

is the first stage of the first phase, then A and the adversary start with the same configuration. Otherwise,777

since event E holds, the configuration of A has each page pir , for r = 1, 2, . . . , s − 1, in slot ir, and778

one of the slots in [k] \ {i1, . . . , is−1} contains pk+1. Since the probability distribution of is is uniform779

in [k] \ {i1, i2, . . . , is−1}, the probability that A has pk+1 in slot is equals 1/(k − s + 1). If it does, the780

cost of A is at least 2 in stage s, because pis will need to be fetched into slot is and pk+1 will need to781

be moved to a different slot. So the expected cost of A in this stage is at least 2/(k − s + 1). Summing782

over all stages s = 1, 2, . . . , k − 1 and adding 1 for the first request, the expected cost of A for a phase,783

conditioned on event E, will be at least 2(Hk − 1) + 1 = 2Hk − 1. On the other hand, the adversary pays784

1 for each phase. Therefore, the expected total cost of A over L phases, conditioned on event E, is at least785

L · (2(Hk − 1) + 1) = L · (2Hk − 1), which grows with L, and is at least 2Hk − 1 times the adversary’s786

total cost.787

We next analyze the expected cost of A conditioned on E. The event E implies that there is a stage s of788

a phase in which A does not end with a configuration in which page pir , for r = 1, 2, . . . , s − 1, is in slot789

ir, and one of the slots in [k] \ {i1, . . . , is−1} contains pk+1. Since such a configuration satisfies all requests790

in the stage and A is lazy, this implies that A never reaches such a configuration in the stage. Therefore, the791

cost of A in this stage alone is at least L · (2Hk − 1). Since the adversary pays 1 for each phase, the total792

cost of the adversary is L. Therefore, the expected total cost of A conditioned on E is at least 2Hk− 1 times793

the adversary’s total cost.794

We thus obtain the expected total cost of A grows with L and is at least 2Hk − 1 times the adversary’s795

total cost. Therefore, the competitive ratio of A is at least 2Hk − 1.796

6.2 NP-completeness of offline All-or-One Paging797

The off-line version of Paging, where the request sequence is given upfront, can be solved in timeO(n log n)798

using the classical algorithm by Belady [11]. All-or-One Paging differs from standard Paging only by inclu-799

sion of specific requests, which appear easy to handle because they don’t give the algorithm any choice. In800

this section we show that this intuition is not valid:801

Theorem 6.2. Offline All-or-One Paging is NP-complete.802

21

Proof of Theorem 6.2. Let G = (V,E) be a graph with vertex set V = {0, 1, . . . , n− 1}. Given an integer803

k, 1 ≤ k ≤ n, we compute in polynomial time a request sequence σ and an integer F such that the following804

equivalence holds: G has a vertex cover of size k if and only if there is a solution for σ whose cost with a805

cache size k + 2 is at most F .806

At a fundamental level our proof resembles the argument in [27], where NP-completeness of an interval-807

packing problem was proved. The basic idea of the proof is to represent the vertices by a collection of808

intervals with specified endpoints that are to be packed into a strip of width k. These intervals will be809

represented by pairs of requests, one at the beginning and one at the end of the interval, and the strip to be810

packed is the cache. Since the strip’s capacity is bounded by k, only a subset of intervals can be packed, and811

the intervals that are packed correspond to a vertex cover.812

There will actually be many “bundles” of such intervals, with each bundle containing n intervals cor-813

responding to the n vertices. If we had |E| bundles and if we forced each bundle’s packing (that is, its814

corresponding set of vertices) to be the same, we could add an edge-gadget to each bundle that will verify815

that all edges are covered. While it does not seem possible to design these bundles to force all bundles’816

packings to be equal, there is a way to design them to ensure that the packing of each bundle is dominated817

(in the sense to be defined shortly) by the next one, and this dominance relation has polynomial depth. So818

with polynomially many bundles we can ensure that there will be |E| consecutive equally packed bundles,819

allowing us to verify whether the vertex set corresponding to this packing is indeed a correct vertex cover.820

Set dominance. We consider the family of all k-element subsets of V . For any two k-element sets X,Y ⊆821

V , we say that Y dominates X , and denote it X ⪯ Y , if there is a 1-to-1 function ψ : X → Y such that822

x ≤ ψ(x) for all x ∈ X . We write X ≺ Y iff X ⪯ Y and X ̸= Y . The dominance relation is a partial823

order. The following lemma from [27] will be useful:824

Lemma 6.1. Let X1, X2, . . . , Xp ⊆ V be sets of cardinality k such that X1 ≺ X2 ≺ . . . ≺ Xp. Then825

p ≤ k(n− k).826

Cover chooser. We start by specifying the “cover chooser” sequence σ′ of requests. In this sequence some827

time slots will not have assigned requests. Some of these unassigned slots will be used later to insert requests828

representing edge gadgets.829

Let m = |E|+1. (For notation-related reasons, it is convenient to have m be one larger than the number830

of edges.) Let also P = k(n− k) + 1 and B = mP . In σ′ we will use the following pages and requests:831

• We have nB pages xb,j , for b = 0, 1, . . . , B − 1 and j = 0, 1, . . . , n − 1. For each page xb,j there832

are two general requests ⟨xb,j , ∗⟩ in σ′ at time steps τb,j = 9(bn+ j) and τ ′b,j = 9(bn+ j) + 9n− 6.833

These requests are called vertex requests. They are grouped into bundles of requests, where bundle b834

consists of all 2n general requests to pages xb,0, xb,1, . . . , xb,n−1. See Figures 7 and 8 for illustration.835

