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Model Free Reinforcement Learning

Simplest solution: average all outcomes
from previous experiences in a given state

— this Is called a Monte Carlo method

- pixels -

Reward = game score

Goal:|learn a value function through trial-and-error experience

Recall: VW(St = 8) = Value of state S when acting according to policy 7T



Running Example: Blackjack

State: sum of cards in agent’s hand +
dealer’s showing card + does agent
have usable ace?

Actions: hit, stick
Objective: Have agent’s card sum be

greater than the dealer’s without
exceeding 21

Reward: +1 for winning, O for a draw,
-1 for losing

Discounting: v = 1

Dealer policy: draw until sum at least
17




Running Example: Blackjack

Dealer’'s Up Card
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If doubling down after splitting is not allowed, then just hit the following:
22and33vs.2and3 44vs.5and6 6B,6vs. 2

I|T|T|T|(XT|XI|ua|es
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Blackjack “Basic Strategy” is a set of rules for play so as to maximize return
— well known in the gambling community
— how might an RL agent /earn the Basic Strategy?
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Monte Carlo Policy Evaluation: Example

Dealer card:

: A
Agent’s hand: A
v
v
Agent sum, dealer’s card, ace?
State  ~  Action Next State Reward

19,10, no  HIT 2210, no 1



Monte Carlo Policy Evaluation: Example

Dealer card:

;A
Agent’s hand: A
v
v
Agent sum, dealer’s card, ace?
State  ~  Action Next State

19,10, no  HIT 2210, no

Bust!
(reward = -1)

Rewafd

-1



Monte Carlo Policy Evaluation: Example

State Action Next State Reward

19, 10, no HIT 22,10, no -1

Upon episode termination, make the following value function updates:

V((19,10,n0)) < —1



Monte Carlo Policy Evaluation: Example

Next episode...



Monte Carlo Policy Evaluation: Example

Dealer card:
e
Agent’s hand: A
o
v ¢
State Action Next State Reward




Monte Carlo Policy Evaluation: Example

Dealer card:

W
< P D
2R 3

Agent’s hand:

State Action Next State Reward

13, 10, no HIT 16, 10, no 0
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Monte Carlo Policy Evaluation: Example

Dealer card:

-
Agent’s hand: A A
vil i
State Action Next State Reward
13, 10, no HIT 16, 10, no 0

13, 10, no HIT 19, 10, no 0



Monte Carlo Policy Evaluation: Example

Dealer card:

I S
Agent’s hand: A A
vil v:
State Action Next State Reward
13, 10, no HIT 16, 10, no 0
13, 10, no HIT 19, 10, no 0



Monte Carlo Policy Evaluation: Example

WAa e
Dealer card: 343 a

vey | v

S e - Y S X
Agent’s hand: A A A
v vil w3 ¥

State Action Next State Reward
13, 10, no HIT 16, 10, no 0
13, 10, no HIT 19, 10, no 0

19, 10, no HIT 21, 22, no 1



Monte Carlo Policy Evaluation: Example

State Action Next State Reward
13, 10, no HIT 16, 10, no 0
16, 10, no HIT 19, 10, no 0
19, 10, no HIT 21, 22, no 1

Upon episode termination, make the following value function updates:

V((13,10,n0)) < 1
V((16,10,n0)) < 1
V((19,10,n0)) < (—14+1)/2



Monte Carlo Policy Evaluation: Example

After 10,000 episodes After 500,000 episodes

Usable
ace

Value function learned for “hit everything except for 20 and 21” policy.



Monte Carlo Policy Evaluation

Given a policy, 7T , estimate the value function, V' (s), for all states, s € S



Monte Carlo Policy Evaluation
Given a policy, 7T, estimate the value function, V' (s), for all states, s € §

Monte Carlo Policy Evaluation (first visit):

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € &
Returns(s) « an empty list, for all s € &

Loop forever (for each episode):
(Generate an episode following m: Sp, Ao, B1,51, 41, Ra, ..., 857-1, Ar_1, Rt
G« 0
Loop for each step of episode, t =T1T—1,T—-2, ..., (:
G +— G+ R
Unless S; appears in Sg, S1,...,5:-1:
Append G to Returns(S:)
V(Si) + average(Returns(St))



Monte Carlo Policy Evaluation

81 82 e o o Sn

All states:

s

To get an accurate estimate of the value function, every state has to be visited many
times.



