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Planning

What do you think of when you think about “planning”?
— often, the word “planning” often means a specific class of algorithm
— here, we use “planning” to mean any computational process that
uses a model to create or improve a policy

planning

model » policy



For example: an unusual way to do planning

- simulated backups
experience

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]

model » values » policy

— why does this satisfy our expanded definition?
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Planning v Learning
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Models in RL

Model: anything the agent can use to predict how the environment will
respond to its actions

Two types of models:

1. Distribution model: description of all possibilities and their
probabilities

2. Sample model: a.k.a. a simulation model
— given a s,a pair, the sample model returns next state & reward
— a sample model is often much easier to get than the distribution
model




Models in RL

This iIs how we defined “model”

N : ent will
at the beginning of this course

Model: anything the
respond to its actions

Two types of models:

1. Distribution model: description of all possibilities and their
probabilities

2. Sample model: a.k.a. a simulation model
— given a s,a pair, the sample model returns next state & reward
— a sample model is often much easier to get than the distribution
model T

In this section, we’re going to
use this type of model a lot




Planning

An unusual way to do planning:
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™ experience
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Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]




Planning

An unusual way to do planning:

simulated backups
™ experience

model » values » policy

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]

Here, we’re using a sample model,
- but we don’t learn the model




Dyna-Q

Initialize ()(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(S’,a) — Q(S, 4)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" + Model(S, A)
Q(Sa A) — Q(Sa A) + Of[R + ymaxg Q(Sfaa) - Q(Sa AH

Essentially, perform these two steps continuously:
1. learn model
2. plan using current model estimate




Dyna-Q

Initialize ()(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
() Q(S, 4) — Q(S, A) + a[R + v maxe Q(S', a) — Q(S, A)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" + Model(S, A)

Q(S,A) « Q(S, A) + O:Id\ —ax, Q(S,a) — Q(S, A)]

ThIS “model” could be very simple

— it could just be a memory of
previously experienced transitions

— make predictions based on memory
of most recent previous outcomes in

" this state/action. /

Essentially, perform thes
1. learn model
2. plan using current




Dyna-Q on a Simple Maze

800
S
600 actions
Steps 0 planning steps
per 400- (direct RL only)
epISOde 5 planning steps
50 planning steps
200
]4_| [ I | | I I
2 10 20 30 40 50

Episodes



Why does Dyna-Q do so well?

WITHOUT PLANNING (7=0) WITH PLANNING (72=50)
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Policies found using g-learning vs dyna-q halway through second episode
— dyna-g w/ n=50
— optimal policy after three episodes!



Think-pair-share
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FErxercise 8.1 The nonplanning method looks particularly poor in Figure 8.3 because it is
a one-step method; a method using multi-step bootstrapping would do better. Do you
think one of the multi-step bootstrapping methods from Chapter 7 could do as well as
the Dyna method? Explain why or why not. O



What happens if model changes or is mis-estimated?

(SB, Example 8.2)
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Environment changes here




Think-pair-share

(SB, Example 8.2)
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Cumulative
reward
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" Questions:
— why does dyna-g stop getting reward?
— why does it start again?




What is dyna-Q+?

@ Uses an “exploration bonus™:

e Keeps track of time since each state-action pair was
tried for real

e An extra reward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

Z i —|— time since last visiting

the state-action pair
e The agent actually “plans™ how to visit long unvisited
states



Think-pair-share
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Ezxercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking and shortcut
experiments? [
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Ezercise 8.3 Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+

and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason
for this? L]



Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(5’,a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times: -
S < random previously observed state
A < random action previously taken in S
R, S’ < Model(S, A)
Q(Sa A) A Q(S? A) + a[R + Y maXg Q(S!?G) o Q(S? A)]

/ Unfocused replay from model \




Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(5’,a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times: -
S < random previously observed state
A < random action previously taken in S
R, S’ < Model(S, A)
Q(Sa A) A Q(S? A) + a[R + Y maXg Q(S!?G) o Q(S? A)]

Unfocused replay from model
— can we do better?




Prioritized Sweeping
WITH PLANNING (n=50)
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Instead of replaying all of these transitions on each iteration, just replay the
Important ones...

— Which states or state-action pairs should be generated during planning?

— Work backward from states who'’s value has just changed
— Maintain a priority queue of state-action pairs whose values would
change a lot if backed up, prioritized by the size of the change
— When a new backup occurs, insert predecessors according to their
priorities



Prioritized Sweeping

Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s, a), for all s,a, and PQueue to empty
Loop forever:

(a) S « current (nonterminal) state

b) A < policy(S, Q)

c) Take action A; observe resultant reward, R, and state, S’
d)

Model(S, A) < R, S’

)
) if P > 0, then insert S, A into PQueue with priority P
¢) Loop repeat n times, while PQueue is not empty:
S, A « first(PQueue)
R,S" + Model(S, A)
Q(S,A) + Q(S,A) +a [R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R + predicted reward for S, A, S
P + |R + ymax, Q(S,a) — Q(S, A)|.
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if P > 6 then insert S, A into PQueue with priority P 3
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Prioritized Sweeping: Performance
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Gridworld size (#states)

Both use n=5 backups per environmental interaction



Trajectory sampling

ldea: dyna-Q while sampling experiences from a trajectory rather than
uniformly, i.e. from the on-policy distribution

— IS it better to sample uniformly or from the on-policy distribution?

Value of
start state
under
greedy

policy

0

on-policy

b=1

1,000 STATES

uniform

on-policy

on-policy

0

I 1 I 1
5.000 10,000 15,000 20,000

Computation time, in expected updates
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