• We have B pages yb, for b = 0, 1, . . . , B − 1. For each page yb we have two specific requests836

⟨yb, k + 1⟩ and ⟨yb, k + 2⟩ in σ′, at times θb = τ ′b,0 − 2 = τb,n−1 + 1 and θ′b = τ ′b,0 − 1 = τb,n−1 + 2,837

respectively. For each b, these requests are called b-blocking requests, because for each page xb,j in838

bundle b we have θb, θ′b ∈ [τb,j , τ
′
b,j], so these two requests make it impossible to have both requests839

⟨xb,j , ∗⟩ served in cache slots k + 1 or k + 2 with only one fault.840

Slots 1, 2, . . . , k in the cache will be referred to as vertex slots. Slot k+1 is called the edge-gadget slot, and841

slot k + 2 is called the junkyard slot.842

Let F ′ = (2n − k + 2)B. For any solution S of σ′ and any bundle b, denote by VS,b the set of vertices843

j ∈ V for which S does not fault in σ′ on request ⟨xb,j , ∗⟩ at time τ ′b,j . In other words, S keeps xb,j in the844

cache throughout the time interval [τb,j , τ ′b,j].845

22

9

⌧b,4⌧b,3⌧b,2⌧b,1

⌧ 0b,0 ⌧ 0b,1 ⌧ 0b,2 ⌧ 0b,3 ⌧ 0b,4

⌧b,0 ⌧b+1,0 ⌧b+1,1 . . .

hxb,1, ⇤i
hxb,2, ⇤i

hxb,3, ⇤i
hxb,4, ⇤i

hxb+1,0, ⇤i

hxb�1,4, ⇤i
hxb,0, ⇤i

Figure 7: The sequence of vertex requests, for n = 5. The shaded region contains requests from bundle b.

1

⌧ 0b,j⌧ 0b,j�1 ⌧b+1,j�1 ⌧b+1,j

hxb,j�1, ⇤i hxb+1,j�1, ⇤i

hxb+1,j , ⇤ihxb,j , ⇤i

Figure 8: A more detailed picture showing relations between general requests to pages xb,j−1, xb,j , xb+1,j−1, and
xb+1,j , where 1 ≤ j ≤ n− 1.

Lemma 6.2. (a) The minimum number of faults on σ′ in a cache of size k+2 is F ′. (b) If S is a solution for846

σ′ with at most F ′ faults, then for any b = 0, 1, . . . , B − 2 we have VS,b ⪯ VS,b+1.847

Proof. (a) There are 2B specific b-blocking requests ⟨yb, k + 1⟩ and ⟨yb, k + 2⟩ and all of these are faults.848

Consider a bundle b. For this bundle, for each j, the two requests ⟨xb,j , ∗⟩ at times τb,j and τ ′b,j are separated849

by requests ⟨yb, k + 1⟩ and ⟨yb, k + 2⟩. Thus if S does not fault at time τ ′b,j then page xb,j must have been850

stored in one of the vertex slots 1, 2, . . . , k throughout the time interval [τb,j , τ ′b,j]. As there are k vertex slots,851

S can avoid faulting on at most k requests in bundle b. So, including the faults at ⟨yb, k + 1⟩ and ⟨yb, k + 2⟩,852

the number of faults in S associated with this bundle b will be at least 2 + k + 2(n− k) = 2n− k + 2. We853

thus conclude that the total number of faults is at least F ′.854

It is also possible to achieve only F ′ faults on σ′, as follows: for each b, and for each vertex j =855

0, 1, . . . , k−1, at time τb,j load xb,j into cache slot j+1 and keep it there until time τ ′b,j . For j = k, . . . , n−1,856

load each request to xb,j into slot k + 2. This will give us exactly F ′ faults.857

(b) If S makes at most F ′ faults, since there are 2B faults on the blocking requests and for each bundle858

S makes at least 2n−k faults on vertex requests, S must make exactly 2n−k faults on vertex requests from859

each bundle, including one request for each vertex j ∈ VS,b and two requests for each vertex j /∈ Vs,b. If860

u ∈ VS,b and xb,u is stored by S in slot ℓ of the cache throughout its interval [τb,u, τ ′b,u], and if some xb+1,v,861

for v ∈ VS,b+1, is stored by S in slot ℓ throughout its interval [τb+1,v, τ
′
b+1,v], then we must have v ≥ u. This862

is because otherwise we would have τb+1,v < τ ′b,u, that is the intervals of xb,u and xb+1,v would overlap, so863

we would fault at least three times on the requests to these two pages. This implies part (b).864

We partition all bundles into phases, where phase p = 0, 1, . . . , P − 1 consists of m bundles b =865

23

pm, pm+ 1, . . . , pm+m− 1. (Recall that m = |E|+ 1.) The corollary below states that there is a phase p866

in which all sets VS,b must be equal. It follows directly from Lemmas 6.1 and 6.2, by applying the pigeonhole867

principle.868

Corollary 6.3. If S is a solution for σ′ with F ′ faults, then there is index p, 0 ≤ p ≤ P − 1, for which869

VS,pm = VS,pm+1 = · · · = VS,pm+m−1.870

Edge gadget. For each fixed phase p, we create m− 1 edge gadgets, one for each edge. Ordering the edges871

arbitrarily, the gadget for the eth edge, where 0 ≤ e ≤ m − 2, will be denoted ωp,e, and it will consist of872

