
Colocation, Colocation, Colocation∗: Optimizing1

Placement in the Hybrid Cloud2

Srinivas Aiyar3

Nutanix, Inc., San Jose, CA, USA4

sriniva.aiyar, karan.gupta@nutanix.com5

Karan Gupta6

Nutanix, Inc., San Jose, CA, USA7

karan.gupta@nutanix.com8

Rajmohan Rajaraman9

Northeastern University, Boston, MA, USA10

rra@ccs.neu.edu11

Bochao Shen12

Northeastern University, Boston, MA, USA13

ordinary@ccs.neu.edu14

Zhifeng Sun15

Northeastern University, Boston, MA, USA16

austin@ccs.neu.edu17

Ravi Sundaram18

Northeastern University, Boston, MA, USA19

koods@ccs.neu.edu20

Abstract21

Today’s enterprise customer has to decide how to distribute her services among multiple clouds22

- between on-premise private clouds and public clouds - so as to optimize different objectives,23

e.g., minimizing bottleneck resource usage, maintenance downtime, bandwidth usage or privacy24

leakage. These use cases motivate a general formulation, the uncapacitated1 multidimensional25

load assignment problem - VITA(F) (Vectors-In-Total Assignment): the input consists of n,26

d-dimensional load vectors V̄ = {V̄i|1 ≤ i ≤ n}, m cloud buckets B = {Bj |1 ≤ j ≤ m}27

with associated weights wj and assignment constraints represented by a bipartite graph G =28

(V̄ ∪ B, E ⊆ V̄ × B) restricting load V̄i to be assigned only to buckets Bj with which it shares an29

edge2. F can be any operator mapping a vector to a scalar, e.g., max, min, etc. The objective is30

to partition the vectors among the buckets, respecting assignment constraints, so as to achieve31

min[
∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i)]32

We characterize the complexity of VITA(min), VITA(max), VITA(max − min) and VITA(2nd max)33

by providing hardness results and approximation algorithms, LP-Approx involving clever round-34

ing of carefully crafted linear programs. Employing real-world traces from Nutanix, a leading35

hybrid cloud provider, we perform a comprehensive comparative evaluation versus three nat-36

ural heuristics - Conservative, Greedy and Local-Search. Our main finding is that on real-world37

workloads too, LP-Approx outperforms the heuristics, in terms of quality, in all but one case.38

2012 ACM Subject Classification Modeling methodologies39

∗ Play on the real estate mantra: Location, location, location
1 A defining feature of clouds is their elasticity or ability to scale with load
2 In a slight abuse of notation, we let Bj also denote the subset of vectors assigned to bucket Bj

© Srinivas Aiyar, Karan Gupta, Rajmohan Rajaraman, Bochao Shen, Zhifeng Sun, Ravi Sundaram;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sriniva.aiyar, karan.gupta@nutanix.com
mailto:karan.gupta@nutanix.com
mailto:rra@ccs.neu.edu
mailto:ordinary@ccs.neu.edu
mailto:austin@ccs.neu.edu
mailto:koods@ccs.neu.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Colocation, Colocation, Colocation

Keywords and phrases Approximation algorithm, Vector packing, LP rounding40

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2341

1 Introduction42

The launch of EC2 in 2006 by AWS [1] heralded the explosive growth in cloud computing.43

Cloud computing is an umbrella term for computing as an utility. It enables 24x7 Internet-44

based access to shared pools of configurable system resources and real-time provision-able45

higher-level services. Public clouds enable organizations to focus on their core businesses46

instead of spending time and money on IT infrastructure and maintenance. One of the major47

benefits of clouds is that they are elastic3 (which we model in this paper as uncapacitated).48

This allows enterprises to get their applications4 up and running quicker, and rapidly adjust49

resources to meet fluctuating and unpredictable business demand.50

Today, in addition to AWS, Microsoft’s Azure [5] and the Google Cloud [3] are the other51

major public cloud platforms. But the advent of multiple clouds means that enterprises are52

faced with several new questions, of which the following are some examples: How much of53

their load should they keep on-premise and how much should they colocate (or place) in54

public clouds? How should they mix and match the various options to save money without55

sacrificing customer satisfaction? A number of enterprise software companies such as HPE56

[4] and startups such as Turbonomic [7], Datadog [2] and RightScale [6] are beginning to57

provide software and sevice solutions to these problems.58

At the same time this is also a fertile area for new problems with the potential for clever59

theoretical solutions to have practical impact. In this paper we provide a framework - VITA60

: Vectors-In-Total Assignment - that captures a variety of interesting problems in the area61

of hybrid clouds with interesting theoretical challenges. In the subsection that follows we62

list a few typical use cases captured by the VITA framework.63

1.1 Motivation and Model64

Scenario 1. Minimizing peak pricing: Consider an enterprise customer that has a choice65

of several different cloud providers at which to host their VMs (virtual machines). The re-66

quirements of each VM can be characterized along several different resource dimensions such67

as compute (CPU), network (latency, bandwidth), storage(memory, disk) and energy. When68

different virtual machines are placed in the same elastic resource pool (cloud), their load69

across each dimension is accrued additively (though, of course the different dimensions can70

be scaled suitably to make them comparable). A typical pricing contract will charge based71

on the most bottle-necked dimension since peak provisioning is the biggest and most ex-72

pensive challenge for the resource provider. And different providers may have different rates73

based on differing infrastructure and their cost for installation and maintenance. The nat-74

ural question then arises - what is the optimal way for the enterprise customer to distribute75

the load amongst the different cloud providers so as to minimize total cost?76

Scenario 2. Minimizing maintenance downtime: Hosts and services, (and occasion-77

ally even data centers) need to be powered down every so often for maintenance purposes,78

e.g. upgrading the software version (or installing a new HVAC system in a data center).79

3 Elastic usually means that clouds can be considered to have infinite capacity for the operating range
of their customers. In this paper we ignore fine-grained time-based definitions such as in [21]

4 In the scope of this paper application refers to a collection of VMs and containers working in concert

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23

S. Aiyar, et al. 23:3

Given this reality, how should the application (collection of virtual machines and/or con-80

tainers collectively performing a task or service), be allocated to the different hosts so as to81

minimize the aggregate disruption? This scenario also applies to industrial machines where82

different factories (or floors of a factory) need to be shut down for periodical maintenance83

work.84

Scenario 3. Preserving privacy: Consider a set of end-users each with its own85

(hourly) traffic profile accessing an application. We wish to partition the application com-86

ponents across a set of clouds such that by observing the (hourly volume of) traffic flow of87

any single cloud it is not possible to infer which components are colocated there. This leads88

to the following question - how should we distribute load across clouds in order to minimize89

the maximum hourly variation in aggregate traffic? As an analogy, the situation here is90

similar to the problem of grouping households such that the variation of energy usage of a91

group is minimized making it difficult for thieves to infer who has gone on vacation.92

