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“If one had to identify one idea as central and novel to reinforcement learning, it would 
undoubtedly be temporal-difference (TD) learning.”

– SB, Ch 6



Temporal Difference Learning

Dynamic Programming: requires a full model of the MDP
– requires knowledge of transition probabilities, reward function, 
   state space, action space

Monte Carlo: requires just the state and action space
– does not require knowledge of transition probabilities & reward function

Action:

Observation:
Reward:

Agent World



Temporal Difference Learning

Dynamic Programming: requires a full model of the MDP
– requires knowledge of transition probabilities, reward function, 
   state space, action space

Monte Carlo: requires just the state and action space
– does not require knowledge of transition probabilities & reward function

TD Learning: requires just the state and action space
– does not require knowledge of transition probabilities & reward function

Action:

Observation:
Reward:

Agent World



Temporal Difference Learning

Dynamic Programming: 

or
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Dynamic Programming: 

Monte Carlo: 

or

(SB, eqn 6.1)
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Temporal Difference Learning

Monte Carlo: 

TD Learning:

(SB, eqn 6.1)

(SB, eqn 6.2)

TD Error == 



Temporal Difference Learning

TD(0) for estimating       :



SB Example 6.1: Driving Home

Scenario: you are leaving work to drive home...



SB Example 6.1: Driving Home

Initial estimate



SB Example 6.1: Driving Home

Add 10 min b/c of rain
on highway



SB Example 6.1: Driving Home

Subtract 5 min b/c highway 
was faster than expected



SB Example 6.1: Driving Home

Behind truck, add 5 min



SB Example 6.1: Driving Home

MC updates TD updates

Suppose we want to estimate average time-to-go from each point along journey...



SB Example 6.1: Driving Home

MC updates TD updates

MC waits until the end
before updating estimate

Suppose we want to estimate average time-to-go from each point along journey...



SB Example 6.1: Driving Home

MC updates TD updates

Suppose we want to estimate average time-to-go from each point along journey...

TD updates estimate
as it goes



Think-pair-share question

MC updates TD updates



Backup Diagrams

SB represents various different RL update equations pictorially as Backup Diagrams:

TD MC



Backup Diagrams

SB represents various different RL update equations pictorially as Backup Diagrams:

TD MCState

State-action pair

– Why is the TD backup diagram short?
– Why is the MC diagram long?



SB Example 6.2: Random Walk

– This is a Markov Reward Process (MDP with no actions)
– Episodes start in state C
– On each time step, there is an equal probability of a left or right transition 
– +1 reward at the far right, 0 reward elsewhere
– discount factor of 1
– the true values of the states are: 



Think-pair-share

– This is a Markov Reward Process (MDP with no actions)
– Episodes start in state C
– On each time step, there is an equal probability of a left or right transition 
– +1 reward at the far right, 0 reward elsewhere
– discount factor of 1
– the true values of the states are: 

1. express the relationship between the value of a state and its neighbors in the 
simplest form

2. say how you could calculate the value of each/all states in closed form



SB Example 6.2: Random Walk

– This is a Markov Reward Process (MDP with no actions)
– Episodes start in state C
– On each time step, there is an equal probability of a left or right transition 
– +1 reward at the far right, 0 reward elsewhere
– discount factor of 1
– the true values of the states are: 



Questions

In the figure at right, why do the small-alpha agents converge to lower RMS errors
relative to large-alpha agents? Out of the values for alpha shown, which should
converge to the lowest RMS value?



Pro/Con List: TD, MC, DP

DP MC TD

Pro              Con Pro              Con Pro              Con

Efficient

Complete 

Requires 
full model

Simple

Complete 

Slower than
TD

High variance

Faster than
MC

Complete

Low variance

TD(0) guaranteed to converge to neighborhood of optimal V for a fixed policy 
if step size parameter is sufficiently small.

– converges exactly with a step size parameter that decreases in size



Convergence/correctness of TD(0)

It will be easier to have this discussion if I introduce a batch version of TD(0)…



On-line TD(0)

TD(0) for estimating         :  

This algorithm runs online. 
It performs one TD update 

per experience



Batch TD(0)

Batch updating:
Collect a dataset      of experience (somehow)
Initialize V arbitrarily
Repeat until V converged:

For all                              :

This integrates a bunch of 
TD steps into one update

    is a dataset 
of experience

Let’s consider the case where we have a fixed dataset of experience
– all our learning must leverage a fixed set of experiences



TD(0)/MC comparison

Batch TD(0) and batch MC both converge for sufficiently small step size
– but they converge to different answers!



Question

Batch TD(0) and batch MC both converge for sufficiently small step size
– but they converge to different answers!

Why?