8 requests between times θ′pm+e and θpm+e+1, that is in the region where bundles pm + b and pm + b + 1873

overlap.874

Let the eth edge be (u, v), where u < v. Edge gadget ωp,e uses six new pages zp,u, zp,v, gp,u, gp,v, hp,u875

and hp,v, and consists of the following requests:876

• Two specific requests ⟨zp,u, k + 2⟩ at times τ ′pm+e,u + 2 and τ ′pm+e,u + 4, and two specific requests877

⟨zp,v, k + 2⟩ at times τ ′pm+e,v + 2 and τ ′pm+e,v + 4.878

• General requests ⟨gp,u, ∗⟩, ⟨gp,v, ∗⟩, at times τ ′pm+e,u + 3 and τ ′pm+e,v + 3.879

• A pair of requests ⟨hp,u, k + 1⟩, ⟨hp,u, ∗⟩, the first one specific and the second one general, at times880

τ ′pm+e,u + 1 and τ ′pm+e,v + 1, respectively.881

• A pair of requests ⟨hp,v, ∗⟩, ⟨hp,v, k + 1⟩, the first one general and the second one specific, at times882

τ ′pm+e,u + 5 and τ ′pm+e,v + 5, respectively.883

1

⌧ 0pm+e,u ⌧ 0pm+e,v ⌧pm+e+1,v⌧pm+e+1,u

hxpm+e,u, ⇤i hxpm+e+1,u, ⇤i

hxpm+e+1,v, ⇤ihxpm+e,v, ⇤i

hgp,v, ⇤i

hgp,u, ⇤i

hhp,u, ⇤i

hhp,v, ⇤i hhp,v, k + 1i
hhp,u, k + 1i

hzp,u, k + 2i hzp,u, k + 2i hzp,v, k + 2i hzp,v, k + 2i

Figure 9: Gadget ωp,e. Requests ⟨xpm+e,u, ∗⟩ , ⟨xpm+e+1,u, ∗⟩, ⟨xpm+e,v, ∗⟩ , and ⟨xpm+e+1,v, ∗⟩ are not part of this
gadget; they are shown only to illustrate how gadget ωp,e fits into the overall request sequence.

Consider now possible solutions of gadget ωp,e. Notice that this gadget will require 7 faults regardless884

of all other requests, since we need to make two faults on requests ⟨gp,u, ∗⟩, ⟨gp,v, ∗⟩, at least two faults885

on requests to pages ⟨zp,u, k + 2⟩, ⟨zp,v, k + 2⟩, and at least three faults on requests ⟨hp,u, k + 1⟩, ⟨hp,u, ∗⟩,886

⟨hp,v, ∗⟩, and ⟨hp,v, k + 1⟩. (This is because if we retain page hp,u in slot k + 1 until time τ ′pm+e,v + 1, so887

that we do not fault on ⟨hp,u, ∗⟩, then we will fault on both requests ⟨hp,v, ∗⟩, and ⟨hp,v, k + 1⟩.) Another888

important observation is that if we fault only 7 times on ωp,e then one of requests ⟨gp,u, ∗⟩, ⟨gp,v, ∗⟩ must be889

put in a vertex cache slot (that is, one of slots 1, 2, . . . , k). A solution that puts ⟨gp,u, ∗⟩ in a vertex slot is890

called a u-solution of ωp,e and a solution that puts ⟨gp,v, ∗⟩ in a vertex slot is called a v-solution of ωp,e. (A891

solution of ωp,e can be both a u-solution and a v-solution.)892

Complete reduction. Let F = F ′ + 7P (m − 1). Our request sequence σ constructed for G consists of σ′893

and of all P (m− 1) edge gadgets ωp,e defined above inserted into σ at their specified time steps. (At some894

24

time steps there will not be any requests.) To complete the proof it is now sufficient to show the following895

claim.896

Claim 6.4. G has a vertex cover of size k if and only if σ has a solution with at most F faults in a cache of897

size k + 2.898

(⇒) Suppose thatG has a vertex cover U of size k. We construct a solution for σ as follows. Each vertex899

j ∈ U is assigned to some uniqe vertex cache slot and all 2B requests ⟨xb,j , ∗⟩ associated with vertex j are900

served in this slot. This will create kB faults. For j /∈ U , all requests ⟨xb,j , ∗⟩ are served in the junkyard slot901

k + 2 at cost 2(n− k)B. Together with the 2B blocking requests ⟨yb, k + 1⟩ and ⟨yb, k + 2⟩, this will give902

us F ′ = (2n− k + 2)B faults. For each p = 0, 1, . . . , P − 1, and for each e = 0, 1, . . . ,m− 2, we do this:903

Let the eth edge of G be (u, v). Since U is a vertex cover, we either have u ∈ U or v ∈ U . If u ∈ U , we904

use the u-solution for gadget ωp,e, with g∗p,u served in the cache slot associated with u. If v ∈ U , we use the905

v-solution for gadget ωp,e, with ⟨gp,v, ∗⟩ served in the cache slot associated with v. This will give us 7 faults906

for this gadget, adding up to 7P (m− 1) faults on all edge gadgets. Then the total number of faults on σ will907

be F ′ + 7P (m− 1) = F .908

(⇐) Now suppose that there is a solution S for σ with at most F faults. By the earlier observations,909

we know that S must have exactly F faults, including exactly F ′ faults on the request in σ′ and exactly 7910

faults per each edge gadget. As there are F ′ faults on σ′, we can find some p, 0 ≤ p ≤ P − 1, such that911