Scenario 4. Burstable billing: Most Tier 1 Internet Service Providers (ISPs) use93

burstable billing for measuring bandwidth based on peak usage. The typical practice is94

to measure bandwidth usage at regular intervals (say 5 minutes) and then use the 95th95

percentile as a measure of the sustained flow for which to charge. The 95th percentile method96

more closely reflects the needed capacity of the link in question than tracking by other97

methods such as mean or maximum rate. The bytes that make up the packets themselves98

do not actually cost money, but the link and the infrastructure on either end of the link cost99

money to set up and support. The top 5% of samples are ignored as they are considered100

to represent transient bursts. Burstable billing is commonly used in peering arrangements101

between corporate networks. What is the optimal way to distribute load among a collection102

of clouds, public and private, so as to minimize the aggregate bandwidth bill?103

The above scenarios constitute representative situations captured by the uncapacitated104

multidimensional load assignment problem framework - VITA. A host of related problems105

from a variety of contexts can be abstracted and modeled as VITA(F): the input consists of n,106

d-dimensional load vectors V̄ = {V̄i|1 ≤ i ≤ n} and m cloud buckets B = {Bj |1 ≤ j ≤ m}107

with associated weights wj and assignment constraints represented by a bipartite graph108

G = (V̄ ∪ B, E ⊆ V̄ × B) that restricts load V̄i to be assigned only to those buckets Bj with109

which it shares an edge. Here, F can be any operator mapping a vector to a scalar, such110

as projection operators, max, min, etc. Then the goal is to partition the vectors among the111

buckets, respecting the assignment constraints, so as to minimize112 ∑
j

wj ∗ F (
∑

V̄i∈Bj

V̄i)113

where, in a slight abuse of notation, we let Bj also denote the subset of vectors assigned114

to bucket Bj . VITA stands for Vectors-In-Total Assignment capturing the problem essence115

- vectors assigned to each bucket are totaled. Unless otherwise specified we use i to index116

the load vectors, j to index the cloud buckets and k to index the dimension. We let V̄i(k)117

denote the value in the k’th position of the vector V̄i.118

We now explain how VITA(F) captures the aforementioned scenarios. In general, dimen-119

sions will either represent categorical entities such as resources (e.g., CPU, I/O, storage, etc.,)120

or time periods (e.g., hours of the day or 5-minute intervals, etc.,). We gently remind the121

reader to note that in each of the scenarios the elasticity of the clouds is a critical ingredient122

so that contention between vectors is not the issue. The set of scenarios we present are but123

a small sample to showcase the versatility and wide applicability of the VITA framework.124

Scenario 1 is captured by having a vector for each VM, with each dimension representing125

CVIT 2016

23:4 Colocation, Colocation, Colocation

its resource requirement5; constraints representing placement or affinity requirements [22],126

weights wj representing the rates at different cloud providers. Then minimizing the sum of127

prices paid for peak resource usage at each cloud is just the problem VITA(max).128

In Scenario 2 each dimension represents the resource (say, CPU utilization) consumed129

by the application in a given time period, e.g. the vector for an application could have 24130

dimensions one for each hour in the day. Once the application is assigned to a data center131

(or cloud or cluster) it is clear that disruption is minimized if the maintenance downtime is132

scheduled in that hour where total resource utilization is minimum. Then minimizing the133

aggregate disruption is captured by the problem VITA(min).134

The dimensions in Scenario 3 are the hours of the day and the resource in question is135

the traffic. To prevent leakage of privacy through traffic analysis the goal is to distribute136

the application components across clouds so that the range between the peak and trough of137

traffic minimized. This problem is exactly represented as VITA(max − min).138

In Scenario 4, we have vectors for each application with 20 dimensions one for each 5th139

percentile [29, 28] or ventile of the billing period6. Then minimizing the aggregate bandwidth140

bill under the burstable, or 95th percentile, billing method is VITA(2nd max).141

1.2 Our results142

All the problems we consider are in NP [19]. For VITA(min) and VITA(max) we present143

our results as a lattice - see Figs 1a and 1b. For any given F, VITA(F) can be partitioned144

into a lattice of 4 different problem spaces based on the following 2 criteria: 1. constraints,145

and 2. dimensionality. The 4 different problem spaces arise from the Cartesian product:146

{unconstrained, constrained} X {bounded, unbounded}. Unconstrained refers to the situ-147

ation where there is no bipartite graph representing constraints, i.e. any load vector may148

be placed in any bucket. And, Bounded refers to the situation where each load vector has149

a fixed dimension (independent of n). It should be clear that the simplest of the 4 spaces150

is unconstrained, bounded VITA(F) and the most general is the constrained, unbounded151

version of VITA(F). We present our results, algorithms and hardness, for the different F,152

in the form of a lattice. In each of the figures, the algorithmic results are displayed only153

at the highest possible node in the lattice, since it automatically applies to all nodes in154

the downward-closure; similarly, hardness results are presented at the lowest possible node155

since they apply to all nodes in the upward-closure. Further, our hardness results use only156

uniform weights whereas our algorithmic results work for general weights.157

Our theory results are as follows:158

VITA(F) for F linear. We show that when F is linear then the problem is solvable exactly159

in polynomial-time. In particular VITA(avg) is in P.160

VITA(min). Our results are summarized in Fig. 1a. We show that VITA(min) is161

inapproximable when the dimensions are unbounded, i.e. it cannot be approximated to162

any finite factor. Since it is inapproximable we counter-balance this result by providing an163

O(log n, log n)-bicriteria approximation algorithm [25]. Our bicriteria algorithm produces164

an assignment of cost within O(log n) of the optimal while using no more than O(log n)165

copies of each bucket. The bicriteria result, which is based on rounding an LP (linear166

program) [27] can be considered the theoretical center-piece and contains the main ideas167

used in the other LP-based results in this paper.168

5 For time-varying requirements the problem can be modeled by #resources x #time-periods dimensions
6 This is a modeling approximation and does not exactly capture 5 minute samples.

S. Aiyar, et al. 23:5

Constrained

Unconstrained
Bounded

Unbounded

Exact

NP-hard

(strong)
Inapproximable

O(log n, log n)

(bicriteria)

min

(a) VITA(min). The simplest unbounded case
is inapproximable, and we give a bicriteria guar-
antee for the hardest case.