Think-pair-share

Given: an undiscounted Markov reward process with two states: A, B

The following 4 episodes:

Calculate:

1. batch first-visit MC estimates for V(A) and V(B)

2. the maximum likelihood model of this Markov reward process. Sketch the 
    state-transition diagram

3. batch TD(0) estimates for V(A) and V(B)

A,0,B,1
A,2
B,0,A,2
B,0,A,0,B,1



SARSA: TD Learning for Control

Recall the two types of value function:

1) state-value function: 

2) action-value function:

State-value fn

Action-value fn



SARSA: TD Learning for Control

Recall the two types of value function:

1) state-value function: 

2) action-value function:

State-value fn

Action-value fn

Update rule for TD(0):

Update rule for SARSA:



SARSA: TD Learning for Control

SARSA:



SARSA: TD Learning for Control

SARSA:

Convergence: guaranteed to converge for any e-soft policy (such as 
e-greedy) w/ e>0

– strictly speaking, we require the probability of visiting any
   state-action pair to be greater than zero always.



SARSA: TD Learning for Control

SARSA:

Convergence: guaranteed to converge for any e-soft policy (such as 
e-greedy) w/ e>0

– strictly speaking, we require the probability of visiting any
   state-action pair to be greater than zero always.

e-soft policy: any policy for which                        



SARSA Example: Windy Gridworld

– reward = -1 for all transitions until termination at goal state
– undiscounted, deterministic transitions
– episodes only terminate at goal state

– this would be hard to solve using MC b/c episodes are very long
– optimal path length from start to goal: 15 time steps
– average path length 17 time steps (why is this longer?)



Q-Learning: a variation on SARSA

Update rule for TD(0):

Update rule for SARSA:

Update rule for Q-Learning:



Q-Learning: a variation on SARSA

Update rule for TD(0):

Update rule for SARSA:

Update rule for Q-Learning:

This is the only difference between 
SARSA and Q-Learning



Q-Learning: a variation on SARSA

Q-Learning:



Think-pair-share: cliffworld

– deterministic actions
– -1 reward per time step;          
   -100 reward for falling off cliff
– e-greedy action selection
   (with e=0.1)

Why does Q-Learning get less avg 
reward?

How would these results be different for 
different values of epsilon?

In what sense are each of these solutions 
optimal?



Expected SARSA



Expected SARSA

Expected value of next state/action pair



Expected SARSA

Compare this w/ standard SARSA:

Expected value of next state/action pair



Expected SARSA

Expected value of next state/action pair

Interim performance: after first 100 
episodes

Asymptotic performance: after first 
100k episodes

Details:
– cliff walking task, eps=0.1



Backup diagrams



Think-pair-share

Why does SARSA perf drop off for larger alpha values? Why exp-SARSA not 
drop off?

Under what conditions would off-policy exp-SARSA and Q-learning be 
equivalent?

Interim performance: after first 100 
episodes

Asymptotic performance: after first 
100k episodes

Details:
– cliff walking task, eps=0.1



Maximization bias in Q-learning

The problem:

Maximization over random samples 
is not a good estimate of the max 

of the expected values
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For example: suppose you have two Gaussian variables, a and b.



Maximization bias in Q-learning

The problem:

Maximization over random samples 
is not a good estimate of the max 

of the expected values

For example: suppose you have two Gaussian variables, a and b.

A “Gaussian” is the probability distribution
corresponding to the “bell curve”:



Maximization bias in Q-learning

The problem:

Maximization over random samples 
is not a good estimate of the max 

of the expected values

For example: suppose you have two Gaussian variables, a and b.

Suppose that you want to estimate the expected value of the max over the two variables
– but you only get samples from each of the variables. You don’t know the expectation 

for either variable

Solution #1: 
– estimate sample mean of each variable,     and 
– then, calculate 



Think-pair-share

The problem:

Maximization over random samples 
is not a good estimate of the max 

of the expected values

For example: suppose you have two Gaussian variables, a and b.

Suppose that you want to estimate the max of the expected value over the two variables
– but you only get samples from each of the variables. You don’t know the expectation 

for either variable

Solution #1: 
– estimate sample mean of each variable,     and 
– then, calculate 

Questions:

1. For 2 Gaussian rand variables, how often does this occur:

2. Does the problem get worse or better w/ more variables (i.e. more actions)?



Why maximization bias is a problem

Two states, two actions
Rewards:
– going right from A always leads to zero reward and then terminates
– going left from B leads to stochastic reward with mean=-0.1 and unit variance
   and then terminates



Why maximization bias is a problem

Two states, two actions
Rewards:
– going right from A always leads to zero reward and then terminates
– going left from B leads to stochastic reward with mean=-0.1 and unit variance
   and then terminates

How do we fix this problem?



Double Q-Learning

Double Q-Learning:



Question

Double Q-Learning:

How exactly does this fix the problem?



Afterstate Representation

Sometimes, we know exactly how an action will effect the env’t,
but it is less clear how state will evolve after that.

– afterstates can help in this situation

Idea: reason in terms of the state of the world after executing
   the action currently under consideration.
– estimate Q-Table in terms of s’ rather than s,a
– easier to estimate state-values vs action-values

Example: tic-tac-toe



Unified view
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