VS,pm = VS,pm+1 = · · · = VS,pm+m−1, per Corollary 6.3. Let U = VS,pm. For each j ∈ U , all requests912

⟨xb,j , ∗⟩, for b = pm, pm+1, . . . , pm+m−1, must be in the same slot, that we refer to as the slot associated913

with vertex j. The size of U is k, and we claim that U must be a vertex cover. To show this, let (u, v) be an914

edge, and let e be its index. Solution S makes 7 faults on gadget ωp,e, so for this gadget it must be either a915

u-solution or a v-solution. If it is a u-solution then ⟨gp,u, ∗⟩ is served in some vertex cache slot. But the only916

vertex slot available in that time step is the slot associated with vertex u. This means that u must be in U .917

The case of a v-solution is symmetric. Thus we obtain that either u ∈ U or v ∈ U . This holds for each edge,918

implying that U is a vertex cover. This proves the claim, and completes the proof of the theorem.919

7 Weighted All-Or-One Paging920

This section initiates the study of Heterogenous k-Server in non-uniform metrics. Weighted All-Or-One921

Paging is the natural weighted extension of All-or-One Paging (allowing general and specific requests) in922

which the pages have weights and the cost of retrieving a page is its weight. This is equivalent to Heteroge-923

nous k-Server in star metrics with requestable-set family S = {[k]} ∪ {{s} : s ∈ [k]}. This section proves924

the following theorem:925

Theorem 7.1. Weighted All-Or-One Paging has a deterministic O(k)-competitive online algorithm.926

The bound is optimal up to a small constant factor, as the optimal ratio for standard Weighted Paging927

is k. Figure 10 shows the algorithm. It is implicitly a linear-programming primal-dual algorithm. Note928

that the standard linear program for standard Weighted Paging doesn’t have constraints that force pages into929

specific slots—indeed, those constraints make even the unweighted problem an NP-hard special case of930

Multicommodity Flow. As a small example that illustrates the challenge, consider a cache of size k = 2,931

and repeatedly make three requests: a general request to a weight-1 page, and specific requests to different932

weight-zero pages in slots 1 and 2. The weight-zero requests force the weight-1 page to be evicted with each933

round, so the optimal cost is the number of rounds. But the solution of the classical linear-program relaxation934

will have value 1. Thus this linear program cannot be used to bound the competitive ratio.935

Here is a sketch of the proof of Theorem 7.1, then the detailed proof. Fix an optimal solution C, that936

is opt(σ) = cost(C). For each t ∈ [T], let xt ∈ {0, 1} be an indicator variable for the event that C evicts937

25

input: Weighted All-Or-One Paging instance (k, σ), where σt = ⟨pt, st⟩ for t ∈ [T]

1. initialize cap[t]← credit[t]← 0 for each t ∈ [T]

2. assume that ⟨pt, st⟩ = ⟨0, t⟩ for t ∈ [k] — k specific requests to artificial weight-0 page in each slot

3. for t← k + 1, k + 2, . . . , T :

3.1. if ⟨pt, st⟩ is a specific request with no equivalent request t′ (s.t. ⟨pt′ , st′⟩ = ⟨pt, st⟩) in the cache:

3.1.1. evict any cached general request to page pt, and any cached request in slot st
3.1.2. put t in slot st — note cap[t] = credit[t] = 0

3.2. else if ⟨pt, st⟩ is a general request not satisfied by any cached request t′ (s.t. pt′ = pt):

3.2.1. define

ℓt(s) := max{t′ ≤ t : st′ = s} for s ∈ [k] — most recent specific request to slot s

A := {s ∈ [k] : cap[ℓt(s)] ≥ 1
2 wt(pt) and s does not hold a specific request}

B := {s ∈ [k] : slot s holds a general request of weight at least 1
2 wt(pt)}

3.2.2. while |A| ≤ |B|:
3.2.2.1. continuously raise cap[ℓt(s)] for s ∈ [k] and credit[t′] for each cached request t′, at unit rate,
3.2.2.2. evicting each request t′ such that credit[t′] = wt(pt′), and updating A and B continuously

3.2.3. choose a slot s ∈ A \B; evict the request t′ currently in slot s (if any)
3.2.4. put t in slot s — note credit[t] = 0

3.3. else: classify the (already satisfied) request as redundant and ignore it

Figure 10: An O(k)-competitive online algorithm for Weighted All-Or-One Paging. For technical convenience, we
present the algorithm as caching request times rather than pages, with the understanding that request t represents page
pt.

request t before satisfying another request t′ > t with the same page/slot pair that satisfied t. Let R ⊆ [T]938

be the set of all specific requests, and for each t ∈ R, let yt be the amount C pays to retrieve pages into939

slot st before the next specific request to slot st (if any). Define the pseudo-cost of the optimal solution to940

be
∑T

t=1 wt(pt)xt +
∑

t∈R yt. The pseudo-cost is at most 2 opt(σ). As the algorithm proceeds, define the941

residual cost to be
∑T

t=1max(0,wt(pt)xt − credit[t]) +
∑

t∈R max(0, yt − cap[t]). The residual cost is942

initially the pseudo-cost (at most 2 opt(σ)), and remains non-negative throughout, so the total decrease in the943

residual cost is at most 2 opt(σ). One can show (Lemma 7.1) that whenever the algorithm is raising credits944

and capacities at time t, there is either a cached request t′ with xt′ = 1 and credit[t′] < wt(pt′), or there is a945

slot s with yt′ > cap[t′], where t′ = ℓt(s) ∈ R. It follows that the residual cost is decreasing at least at unit946

rate in Step 3.2.2.1.947

On the other hand, the algorithm is raising k capacities and at most k credits, so the value of ϕ =948 ∑T
t=1 credit[t]+