Constrained

Unconstrained
Bounded

Unbounded

ExactNP-hard

(strong)

:(log n)

max

max - min

(b) VITA(max) and VITA(max − min). The un-
constrained, cases are exactly solvable and we
have tight logarithmic guarantees for the con-
strained unbounded case.

VITA(max). Our results are summarized in Fig. 1b. Our results for VITA(max) also169

apply to VITA(max − min). We remind the reader that the unconstrained bounded box170

is empty because the algorithmic result for the harder unconstrained unbounded case171

(further up the lattice) applies .172

VITA(2nd max). 2nd max turns out to be a particularly difficult problem from the stand-173

point of characterizing its computational complexity. We consider the unweighted (or174

uniform weights) unconstrained case and the requirement that the number of buckets175

exceeds the number of dimensions. With these restrictions we are able to demonstrate an176

LP-based approximation algorithm that achieves a logarithmic factor of approximation.177

We also show that unconstrained, bounded VITA(2nd max) is weakly NP-hard [19].178

This paper got its start in practical considerations at Nutanix - a leading hybrid cloud179

provider. Faced with a seeming plethora of different cloud colocation use-cases we wondered180

whether they could be tackled using a common approach. The VITA framework answers181

this question by providing a unified method for comparing against natural heuristics and a182

common basis for making pragmatic infrastructure decisions. We used real-world industrial183

traces from Nutanix, to conduct a detailed comparative analysis of the approximation al-184

gorithms, collectively dubbed LP-Approx, against 3 natural heuristics - Conservative, Greedy185

and Local-Search. Conservative treats each vector and its associated objective value in isola-186

tion. Greedy assigns vectors sequentially so as to minimize the increment in objective value.187

Working with a given assignment Local-Search swaps vectors when doing so improves the188

objective value. Our main finding is that from a practical standpoint too LP-Approx is the189

best in terms of solution-quality in all but one of the four cases (Greedy beats LP-Approx in190

the case of VITA(min)). Our work can serve as a valuable reminder of how principled and191

sophisticated techniques can often achieve superior quality on practical work-loads, while192

also providing theoretical guarantees.193

1.3 Related Work194

There is extensive theory literature on multidimensional versions of scheduling and packing195

problems. [11] is an informative survey that provides a variety of new results for multi-196

dimensional generalizations of three classical packing problems: multiprocessor scheduling,197

bin packing, and the knapsack problem. The vector scheduling problem seeks to schedule198

n d-dimensional tasks on m machines such that the maximum load over all dimensions and199

all machines is minimized. [11] provide a PTAS for the bounded dimensionality case and200

CVIT 2016

23:6 Colocation, Colocation, Colocation

poly-logarithmic approximations for the unbounded case, improving upon [23]. For the vec-201

tor bin packing problem (which seeks to minimize the number of bins needed to schedule202

all n tasks such that the maximum load on any dimension across all bins is bounded by a203

fixed quantity, say 1), they provide a logarithmic guarantee for the bounded dimensionality204

case, improving upon [14]. This result was subsequently further improved by [9]. A PTAS205

was provided for the multidimensional knapsack problem in the bounded dimension case by206

[18]. The key distinction between the vector scheduling problem of [11] and our framework207

is that they seek to minimize the maximum over the buckets and the dimensions whereas (in208

VITA(max)) we seek to maximize the weighted sum over buckets of the maximum dimen-209

sion in each bucket. The multidimensional bin packing knapsack problems are capacitated210

whereas this paper deals with uncapacitated versions. There has also been a lot of work on211

geometric multidimensional packing where each vector is taken to represent a cuboid [13, 10].212

To the best of our knowledge our VITA formulation is novel - surprising given its simplicity.213

There is much recent literature (in conferences such as Euro-Par, ICDCS, SIGCOMM,214

CCGRID, IPDPS etc.,) substantiating the motivating scenarios we provide in the intro-215

duction (1.1) to this paper. We do not attempt to survey it in any meaningful way here.216

Peak provisioning and minimizing bottleneck usage is an area of active research in the sys-217

tems community [12, 30]. Fairness in provisioning multi-dimensional resources is studied in218

[20]. The use of CSP (Constraint Satisfaction Programming) in placement has been invest-219

igated [22]. Energy considerations in placement have also been explored [16, 17] [15, 29, 28].220

Building scalable systems that provide some guarantee against traffic analysis is an area of221

ongoing active research [32, 24, 26]. Relative to the specialized literature for each use-case222

our treatment is less nuanced (e.g., in reality, storage is less movable than compute, services223

are designed for (or to give the illusion of) continuous uptime, privacy is more subtle than224

just defeating traffic monitoring, etc). However, the generality of our approach enables us225

to abstract the essence of the different situations and apply sophisticated techniques from226

the theory of mathematical programming.227

We present our results in the sections that follow. Section 2 presents results for linear228

F. Section 3 presents our results for VITA(min) while Section 4 contains our results for229

VITA(max) and VITA(max − min). VITA(2nd max) results are presented in Section 5. Due230

to space constraints, all proofs are provided in the Appendix.231

2 VITA(F) for linear F232

By linear F we mean one of the following two situations:233

F is a vector and F (V̄) = F̄ · V̄ (where we abuse notation slightly and use F as a function234

and a vector).235

F is a matrix and the weights are vectors with ∗ representing an inner-product so that236

wj ∗ F is a scalar.237

▶ Lemma 1. VITA(F) can be solved exactly in polynomial time for linear F.238

▶ Corollary 2. VITA(avg) can be computed exactly in polynomial time.239

Note that many real-world pricing situations are captured by linear F, such as charging240

separately for the usage of each resource (dimension).241

S. Aiyar, et al. 23:7

3 VITA(min)242

3.1 Unconstrained, Bounded - exact243

First, we prove two lemmas about the optimal solution which will help us constrain the244

search space for our exact algorithm.245

Without loss of generality assume that the bucket index j is sorted in order of increasing246

weight wj .247

▶ Lemma 3. There exists an optimal solution which uses only the first b buckets, for b ≤ d.248

Further, let min(j) be the dimension with the minimum value in bucket j; then, the set249

{min(j)|1 ≤ j ≤ b} has all distinct elements.250

We remind the reader that V̄i(k) denotes the value in the k’th position of the vector V̄i.251

▶ Lemma 4. There exists an optimal solution in which item i is placed in that bucket j for252

which wj ∗ Vi(min(j)) is minimized, amongst the first d buckets.253

The above two lemmas give rise to a straightforward search, Algorithm 1.254

Algorithm 1 Exact Algorithm for Unconstrained Bounded VITA(min)
1: for each permutation Π of the first d buckets do
2: for each load vector V̄i do
3: Place load vector V̄i in that bucket j which minimizes wΠ(j) ∗ Vi(min(Π(j)))
4: Compute the value of the objective function for this permutation
5: Output the best value over all permutations and the corresponding assignment

