Planning and Learning

Robert Platt
Northeastern University

(some slides/material borrowed from Rich Sutton)

Planning

What do you think of when you think about “planning”?
— often, the word “planning” often means a specific class of algorithm
— here, we use “planning” to mean any computational process that
uses a model to create or improve a policy

planning

model » policy

For example: an unusual way to do planning

- simulated backups
experience

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]

model » values » policy

— why does this satisfy our expanded definition?

Planning v Learning

value/policy

acting
planning direct
RL
model experience
model

learning

Planning v Learning

value/policy

acting

planning direct

experience

Often called

“model-based RL" model

learning

Models in RL

Model: anything the agent can use to predict how the environment will
respond to its actions

Two types of models:

1. Distribution model: description of all possibilities and their
probabilities

2. Sample model: a.k.a. a simulation model
— given a s,a pair, the sample model returns next state & reward
— a sample model is often much easier to get than the distribution
model

Models in RL

This iIs how we defined “model”

N : ent will
at the beginning of this course

Model: anything the
respond to its actions

Two types of models:

1. Distribution model: description of all possibilities and their
probabilities

2. Sample model: a.k.a. a simulation model
— given a s,a pair, the sample model returns next state & reward
— a sample model is often much easier to get than the distribution
model T

In this section, we’re going to
use this type of model a lot

Planning

An unusual way to do planning:

simulated backups
™ experience

model » values » policy

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]

Planning

An unusual way to do planning:

simulated backups
™ experience

model » values » policy

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € §, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) + Q(S, A) + a| R + ymax, Q(S’,a) — Q(S, A)]

Here, we’re using a sample model,
- but we don’t learn the model

Dyna-Q

Initialize ()(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(S’,a) — Q(S, 4)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" + Model(S, A)
Q(Sa A) — Q(Sa A) + Of[R + ymaxg Q(Sfaa) - Q(Sa AH

Essentially, perform these two steps continuously:
1. learn model
2. plan using current model estimate

Dyna-Q

Initialize ()(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
() Q(S, 4) — Q(S, A) + a[R + v maxe Q(S', a) — Q(S, A)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" + Model(S, A)

Q(S,A) « Q(S, A) + O:Id\ —ax, Q(S,a) — Q(S, A)]

ThIS “model” could be very simple

— it could just be a memory of
previously experienced transitions

— make predictions based on memory
of most recent previous outcomes in

" this state/action. /

Essentially, perform thes
1. learn model
2. plan using current

Dyna-Q on a Simple Maze

800
S
600 actions
Steps 0 planning steps
per 400- (direct RL only)
epISOde 5 planning steps
50 planning steps
200
]4_| [I | | I I
2 10 20 30 40 50

Episodes

Why does Dyna-Q do so well?

WITHOUT PLANNING (7=0) WITH PLANNING (72=50)
0 G |~ y|¢y|=1] |G

} V= v |y }

S S -y |~ }
|||}

m =

= ===

Policies found using g-learning vs dyna-q halway through second episode
— dyna-g w/ n=50
— optimal policy after three episodes!

Think-pair-share

WITHOUT PLANNING (7=0) WITH PLANNING (72=50)
T G =y |ly|=|v| |G

} Pl 7|y }

S S -y |~ }
- |||~ 1

m ==

= ==

FErxercise 8.1 The nonplanning method looks particularly poor in Figure 8.3 because it is
a one-step method; a method using multi-step bootstrapping would do better. Do you
think one of the multi-step bootstrapping methods from Chapter 7 could do as well as
the Dyna method? Explain why or why not. O

What happens if model changes or is mis-estimated?

(SB, Example 8.2)

150+

Cumulative
reward

04 i
— T T 1
0 1000 2000 3000

/ Time steps

Environment changes here

Think-pair-share

(SB, Example 8.2)

150+

Cumulative
reward

'l 1 1
0 1000 2000 3000
Time steps

" Questions:
— why does dyna-g stop getting reward?
— why does it start again?

What is dyna-Q+?

@ Uses an “exploration bonus™:

e Keeps track of time since each state-action pair was
tried for real

e An extra reward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

Z i —|— time since last visiting

the state-action pair
e The agent actually “plans™ how to visit long unvisited
states

Think-pair-share

1504 400-

Cumulative
reward

Cumulative
reward

0 1000 2000 3000 0 3000 6000
Time steps Time steps

Ezxercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking and shortcut
experiments? [

400

Cumulative
reward

0 3000 6000
Time steps

Ezercise 8.3 Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+

and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason
for this? L]

Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(5’,a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times: -
S < random previously observed state
A < random action previously taken in S
R, S’ < Model(S, A)
Q(Sa A) A Q(S? A) + a[R + Y maXg Q(S!?G) o Q(S? A)]

/ Unfocused replay from model \

Prioritized Sweeping

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S, A) + a|R + ymax, Q(5’,a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times: -
S < random previously observed state
A < random action previously taken in S
R, S’ < Model(S, A)
Q(Sa A) A Q(S? A) + a[R + Y maXg Q(S!?G) o Q(S? A)]

Unfocused replay from model
— can we do better?

Prioritized Sweeping
WITH PLANNING (n=50)

v

G
%
%
I
t

g
I

i

:

: i
- '
? i

f

Instead of replaying all of these transitions on each iteration, just replay the
Important ones...

— Which states or state-action pairs should be generated during planning?

— Work backward from states who'’s value has just changed
— Maintain a priority queue of state-action pairs whose values would
change a lot if backed up, prioritized by the size of the change
— When a new backup occurs, insert predecessors according to their
priorities

Prioritized Sweeping

Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s, a), for all s,a, and PQueue to empty
Loop forever:

(a) S « current (nonterminal) state

b) A < policy(S, Q)

c) Take action A; observe resultant reward, R, and state, S’
d)

Model(S, A) < R, S’

)
) if P > 0, then insert S, A into PQueue with priority P
¢) Loop repeat n times, while PQueue is not empty:
S, A « first(PQueue)
R,S" + Model(S, A)
Q(S,A) + Q(S,A) +a [R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R + predicted reward for S, A, S
P + |R + ymax, Q(S,a) — Q(S, A)|.

(
(
(
(e
(f
(

S,) -QS, A —

)

if P > 6 then insert S, A into PQueue with priority P 3

W TD error

-

-

=
‘ what'’s this

/ part doing?

I\

}

e

Prioritized Sweeping: Performance

107]
106_
105 _
Updates
until 104 Prioritized
optimal sweeping
solution p3-
102 -

10

| | I I | | I I
0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Both use n=5 backups per environmental interaction

Trajectory sampling

ldea: dyna-Q while sampling experiences from a trajectory rather than
uniformly, i.e. from the on-policy distribution

— IS it better to sample uniformly or from the on-policy distribution?

Value of
start state
under
greedy

policy

0

on-policy

b=1

1,000 STATES

uniform

on-policy

on-policy

0

I 1 I 1
5.000 10,000 15,000 20,000

Computation time, in expected updates

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