∑
t∈R cap[t] is increasing at rate at most 2k. So, the final value of ϕ is at most 4k opt(σ). To949

finish, we show by a charging argument that the algorithm’s cost is at most 6ϕ+3 opt(σ) ≤ (24k+3) opt(σ).950

Here is the detailed proof. Consider any execution of the algorithm on a k-slot instance σ. To ease951

notation and streamline the analysis, without loss of generality we will make the following assumptions:952

• The first k requests are specific requests for an artificial weight-zero page in each of the k slots.953

• Each request is not redundant (per Step 3.3).954

• The last k requests are specific requests for an artificial weight-zero page in each of the k slots.955

These assumptions can indeed be made without loss of generality, as the zero-weight requests do not have956

26

any cost, the algorithm ignores redundant requests, and removing redundant requests doesn’t increase the957

optimum cost. For technical convenience, we think of the algorithm and the optimal solution as caching958

request times rather than pages, with the understanding that request t represents page pt. We first prove a key959

lemma used in the proof of the theorem.960

Lemma 7.1. Suppose that, while responding to a general request t, the algorithm is executing Step 3.2.2.1961

(that is, the loop condition in Step 3.2.2 is satisfied). Then, in any solution C, just after C has responded to962

request t, either963

(i) C has evicted some request t′ currently cached by the algorithm, or964

(ii) for some slot s ∈ [k], after the most recent specific request ℓt(s) to slot s solution C has incurred cost965

more than cap[ℓt(s)] for retrievals into s.966

Proof. If C satisfies property (i), we are done. So assume that it doesn’t, and we will show that then967

property (ii) holds. If (i) doesn’t hold then, just after responding to request t, in addition to the current general968

request pt, solution C caches every request t′ that is cached by the algorithm. This, together with the loop969

condition, implies that C has at least |B|+1 ≥ |A|+1 generally requested pages of weight at least 1
2 wt(pt)970

in its cache. Thus one of these pages, say pt′ , is in a slot s /∈ A. The choice of pt′ and the definition of A971

imply then that the cost of C for retrievals into s after time ℓt(s) is at least wt(pt′) ≥ 1
2 wt(pt) > cap[ℓt(s)],972

so property (ii) holds.973

Proof of Theorem 7.1. Fix an optimal solutionC, that is opt(σ) = cost(C). For each t ∈ [T], let xt ∈ {0, 1}974

be an indicator variable for the event that C evicts request t before satisfying another request t′ > t with975

the same page/slot pair that satisfied t. Let R ⊆ [T] be the set of all specific requests, and for each t ∈ R,976

let yt be the amount C pays to retrieve pages into slot st before the next specific request to slot st (if any).977

Define the pseudo-cost of the optimal solution to be
∑T

t=1 wt(pt)xt +
∑

t∈R yt. The pseudo-cost is at most978

2 opt(σ). As the algorithm proceeds, define the residual cost to be
∑T

t=1max(0,wt(pt)xt − credit[t]) +979 ∑
t∈R max(0, yt − cap[t]). The residual cost is initially the pseudo-cost (at most 2 opt(σ)), and remains980

non-negative throughout, so the total decrease in the residual cost is at most 2 opt(σ). By Lemma 7.1,2981

whenever the algorithm is raising credits and capacities at time t, there is either a cached request t′ with982

xt′ = 1 and credit[t′] < wt(pt′), or there is a slot s with yt′ > cap[t′], where t′ = ℓt(s) ∈ R. It follows that983

the residual cost is decreasing at least at unit rate in Step 3.2.2.1.984

On the other hand, the algorithm is raising k capacities and at most k credits, so the value of ϕ =985 ∑T
t=1 credit[t] +

∑
t∈R cap[t] is increasing at rate at most 2k. So, the final value of ϕ is at most 4k opt(σ).986

To finish, we show that the algorithm’s cost is at most 6ϕ+ 3 opt(σ) ≤ (24k+ 3) opt(σ). 3 Count the costs987

that the algorithm pays as follows:988

1. Requests remaining in the cache at the end (time T). By the assumption on the last k requests, these989

cost nothing to bring in. All other requests are evicted.990

2. Requests evicted in Line 3.2.2.2. Each such request t′ is evicted only after credit[t′] reaches wt(pt′).991

So these have total weight at most
∑T

t′=1 credit[t
′].992

3. Specific requests t′ evicted from slot st in Line 3.1.1. Throughout the time interval [t′, t − 1], the993

algorithm has pt′ in slot st′ = st, and σ has neither an equivalent specific request nor a general request994

to pt (by our non-redundancy assumption). The optimal solution C has pt′ in slot st′ at time t′, but not995

at time t, so evicts it during [t′ + 1, t]. So the total cost of such requests is at most the total weight of996

specific requests evicted by C, and thus at most opt(σ).997

2The lemma gives linear constraints on the vectors (x, y). Minimizing the pseudo-cost subject to these constraints is a linear-
program relaxation of the problem. Our argument implicitly defines a dual solution whose cost is our lower bound on opt(σ).

3This constant can be reduced with more careful analysis.