▶ Theorem 5. Unconstrained, Bounded VITA(min) can be computed exactly in time O(m ∗255

n ∗ d!)256

3.2 Constrained, Bounded - strongly NP-hard257

▶ Theorem 6. Constrained, Bounded VITA(min) is strongly NP-hard.258

3.3 Unconstrained, Unbounded - inapproximable259

▶ Theorem 7. Unconstrained, Unbounded VITA(min) is inapproximable unless P = NP .260

3.4 Constrained, Unbounded - O(log n, log n) bicriteria261

Given that the problem is inapproximable (unless P=NP) we relax our expectations and262

settle for the next best kind of approximation - a bicriteria approximation, [25] where we263

relax not just the objective function but also the constraints. In this particular situation264

we will find a solution that uses at most O(log n) copies of each bucket while obtaining an265

assignment whose value is no worse than an O(log n) factor worse than the optimal solution266

which uses at most 1 copy of each bucket.267

Consider the following LP (Linear Program). Let yjk denote the fraction bucket j gives268

to dimension k, and xijk denote the weight vector i gives to dimension k of bucket j.269

CVIT 2016

23:8 Colocation, Colocation, Colocation

min
∑

j

wj

∑
i

∑
k

xijkvik min-LP270

s.t.
∑

k

yjk = 1 ∀j271 ∑
j

yjk = 1 ∀k272

xijk ≤ yjk ∀i, j, k273 ∑
j

∑
k

xijk ≥ 1 ∀i274

xijk ≥ 0 ∀i, j, k275

yjk ≥ 0 ∀j, k276

▶ Lemma 8. The above LP is a valid relaxation of Constrained, Unbounded VITA(min).277

Let x∗
ijk and y∗

jk be the optimal solution of the LP. The algorithm is as follows.278

Algorithm 2 Bicriteria Approximation for Constrained Bounded VITA(min)
1:
2: for Each vector do
3: Order its bucket-dimension pair by y∗

jk values. And maximize the corresponding x∗
ijk

values in order. So there will be only one x∗
ijk value that is neither equal to y∗

jk nor 0.

4: if This x∗
ijk value is greater or equal to 1

2 y∗
jk, then

5: round it to y∗
jk

6: else
7: round it to 0, and double all the previous non-zero x∗

ijk values.
8: for ln n

ε times do
9: for Each dimension k in each bucket j do

10: With probability y∗
jk make a copy of bucket j in dimension k. And assign all the

vectors with x∗
ijk = y∗

jk to this bucket.

▶ Theorem 9. Algorithm 2 is an O(log n, log n) bicriteria approximation algorithm for Con-279

strained Bounded VITA(min).280

4 VITA(max)281

Max - Min and Max are very similar, in that for the lower bound we can use the same282

log-hardness result since min is 0 and for the upper bound we can set the y variable to be283

greater than the difference of two dimensions for every pair of dimensions.284

4.1 Unconstrained, Unbounded - exact285

For example, unconstrained, bounded VITA(max) (see Fig. 1b) has an exact (polynomial-286

time) algorithm because a node above, namely unconstrained, unbounded VITA(max) does;287

further, this result is obviously tight and hence the square has a dotted background. Squares288

that do not have a dotted background represent open gaps that present opportunities for289

further research.290

S. Aiyar, et al. 23:9

▶ Theorem 10. Unconstrained, Unbounded VITA(max) can be computed exactly in time291

O(m + n) time by placing all items into the bucket with the smallest weight.292

4.2 Constrained, Bounded - strongly NP-hard293

▶ Theorem 11. Constrained, Bounded VITA(max) is strongly NP-complete even when the294

number of dimension equals 2.295

4.3 Constrained, Unbounded - Θ(log n)296

▶ Lemma 12. Constrained, Unbounded VITA(max) is strongly NP-complete, and can not297

be approximated within O(log n).298

▶ Lemma 13. Constrained, Unbounded VITA(max) is O(log n) approximable.299

Directly from Lemma 12 and 13, we get the following.300

▶ Corollary 14. Constrained, Unbounded VITA(max) is Θ(log n) approximable.301

5 VITA(2nd max)302

We found VITA(2nd max) to be a qualitatively harder problem and thus were forced to303

consider the restricted version where the weights are uniform and the number of buckets304

exceeds the (bounded) number of dimensions.305

5.1 Unweighted, Bounded, Unconstrained - weakly NP-hard306

▶ Theorem 15. Bounded, Unconstrained VITA(2nd max) is weakly NP-hard.307

5.2 Unweighted, Constrained, with number of buckets exceeding308

number of dimensions - O(log n) approximation309

Consider the following LP. Let xij be the fraction of vector i assigned to bucket j.310

min
m∑

j=1
yj 2nd max −LP311

s.t. yj ≥
n∑

i=1
xij · vik ∀j, k (j ̸= k)312

m∑
j=1

xij ≥ 1 ∀i313

314

▶ Lemma 16. The above LP 2nd max-LP is a valid relaxation of constrained VITA(2nd max)315

where the number of buckets exceeds the number of dimensions.316

▶ Lemma 17. Unweighted, Constrained, VITA(2nd max) with number of buckets exceeding317

number of dimensions can be approximated to factor O(log n).318

Proof. As with the algorithm and proof for min-LP, we need to repeat rounding {xij}319

O(log n) times to make sure that all vectors are placed in some bucket with high probability.320

◀321

CVIT 2016

23:10 Colocation, Colocation, Colocation

6 Experiments322

We implemented LP-Approx and the three heuristics in Python, using Python 2.7.5. We323

use SageMath [31] and GLPK [8] as our Linear Programming Solver. We conducted our324

experiments on a single core of a 4-core Intel i7-3770 clocked at 3.4 GHz (0.25MB L2 cache325

per core, and 2MB L3 cache per core), with 16GiB of DDR3-1600 RAM.326

Nutanix is a vendor of hyper-converged infrastructure appliances. For this paper we327

used a dataset obtained from an in-house cluster they maintain for testing and validation328

purposes. The cluster runs real customer workloads. The data was logged using the Prism329

system of Nutanix and then filtered, anonymized and aggregated before being handed to us.330

The dataset we received comprised of measurements logged every 5 mins of CPU, memory331

and storage used by 643 different services running continuously for the entire calendar month332

of August 2017. The data consisted of 643x8928 rows of 6 columns - timestamp, serviceID,333

CPU-usage, memory-usage, storage-utilization and bandwidth-usage.334

The goal of our experiments was to compare the LP-based approximation algorithms335

to 3 natural polynomial-time heuristics - Conservative, Greedy and Local-Search - on each336

of the 4 problems - VITA(max), VITA(min), VITA(max − min) and VITA(2nd max). We337

briefly describe the 3 heuristics:338

Conservative This heuristic assigns each vector in isolation, i.e. it assigns each vector V̄i339

to that bucket j which minimizes wj · F̃ (V̄i).340

Greedy The heuristic detailed in Algorithm 4 selects the vectors one by one in a random341

order and assigns to the bucket that minimizes the increase in the objective value.342

Local-Search Local search based vector placement in Algorithm 5 starts from a random343

feasible placement and repeatedly swaps vectors between two buckets to decrease the344

objective value. Since the size of the potential search space is exponential in n, the345

number of vectors, we restrict the heuristic to run the swapping step for a linear number346

of times.347

It is easy to see that all the 3 heuristics can be arbitrarily bad (Ω(n)) in terms of quality348

of approximation. However, we are interested in comparing their behavior on practical work-349

loads vis a vis each other as well as the corresponding LP-based approximation algorithm.350

We run each of the 4 schemes (3 heuristics and 1 approximation algorithm) on samples of n351

vectors drawn from the dataset. Each sample is drawn uniformly from the entire dataset n352

runs from 10 to 100 in steps of 10. Given a sample we simulate each scheme on the sample353

to obtain a measure of the solution-quality and run-time7. For a given n we run as many354

samples as are needed to minimize the sample variance of the statistic (solution-quality or355

run-time) to below 1% of the sample mean. For VITA(max) we utilize the 3 dimensions356

- CPU, memory and storage - after a suitable normalization, and averaged over the entire357

month, i.e. we sample from 643 rows. For VITA(min) we aggregate CPU usage on an hourly358

basis (from the 5 minute measurements which reduces the dataset from 8928 to 744 rows per359

service). For VITA(max − min) we aggregate bandwidth usage on an hourly basis per service.360

For VITA(2nd max) we use the bandwidth usage on a 5min basis for each service. Based on361

our experiments we collected measurements on the two main considerations - (1) solution362

quality and, (2) running time, for each of VITA(max), VITA(min), VITA(max − min) and363

7 We do not implement these schemes in the Nutanix system and then measure their performance as
that would be expensive in terms of development time and would produce little additional clarity over
the simulation based approach

S. Aiyar, et al. 23:11

VITA(2nd max). In Figs. 2-5 we use VITA(f) in place LP-Approx to emphasize the specific364

function f under consideration.365

6.1 Solution quality366

From Fig. 2a, Fig. 2c and Fig. 2d, it can be seen that the linear programming based approx-367

imation outperforms the heuristics for VITA(max), VITA(max − min) and VITA(2nd max)368

by a factor of about 1.5. Unfortunately, the out-performance does not stand out visually369

because of the compression in the scale of the graph caused by the very poor performance of370

Local-Search. Local-Search performs particularly poorly in these 3 cases due to its depend-371

ence on the starting configuration.372

For minimizing the maintenance down time in Fig. 2b, VITA(min) performs better373

than any of Greedy, Local-Search and Conservative. This is because VITA(min)’s bicriteria374

approximation scheme allows for the use of additional buckets, see Fig. 4. However, when375

the same number of extra buckets are given to all heuristics, we see that Greedy performs376

best.377

6.2 Running time378

Here we focus only on VITA and Greedy for two reasons: (1) Previous experiment results379

on solution quality show that VITA and Greedy are the two approaches of interest (2) Local-380

Search has much higher run time complexity than others. Fig. 3a-3d show that Greedy,381

basically linear-time, is superior to the LP based approximation algorithms.382

10 20 30 40 50 60 70 80 90 100

of vectors

0

5000

10000

15000

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
la

u
e

VITA(max)

Conservative

Greedy

Local search

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100

of vectors

500

1000

1500

2000

2500

3000

3500

4000

4500

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
a

lu
e

VITA(min)

Conservative

Greedy

Local search

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100

of vectors

0

2000

4000

6000

8000

10000

12000

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
a

lu
e

VITA(max-min)

Conservative

Greedy

Local search

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100

of vectors

0

2000

4000

6000

8000

10000

12000

14000

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
a

lu
e

VITA(2ndMax)

Conservative

Greedy

Local search

(d) VITA(2ndMax)

Figure 2 Quality of approximation of VITA(max, min, max-min, 2ndMax) vs {Greedy, Conser-
vative, Local-Search}

CVIT 2016

23:12 Colocation, Colocation, Colocation

10 20 30 40 50 60 70 80 90 100

of vectors

0

0.02

0.04

0.06

0.08

0.1

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
s
) VITA(max)

Greedy

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100

of vectors

0

2

4

6

8

10

12

14

16

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
s
)

VITA(min)

Greedy

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100

of vectors

0

0.02

0.04

0.06

0.08

0.1

0.12

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
s
)

VITA(max-min)

Greedy

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100

of vectors

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
s
e

c
s
) VITA(2ndMax)

Greedy

(d) VITA(2ndMax)

Figure 3 Running time of VITA(max, min, max-min, 2ndMax) vs Greedy

2 4 6 8 10 12 14 16 18 20

of given buckets

0

5

10

15

20

25

30

35

40

45

#
 o

f
u

s
e

d
 b

u
c
k
e

ts

VITA(min)

Figure 4 # of used buckets vs # of
given buckets for VITA(min)

10 20 30 40 50 60 70 80 90 100

of vectors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
v
e
ra

g
e
 o

b
je

c
ti
v
e
 v

a
lu

e

VITA(min)

Conservative

Greedy

Local search

Figure 5 Solution quality with same
number of additional buckets given to
heuristics

7 Conclusion and Future work383

We have proposed a new and general framework VITA that captures several naturally oc-384

curring problems in the context of hybrid clouds. We presented novel hardness results and385

approximation algorithms (using clever LP rounding). We conducted a detailed experimental386

evaluation comparing our approximation algorithm to several natural heuristics.387

On the experimental side it would be interesting to characterize natural workloads and388

develop heuristics with provable (average-case) guarantees. Our theoretical work has left389

some obvious open gaps including constrained bounded VITA(min) and VITA(max) and390

removing the restrictions from our results for VITA(2nd max). Another important direction391

for future investigation is devising distributed and online algorithms.392

S. Aiyar, et al. 23:13

References393

1 Amazon web services - cloud computing services. https://aws.amazon.com/.394

2 Datadog - modern monitoring and analytics. https://www.datadoghq.com/.395

3 Google cloud platform. https://cloud.google.com/.396

4 Hewlett packard enterprise - hybrid it with cloud. https://www.hpe.com/us/en/home.397

html.398

5 Microsoft azure cloud computing platform and services. https://azure.microsoft.com/399

en-us/.400

6 Rightscale. https://www.rightscale.com/.401

7 Turbonomic. https://turbonomic.com/.402

8 GLPK (GNU linear programming kit), 2006. URL: http://www.gnu.org/software/glpk.403

9 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method404

for set covering problems, with applications to multidimensional bin packing. SIAM J.405