27

4. General requests evicted from slot st in Line 3.1.1. By Line 3.2.3, any general request in slot st at time998

t has weight at most 2 cap[ℓt−1(st)]. So the total weight of such requests is at most 2
∑

t′∈R cap[t′].999

5. General requests to page pt evicted in Line 3.1.1. The algorithm replaces each such general request t′1000

by a specific request t (which it later evicts, unless the weight is zero) to the same page. Have general1001

request t′ charge its cost wt(pt′) = wt(pt), and any amount charged to t′ (in Item 6 below), to specific1002

request t. (We analyze the charging scheme for Items 5 and 6 below.)1003

6. General requests t′ evicted in Line 3.2.3. Have request t′ charge the cost of its eviction, and any1004

amount charged to t′ to request t. Since the slot holding pt′ is not in B, wt(pt′) < 1
2 wt(pt).1005

Each general request t receives at most one charge in Item 6, from a request t′ of at most half the weight1006

of t; this general request t′ may also receive such charges, forming a chain of charges, but since the weights1007

of the requests in this chain decrease geometrically, t is charged at most its weight. In Item 5, each specific1008

request t is charged by at most one general request t′ of the same weight, that may also carry the chain charge1009

not exceeding its weight. So this specific request is charged at most twice its weight. Overall, the charge of1010

each request from Items 5 and 6 is at most twice its weight.1011

The total weight of evictions considered in Items 1, 2, 3, and 4 is at most 2ϕ+ opt(σ). Adding also the1012

charges to these items by evictions considered in Items 5 and 6, we obtain that the total cost of the algorithm1013

is bounded by 3 (2ϕ+ opt(σ)) = 6ϕ+ 3 opt(σ).1014

8 Open Problems1015

The results here suggest many open problems and avenues for further research. Closing or tightening gaps1016

left by our upper and lower bounds would be of interest. In particular:1017

• For Slot-Heterogenous Paging, is the upper bound in Theorem 3.1 tight for every S ⊆ 2[k] \ {∅},1018

within poly(k) factors?1019

• For Page-Laminar Paging it is easy to show a lower bound of Ω(h), even for k = 1 and for randomized1020

algorithms. But it still may be possible to eliminate or reduce the multiplicative dependence on h. For1021

example, is it possible to achieve ratio O(h + k) with a deterministic algorithm and O(h + Hk)1022

with a randomized algorithm? Similarly, does Slot-Laminar Paging (where h ≤ k) admit an O(k)1023

deterministic ratio and O(log k) randomized ratio?1024

• For deterministic All-or-One Paging, we conjecture that the optimal ratio is 2k − 1. (For k = 2 we1025

can show an upper bound of 3.) In the randomized case, can ratio 2Hk − 1 be achieved?1026

• For Weighted All-Or-One Paging, is the optimal randomized ratio O(polylog(k))?1027

• The status of Heterogenous k-Server in arbitrary metric spaces is wide open. Can ratio dependent only1028

on k be achieved? This question, while challenging, could still be easier to resolve for Heterogenous1029

k-Server than for Generalized k-Server.1030

References1031

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized paging1032

algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/S0304-3975(98)1033

00116-9.1034

28

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9

[2] C. J. Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. Chasing convex bodies with linear1035

competitive ratio. Journal of the ACM, 68(5):32:1–32:10, August 2021. doi:10.1145/3450349.1036

[3] Nikhil Ayyadevara and Ashish Chiplunkar. The randomized competitive ratio of weighted k-server1037

is at least exponential. CoRR, abs/2102.11119, 2021. URL: https://arxiv.org/abs/2102.1038

11119, arXiv:2102.11119.1039

[4] Nikhil Bansal, Niv Buchbinder, Aleksander Mądry, and Joseph Naor. A polylogarithmic-competitive1040

algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium1041

on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,1042

pages 267–276. IEEE Computer Society, 2011. URL: http://ieeexplore.ieee.org/xpl/1043

mostRecentIssue.jsp?punumber=6108120, doi:10.1109/FOCS.2011.63.1044

[5] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for1045

weighted paging. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS1046

2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 507–517. IEEE Computer1047

Society, 2007. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?1048

punumber=4389466, doi:10.1109/FOCS.2007.7.1049

[6] Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-server bounds via combinatorial1050

dichotomies. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Sci-1051

ence, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 493–504. IEEE Computer Society,1052

2017. doi:10.1109/FOCS.2017.52.1053

[7] Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. Competitive algorithms1054

for generalized k-server in uniform metrics. In Proceedings of the Twenty-Ninth Annual ACM-SIAM1055

Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages1056

992–1001, 2018. doi:10.1137/1.9781611975031.64.1057

[8] Nikhil Bansal, Joseph (Seffi) Naor, and Ohad Talmon. Efficient online weighted multi-level paging. In1058

Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms1059

and Architectures, Virtual Event, USA, 6-8 July, 2021, pages 94–104. ACM, 2021. doi:10.1145/1060

3409964.3461801.1061

[9] Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, and Charles McGuffey. Writeback-aware1062

caching. In Bruce M. Maggs, editor, 1st Symposium on Algorithmic Principles of Computer Systems,1063

APOCS 2020, Salt Lake City, UT, USA, January 8, 2020, pages 1–15. SIAM, 2020. doi:10.1137/1064

1.9781611976021.1.1065

[10] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal,1066

5(2):78–101, 1966. doi:10.1147/sj.52.0078.1067

[11] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Syst. J.,1068

5(2):78–101, 1966. doi:10.1147/sj.52.0078.1069

[12] Marcin Bienkowski, Łukasz Jeż, and Pawel Schmidt. Slaying Hydrae: Improved bounds for general-1070

ized k-server in uniform metrics. In Pinyan Lu and Guochuan Zhang, editors, 30th International Sympo-1071

sium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages 14:1–14:14. Schloss1072

Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ISAAC.2019.14.1073

[13] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University1074

Press, 1998.1075

29

https://doi.org/10.1145/3450349
https://arxiv.org/abs/2102.11119
https://arxiv.org/abs/2102.11119
https://arxiv.org/abs/2102.11119
http://arxiv.org/abs/2102.11119
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6108120
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6108120
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6108120
https://doi.org/10.1109/FOCS.2011.63
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4389466
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4389466
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4389466
https://doi.org/10.1109/FOCS.2007.7
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.1145/3409964.3461801
https://doi.org/10.1145/3409964.3461801
https://doi.org/10.1145/3409964.3461801
https://doi.org/10.1137/1.9781611976021.1
https://doi.org/10.1137/1.9781611976021.1
https://doi.org/10.1137/1.9781611976021.1
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14

[14] Allan Borodin and Ran El-Yaniv. On randomization in on-line computation. Inf. Comput., 150(2):244–1076

267, 1999. doi:10.1006/inco.1998.2775.1077

[15] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical task1078

system. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.1079

[16] Mark Brehob, Richard J. Enbody, Eric Torng, and Stephen Wagner. On-line restricted caching. J.1080

Sched., 6(2):149–166, 2003. doi:10.1023/A:1022989909868.1081

[17] Mark Brehob, Stephen Wagner, Eric Torng, and Richard J. Enbody. Optimal replacement is NP-hard1082

for nonstandard caches. IEEE Trans. Computers, 53(1):73–76, 2004. doi:10.1109/TC.2004.1083

1255792.1084

[18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Mądry. K-server via1085

multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, edi-1086

tors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,1087

Los Angeles, CA, USA, June 25-29, 2018, pages 3–16. ACM, 2018. doi:10.1145/3188745.1088

3188798.1089

[19] Sébastien Bubeck, Yuval Rabani, and Mark Sellke. Online multiserver convex chasing and optimiza-1090

tion. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2093–1091

2104. SIAM, 2021.1092

[20] Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive algorithms for restricted caching and1093

matroid caching. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 -1094

22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume1095

8737 of Lecture Notes in Computer Science, pages 209–221. Springer, 2014. doi:10.1007/1096

978-3-662-44777-2_18.1097

[21] Niv Buchbinder, Christian Coester, and Joseph (Seffi) Naor. Online k-taxi via double coverage and1098

time-reverse primal-dual. In Mohit Singh and David P. Williamson, editors, Integer Programming and1099

Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-1100

21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science, pages 15–29. Springer,1101

2021. doi:10.1007/978-3-030-73879-2_2.1102

[22] Jannik Castenow, Björn Feldkord, Till Knollmann, Manuel Malatyali, and Friedhelm Meyer auf der1103

Heide. The k-server with preferences problem. In SPAA ’22: 34rd ACM Symposium on Parallelism in1104

Algorithms and Architectures, 2022. To appear. URL: https://arxiv.org/abs/2205.11102.1105

[23] Ashish Chiplunkar and Sundar Vishwanathan. Metrical service systems with multiple servers. Algo-1106

rithmica, 71(1):219–231, 2015. doi:10.1007/s00453-014-9903-7.1107

[24] Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms for the weighted1108

and the generalized k-server problems. ACM Trans. Algorithms, 16(1), December 2019. doi:10.1109

1145/3365002.1110

[25] Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman, Ravi1111

Sundaram, and Neal E. Young. Online paging with heterogeneous cache slots. In 40th International1112

Symposium on Theoretical Aspects of Computer Science (STACS 2023), 2023.1113

[26] Marek Chrobak and John Noga. Competitive algorithms for relaxed list update and multilevel caching.1114

J. Algorithms, 34(2):282–308, 2000. doi:10.1006/jagm.1999.1061.1115

30

https://doi.org/10.1006/inco.1998.2775
https://doi.org/10.1145/146585.146588
https://doi.org/10.1023/A:1022989909868
https://doi.org/10.1109/TC.2004.1255792
https://doi.org/10.1109/TC.2004.1255792
https://doi.org/10.1109/TC.2004.1255792
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1007/978-3-662-44777-2_18
https://doi.org/10.1007/978-3-662-44777-2_18
https://doi.org/10.1007/978-3-662-44777-2_18
https://doi.org/10.1007/978-3-030-73879-2_2
https://arxiv.org/abs/2205.11102
https://doi.org/10.1007/s00453-014-9903-7
https://doi.org/10.1145/3365002
https://doi.org/10.1145/3365002
https://doi.org/10.1145/3365002
https://doi.org/10.1006/jagm.1999.1061

[27] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. Caching is hard — even1116

in the fault model. Algorithmica, 63(4):781–794, 2012.1117

[28] Christian Coester and Elias Koutsoupias. The online k-taxi problem. In Moses Charikar and Edith1118

Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,1119

STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1136–1147. ACM, 2019. doi:10.1145/1120

3313276.3316370.1121

[29] Christian Coester and Elias Koutsoupias. Towards the k-server conjecture: A unifying potential,1122

pushing the frontier to the circle. In 48th International Colloquium on Automata, Languages,1123

and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), vol-1124

ume 198 of LIPIcs, pages 57:1–57:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.1125

doi:10.4230/LIPIcs.ICALP.2021.57.1126

[30] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Non-1127

monopolizable caches: Low-complexity mitigation of cache side channel attacks. ACM Trans. Archit.1128