Comput., 39(4):1256–1278, 2009.406

10 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional407

bin packing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete408

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 13–25, 2014.409

11 C. Chekuri and S. Khanna. On multi-dimensional packing problems. In SODA:410

ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Ex-411

perimental Analysis of Discrete Algorithms), 1999. URL: citeseer.ist.psu.edu/412

chekuri99multidimensional.html.413

12 Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao.414

Energy-aware server provisioning and load dispatching for connection-intensive internet415

services. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and416

Implementation, NSDI’08, pages 337–350, 2008.417

13 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Multidimen-418

sional bin packing and other related problems: A survey. https://people.math.gatech.419

edu/~tetali/PUBLIS/CKPT.pdf.420

14 W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ϵ in linear421

time. Combinatorica, 1:349–355, 1981.422

15 Xenofontas A. Dimitropoulos, Paul Hurley, Andreas Kind, and Marc Ph. Stoecklin. On the423

95-percentile billing method. In Passive and Active Network Measurement, 10th Interna-424

tional Conference, PAM 2009, Seoul, Korea, April 1-3, 2009. Proceedings, pages 207–216,425

2009.426

16 Corentin Dupont, Fabien Hermenier, Thomas Schulze, Robert Basmadjian, Andrey Somov,427

and Giovanni Giuliani. Plug4green: A flexible energy-aware VM manager to fit data centre428

particularities. Ad Hoc Networks, 25:505–519, 2015.429

17 Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien Her-430

menier. An energy aware framework for virtual machine placement in cloud federated data431

centres. In e-Energy, page 4. ACM, 2012.432

18 A.M. Frieze and M. Clarke. Approximation algorithms for the m-dimensional 0-1 knapsack433

problem: worst-case and probabilistic analyses. European J. Oper. Res., 15(1):100–109,434

1984.435

19 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the436

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.437

20 Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion438

Stoica. Dominant resource fairness: Fair allocation of multiple resource types. In Proceed-439

ings of the 8th USENIX Symposium on Networked Systems Design and Implementation,440

NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011, 2011.441

CVIT 2016

https://aws.amazon.com/
https://www.datadoghq.com/
https://cloud.google.com/
https://www.hpe.com/us/en/home.html
https://www.hpe.com/us/en/home.html
https://www.hpe.com/us/en/home.html
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.rightscale.com/
https://turbonomic.com/
http://www.gnu.org/software/glpk
citeseer.ist.psu.edu/chekuri99multidimensional.html
citeseer.ist.psu.edu/chekuri99multidimensional.html
citeseer.ist.psu.edu/chekuri99multidimensional.html
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf

23:14 Colocation, Colocation, Colocation

21 Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud computing:442

What it is, and what it is not. In Proceedings of the 10th International Conference on443

Autonomic Computing (ICAC 13), pages 23–27, San Jose, CA, 2013. USENIX. URL: https:444

//www.usenix.org/conference/icac13/technical-sessions/presentation/herbst.445

22 Fabien Hermenier, Julia L. Lawall, and Gilles Muller. Btrplace: A flexible consolida-446

tion manager for highly available applications. IEEE Trans. Dependable Sec. Comput.,447

10(5):273–286, 2013.448

23 D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling449

problems: theoretical and practical results. Journal of the ACM, 34:144–162, 1987. URL:450

citeseer.ist.psu.edu/470961.html.451

24 Rob Jansen, Kevin S. Bauer, Nicholas Hopper, and Roger Dingledine. Methodically model-452

ing the tor network. In 5th Workshop on Cyber Security Experimentation and Test, CSET453

’12, Bellevue, WA, USA, August 6, 2012, 2012.454

25 Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and Harry455

B. Hunt III. Bicriteria network design problems. J. Algorithms, 28(1):142–171, 1998.456

26 Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and resist-457

ing statistical disclosure. In Privacy Enhancing Technologies, 4th International Workshop,458

PET 2004, Toronto, Canada, May 26-28, 2004, Revised Selected Papers, pages 17–34, 2004.459

27 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for460

provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987. URL:461

https://doi.org/10.1007/BF02579324, doi:10.1007/BF02579324.462

28 Vamseedhar Reddyvari Raja, Amogh Dhamdhere, Alessandra Scicchitano, Srinivas463

Shakkottai, kc claffy, and Simon Leinen. Volume-based transit pricing: Is 95 the right464

percentile? In Passive and Active Measurement - 15th International Conference, PAM465

2014, Los Angeles, CA, USA, March 10-11, 2014, Proceedings, pages 77–87, 2014.466

29 Vamseedhar Reddyvari Raja, Srinivas Shakkottai, Amogh Dhamdhere, and kc claffy. Fair,467

flexible and feasible ISP billing. SIGMETRICS Performance Evaluation Review, 42(3):25–468

28, 2014.469

30 Mark Stillwell, Frédéric Vivien, and Henri Casanova. Virtual machine resource allocation470

for service hosting on heterogeneous distributed platforms. In 26th IEEE International471

Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China, May 21-472

25, 2012, pages 786–797, 2012.473

31 The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.1),474

2017. http://www.sagemath.org.475

32 Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: scalable476

private messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on477

Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, pages478

137–152, 2015.479

A Proofs480

Proof of Lemma 1. Using the linearity of F the value of the objective function can be481

simplified thus482 ∑
j

wj ∗ F (
∑

V̄i∈Bj

V̄i) =
∑

j

∑
V̄i∈Bj

wj ∗ F (V̄i)483

Hence minimizing the value of the objective function is simply a matter of finding the j that484

minimizes wj ∗ F (V̄i) for each feasible V̄i. ◀485

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
citeseer.ist.psu.edu/470961.html
https://doi.org/10.1007/BF02579324
http://dx.doi.org/10.1007/BF02579324