Code Optim., 8(4), January 2012.1129

[31] Esteban Feuerstein. Uniform service systems with k servers. In Gerhard Goos, Juris Hartmanis, Jan1130

van Leeuwen, Cláudio L. Lucchesi, and Arnaldo V. Moura, editors, LATIN’98: Theoretical Informatics,1131

volume 1380, pages 23–32, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. doi:10.1007/1132

BFb0054307.1133

[32] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E.1134

Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991. doi:10.1016/1135

0196-6774(91)90041-V.1136

[33] Amos Fiat, Manor Mendel, and Steven S. Seiden. Online companion caching. In Rolf Möhring and1137

Rajeev Raman, editors, Algorithms — ESA 2002, pages 499–511, Berlin, Heidelberg, 2002. Springer1138

Berlin Heidelberg.1139

[34] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem. Theor. Comput.1140

Sci., 130(1):85–99, 1994. doi:10.1016/0304-3975(94)90154-6.1141

[35] Samuel Haney. Algorithms for Networks With Uncertainty. PhD thesis, Duke University, 2019. URL:1142

https://dukespace.lib.duke.edu/dspace/handle/10161/18661.1143

[36] Shahin Kamali and Helen Xu. Multicore paging algorithms cannot be competitive. In Proceedings of1144

the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pages 547–549, 2020.1145

[37] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competitive snoopy1146

caching. Algorithmica, 3:77–119, 1988. doi:10.1007/BF01762111.1147

[38] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM, 42(5):971–983,1148

1995. doi:10.1145/210118.210128.1149

[39] Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server variants. Theor.1150

Comput. Sci., 324(2-3):347–359, 2004. doi:10.1016/j.tcs.2004.06.002.1151

[40] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and Ruby B. Lee.1152

CATalyst: Defeating last-level cache side channel attacks in cloud computing. In 2016 IEEE Inter-1153

national Symposium on High Performance Computer Architecture (HPCA), pages 406–418, 2016.1154

doi:10.1109/HPCA.2016.7446082.1155

31

https://doi.org/10.1145/3313276.3316370
https://doi.org/10.1145/3313276.3316370
https://doi.org/10.1145/3313276.3316370
https://doi.org/10.4230/LIPIcs.ICALP.2021.57
https://doi.org/10.1007/BFb0054307
https://doi.org/10.1007/BFb0054307
https://doi.org/10.1007/BFb0054307
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0304-3975(94)90154-6
https://dukespace.lib.duke.edu/dspace/handle/10161/18661
https://doi.org/10.1007/BF01762111
https://doi.org/10.1145/210118.210128
https://doi.org/10.1016/j.tcs.2004.06.002
https://doi.org/10.1109/HPCA.2016.7446082

[41] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for server1156

problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.1157

[42] Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging algorithm.1158

Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.1159

[43] M. Mendel and Steven S. Seiden. Online companion caching. Theoretical Computer Science,1160

324(2):183–200, 2004. Online Algorithms: In Memoriam, Steve Seiden. doi:https://doi.1161

org/10.1016/j.tcs.2004.05.015.1162

[44] Jignesh Patel. Restricted k-server problem. Master’s thesis, Michigan State University, 2004. URL:1163

https://d.lib.msu.edu/etd/32678.1164

[45] Mark Sellke. Chasing convex bodies optimally. In Proceedings of the 2020 ACM-SIAM Symposium1165

on Discrete Algorithms (SODA), Proceedings, pages 1509–1518. Society for Industrial and Applied1166

Mathematics, 2020. doi:10.1137/1.9781611975994.92.1167

[46] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and paging rules.1168

Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.1169

[47] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based side chan-1170

nel attacks. In Proceedings of the 34th Annual International Symposium on Computer Architecture,1171

ISCA ’07, page 494–505, New York, NY, USA, 2007. doi:10.1145/1250662.1250723.1172

[48] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A dynamic cache partitioning system1173

using page coloring. In 2014 23rd International Conference on Parallel Architecture and Compilation1174

Techniques (PACT), pages 381–392, 2014. doi:10.1145/2628071.2628104.1175

[49] Wei Zang and Ann Gordon-Ross. CaPPS: cache partitioning with partial sharing for multi-1176

core embedded systems. Des. Autom. Embed. Syst., 20(1):65–92, 2016. doi:10.1007/1177

s10617-015-9168-7.1178

32

https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1007/BF01759073
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.015
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.015
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.015
https://d.lib.msu.edu/etd/32678
https://doi.org/10.1137/1.9781611975994.92
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/2628071.2628104
https://doi.org/10.1007/s10617-015-9168-7
https://doi.org/10.1007/s10617-015-9168-7
https://doi.org/10.1007/s10617-015-9168-7

	Introduction
	Formal Definitions
	Slot-Heterogenous Paging
	Upper bounds for deterministic Slot-Heterogenous Paging
	Lower bounds for deterministic Slot-Heterogenous Paging
	Lower bound for randomized Slot-Heterogenous Paging

	Upper Bounds for Page-Laminar Paging
	Slot-Laminar Paging
	Upper bounds for randomized and offline Slot-Laminar Paging
	Improved upper bound for deterministic Slot-Laminar Paging

	All-or-One Paging
	Lower bound for randomized All-or-One Paging
	NP-completeness of offline All-or-One Paging

	Weighted All-Or-One Paging
	Open Problems