S. Aiyar, et al. 23:15

Proof of Corollary 2. Set F̄ = [1
d , 1

d , . . . , 1
d] where d is the dimension. It is straightforward486

to see that F̄ · V̄ =
∑

i
Vi

d . ◀487

Proof of Lemma 3. It is clear that if in a solution two buckets have the same dimension488

with the minimum value then the bucket with the larger weight can be emptied into the489

smaller without increasing the value of the objective function. Thus the set of dimensions490

with the minimum value must be distinct across buckets and therefore the optimal solution491

need have at most d buckets. It is also clear that if the optimal solution does not involve a492

bucket j but does involve a bucket j′ > j then all the items in bucket j′ can be moved to493

bucket j without increasing the value of the objective function. Thus the optimal solution494

may consist only of the first b buckets, for b ≤ d. ◀495

Proof of Lemma 4. Suppose not. Let item i be placed in bucket j′. Now if we move it to496

bucket j then the value of the objective function is changed by −wj′ ∗ Vi(min(j′)) + wj ∗497

Vi(min(j)) which by definition is non-positive. Contradiction, and hence proved. ◀498

Proof of Theorem 5. The correctness of Algorithm 1 follows from the prior two lemmas.499

The running time follows from the fact that the algorithm searches over d! permutations500

and for each permutation it takes O(m) time to assign each of the n load vectors. ◀501

Proof of Theorem 6. The proof is by reduction from Bin Packing [19] which is strongly502

NP-hard. In an instance of Bin Packing we are given m bins of the same (constant) size503

S and a collection of n items ai such that
∑

i ai = m ∗ S and we need to decide if these n504

items can be packed into the m bins.505

Given the instance of Bin Packing we create m buckets and m + n load vectors of506

dimension 2. m of the load vectors are of the form [S, 0] and the vectors are matched up507

with the buckets so that each such vector is necessarily assigned to its corresponding bucket.508

Then for each item ai there is a load vector [0, ai] and these vectors are unconstrained and509

can be assigned to any bucket. All weights are set to 1. Now, it is easy to see that the510

given instance of Bin Packing is feasible if and only if the value of the objective function of511

VITA(min) is m ∗ S. ◀512

Proof of Theorem 7. The proof is by reduction from Set Cover [19].513

In Set Cover we are given a collection of m sets over a universe of n elements and a514

number C and we need to decide whether there exists a subcollection of size C that covers515

all the elements.516

We reduce the given instance of Set Cover to Unconstrained, Unbounded VITA(min) as
follows: we let m be the dimension size as well as the number of buckets, one for each set.
And, for each element i, we have an m-dimensional load vector:

V̄i(j) =
{

1 if element i ∈ set j

∞ otherwise

We set the weights of C of the buckets to be 1 and the weights of the remaining buckets to517

be ∞.518

It is easy to see that the value of the objective function for Unconstrained, Unbounded519

VITA(min) is C if and only if there exist C sets covering all the elements, otherwise the520

value of the objective function is ∞. Thus, Unconstrained, Unbounded VITA(min) cannot521

be approximated to any factor. ◀522

CVIT 2016

23:16 Colocation, Colocation, Colocation

Proof of Lemma 8. First we need to verify that this LP is a valid relaxation of the original523

problem. In other words, every solution of the original problem can be translated to the524

integer solution of this LP. And every integer solution of this LP is a valid solution of the525

original problem.526

Suppose we have a solution of the original problem. Let min(j) be the minimum dimen-527

sion of bucket j, and σ(i) be the bucket assigned for load vector i. The value of the objective528

function for this solution is
∑

j wj

∑
i:σ(i)=j V̄i(min(j)). Now construct the integer solution529

of the LP. Let530

yjk =
{

1 if k = m(j)
0 otherwise

and

xijk =
{

1 if j = σ(i), k = m(j)
0 otherwise

Because each bucket only has one minimum dimension, the first constraint is satisfied.531

And each vector is assigned to one bucket, so the second and third constraints are satisfied532

also. On the other hand, if we have the integer solution, we can assign min(j) = k and σ(i) =533

j to have a valid solution of the original problem. So there is a one to one relation between534

the integer solutions of the LP and the solutions of the original problem. Furthermore, the535

objective function of the LP is the same as the objective function of the original problem. So536

the optimal integer LP solution must map to the optimal solution of the original problem,537

and vice versa. ◀538

Proof of Theorem 9. Notice that, in our algorithm we assume that x∗
ijk = y∗

jk or 0. This is539

not hard to achieve. For each item, it will order its favorite bin-dimension pair by y∗
jk values.540

And maximize the corresponding x∗
ijk values in order. So there is only one x∗

ijk value that541

is not equal to y∗
jk value or 0. If this x∗

ijk value is greater or equal to 1
2 y∗

jk, we can round it542

to y∗
jk. Our new objective value is within twice the LP value. If not, we could round it to543

0, and double all the previous non-zero x∗
ijk values. Then our value is still within twice the544

LP value. Even if we don’t double the previous x∗
ijk values, we still have

∑
j,k x∗

ijk ≥ 1/2,545

which we could use to bound the value output by our algorithm.546

The expected value of the solution obtained by the (above randomized) Algorithm 2 is547

exactly the same as the optimum value of the LP. The expected number of copies of each548

bucket we make is
∑

k yjk = 1. And the probability that vector i is not assigned to one of549

the buckets is: (where s = m ∗ d),550

Πj,k(1 − x∗
ijk) ≤

(
1 −

∑
j,k x∗

ijk

s

)s

=
(

1 − 1
s

)s

≤ e−1
551

So, if we repeat for t = ln n
ε times, then552

Pr[some vector is not assigned]

≤
∑

i

Pr[vector i is not assigned] = n

et
= ε553

The expected value of the solution is OPTLP · ln n
ε . The expected number of copies of554

a bucket is ln n
ε . Thus Algorithm 2 gives a (log n, log n)-approximation to Constrained555

Bounded VITA(min). ◀556

S. Aiyar, et al. 23:17

Proof of Theorem 10. We first show that the bucket with the smallest weight will always557

be used in the optimal solution. If the bucket with smallest weight is not used in the optimal558

solution, we can always move all the items in one bucket with non-smallest weight to the559

bucket with the smallest weight to improve the solution.560

Now, we show that if we move all the items in the buckets with non-smallest weight to561

the bucket with smallest weight, the objective value of this new solution will not increase.562

To see this, let the bucket B0with the smallest weight w0. Let the aggregated vector in563

B0 be V̄0. Let the bucket Bi with a non-smallest weight wi in the solution, the aggregated564

vector in Bi be V̄i.565

It is easy to see that w0 · max(V̄0 + V̄i) ≤ w0 · (max(V̄0) + max(V̄1)) ≤ w0 · max(V̄0) + wi ·566

max(V̄i).567

Thus, moving all items from Bi to B0 will not increase the objective value of the current568

solution.569

Moving all items to the smallest weighted buckets is optimal. ◀570

Proof of Theorem 11. We prove by making reduction from bin packing. For k bins with571

capacity c, we correspondingly assign k buckets. As part of input vectors, we will have k572

2-dimensional vectors (c, 0). Each of them are strictly constrained to each bucket. Then573

for each item i with size si in the problem of bin packing, we create a 2-dimensional vector574

(0, si) which can be put into any bucket. We further let each bucket have uniform weight575

of 1. Then there exists k bins that can hold all the items in the bin packing problem if and576

only if the objective value of this VITA(max) that equals kc is reachable. ◀577

Proof of Lemma 12. We prove by making reduction from set cover. First we let the number578

of dimensions of input vector in VITA(max) be the number of elements in the set cover579

problem. For each element si(i = 1 ∼ n), we correspondingly let vector V̄i has value one580

on dimension i, has value zero on all the other dimensions. Thus, there are no two element581

vectors has one value on the same dimension.582

Each subset Sj maps to a bucket Bj . If element si ∈ Sj , then V̄i can be placed at bucket583

Bj .584

Thus, there exists k subsets that cover all the elements if and only if the objective value585

of this VITA(max) that equals k is reachable. ◀586

Proof of Lemma 13. Consider the following LP. Let xij be the fraction of item i assigned587

to bucket j.588

min
m∑

j=1
wj ∗ yj max −LP589

s.t. yj ≥
n∑

i=1
xij · vik ∀j, k590

m∑
j=1

xij ≥ 1 ∀i591

592

It is easy to see that this max-LP is a valid relaxation of constrained, unbounded VITA(max).593

Then we need to repeat rounding {xij} O(log n) times to make sure that all items are placed594

to some buckets with high probability. The proof is similar to the part in min-LP. ◀595

CVIT 2016

23:18 Colocation, Colocation, Colocation

Proof of Theorem 15. The proof is by reduction from Partition [19]. In an instance of596

Partition we are given an array of numbers a1, a2, . . . , an such that
∑n

i=1 ai = 2B, and we597

are required to decide whether there exist a partition of these numbers into two subsets such598

that the sum of numbers in each subset is B.599

Given an instance of Partition we reduce it to an instance of Bounded, Constrained600

VITA(2nd max) as follows: our reduction will use 3 dimensions. For each number ai we601

construct the load vector [0, 0, ai]. We add another two vectors, [L, B, 0] and [B, L, 0],602

where L >> B, to the collection of vectors. And, there are two (3-dimensional) buckets603

with uniform weights which we take to be 1. In an optimal assignment vectors [L, B, 0] and604

[B, L, 0] will be assigned to different buckets because L >> B. Thus, the contribution of605

each bucket is at least B and the value of the objective function is always at least 2B. Now,606

from our construction, it is easy to see that if the given instance of Partition has a partition607

into two subsets with equal sums then the value of the objective function (of the instance)608

of VITA(2nd max) (to which it is reduced) is 2B. And if there is no equal sum partition609

into two subsets, then one of the buckets necessarily has a 2nd max dimension value greater610

than B, which means that the objective value has to be larger than 2B. ◀611

Proof of 16. First we need to verify that yj really represents the 2nd-maximum dimension in612

the LP solution. From the first LP constraint, we know yj is either the maximum dimension613

or the 2nd-maximum dimension. The following proof shows that based on the current LP614

optimum we could come up with a new LP optimum solution in which yj is the 2nd-maximum615

dimension of bin j. For each bin j with yj as maximum dimension, there are only 2 cases,616

as follows.617

618

Case 1: the item, with yj’s corresponding dimension as “free” dimension, has its “free”619

dimension as maximum. In bin j the “free” dimension is jth dimension. Assume yj represents620

the value in dimension dj of bin j, then we can find the bin in which dimension dj is621

the maximum (“free” dimension). Merge these two bins together and set dj as the “free”622

dimension of this bin. In the new solution, the cost won’t be more than the previous optimal623

solution, which means this is also an optimal solution.624

625

Case 2: the item, with yj’s corresponding dimension as “free” dimension, doesn’t have its626

“free” dimension as maximum. Let bin j have “free” dimension j. yj represents the value of627

dimension dj of bin j and it is the maximum dimension. Bin k has dj as “free” dimension.628

And yk is the maximum dimension of bin k. Then swap these two bins. The cost of new629

bin k is less than yj and the cost of new bin j is at most equal to yk. So the cost of new630

solution is better than the original optimal solution. This is a contradiction, which means631

this case couldn’t happen.632

633

To sum up, given an optimal solution of the LP, we can come up a new optimal solution634

in which each yj represents the 2nd-maximum dimension of bin j. ◀635

B Experiment636

B.1 Pseudo-code of heuristics637

B.2 Histograms of requests638

S. Aiyar, et al. 23:19

Algorithm 3 Heuristic 1 - Conservative
1: for each vector do
2: Assign the vector Vi to that bucket j which minimizes w · F (Vi).

Algorithm 4 Heuristic 2 - Greedy
1: Shuffle the order of vectors;
2: for each vector do
3: Assign the vector to that bucket such that the current objective value is raised the

least;

Algorithm 5 Heuristic 3 - Local-Search
1: for each vector do
2: Randomly assign it to a feasible bucket by affinity constraint;
3: for 1 to poly(n) steps do
4: for every two buckets do
5: Swap any pair of two vectors if the swap will reduce the objective value;

0 100 200 300 400 500 600 700 800 900 1000 1100

of VCPU

0

20

40

60

80

100

120

140

160

180

#
 o

f
re

q
u

e
s
ts

(a) # of VCPUs

0 100 200 300 400 500 600

Memory (GB)

0

500

1000

1500

2000

2500

#
 o

f
re

q
u

e
s
ts

(b) Memory size

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Storage size (GB)

0

500

1000

1500

2000

2500

3000

3500

#
 o

f
re

q
u

e
s
ts

(c) Storage

Figure 6 Histograms of requested resources

CVIT 2016

	Introduction
	Motivation and Model
	Our results
	Related Work

	VITA(F) for linear F
	VITA(min)
	Unconstrained, Bounded - exact
	Constrained, Bounded - strongly NP-hard
	Unconstrained, Unbounded - inapproximable
	Constrained, Unbounded - O(logn, logn) bicriteria

	VITA(max)
	Unconstrained, Unbounded - exact
	Constrained, Bounded - strongly NP-hard
	Constrained, Unbounded - (logn)

	VITA(2ndmax)
	Unweighted, Bounded, Unconstrained - weakly NP-hard
	Unweighted, Constrained, with number of buckets exceeding number of dimensions - O(logn) approximation

	Experiments
	Solution quality
	Running time

	Conclusion and Future work
	Proofs
	Experiment
	Pseudo-code of heuristics
	Histograms of requests