Think-pair-share: frozenlake env

0123
SFFF States: grid world coordinates
FHEH  sionsLRuo
FFFH Reward: 0 except at G
HFFG

WN RO




Think-pair-share: frozenlake env

0123

States: grid world coordinates

0
1 |: Actions: L, R, U, D
2

I: I: H Reward: 0 except at G where r=1

3 HF

Given: three episodes as shown

Calculate: values of states on top row as calculated by MC




Monte Carlo Control

So far, we're only talking about policy evaluation

... but RL requires us to find a policy, not just evaluate it... How?

evaluation L Estimate () (St = S, = a) via rollouts
Q ~ Gx

m Q

e \
g~ greedy(Q) m(s) < arg max Qr(s¢ = s,a; = a)
ac

iImprovement

Key idea: evaluate/improve policy iteratively...



Monte Carlo Control

Monte Carlo, Exploring Starts

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
(?(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) « empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ap, following 7: Sg, Ag, R1,...,57-1, Ar—1, R
G+ 0
Loop for each step of episode, t=T-1,T-2,...,0:
G vG + R
Unless the pair S;, A; appears in Sg, Ag, S1. A1 ..., S8 1. A1
Append G to Returns(St, A)
Q(S;, As) « average( Returns(S;, Az))
m(S;) + argmax,_ Q(S;, a)



Monte Carlo Control

Monte Carlo, Exploring Starts

o N
Initialize: Exploring starts:
m(s) € A(s) (arbitrarily), for all s _ each episode starts with a random
Q(? a) € R (arbitrarily), for all s action taken from a random state
Returns(s, a) < empty list, for al. -

Loop forever (for each episode):

Choose Sy € 8, Ay € A(Sp) randomly %11-:*11 that all pairs have probability > 0

Generate an episode from Sy, Ap, following 7: Sg, Ag, R1,...,57-1, Ar—1, R
G+ 0
Loop for each step of episode, t=T-1,T-2,...,0:
GG ﬂf{; + Rf_|_]_
Unless the pair S;, A; appears in Sg, Ag, S1. A1 ..., S8 1. A1
Append G to Returns(St, A)
Q(S;, As) « average( Returns(S;, Az))
m(S;) + argmax,_ Q(S;, a)



Monte Carlo Control

Monte Carlo, Exploring Starts

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
((s,a) € R (arbitrarily), for all s €8, a € A(s)

Returns(s,a) < empty list, for all s € 8§, a € A(s)

Loop forever (for each episode):

Choose Sy € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ay, following w: Sy, Ag, R1,...,57—1, Ar_1, Rt

G <0
Loop for each step of episode, t=T-1,7-2,...,0:
G +— vG + R

Append G to Returns(St, A;)
Q(S;. Ay) + average( Returns(S;. A;))

Unless the pair S;, A; appears in Sg, Ag, S1. A1 ..., 5 -1, A _1:

\

| evaluation

7(S;) < argmax, Q(S;, a)

»

/

7

SN
@

7~ greedy(Q)

improvement



Monte Carlo Control

~

Monte Carlo, Exploring Starts " Notice there is only one step of policy
evaluation
Initialize: — that’s okay.

m(s) € A(s) (arbitrarily), for all ¢ — each evaluation iter moves value fn
Q{e a) € R (arbitrarily), for all s toward its optimal value. Good enough

Returns(s, a) + empty list, for &\\ to improve policy. e

Loop forever (for each episode): ‘
Choose Sy € 8, Ag € A(Sp) randomly such that all pairs llﬁ . _.obability > 0

Generate an episode from Sy, Ay, following 7m: Sy, Ag. R1,....Sr—1, Ar_1, Rt
G <0
Loop for each step of episode, t=T-1,7-2,...,0:

Unless the pair S;, A; appears in Sy, Ag, S1. A1 ..., Si—1. A1

Append G to Returns(St, A:) |
Q(S;. A;) + average( Returns(S;. A;)) T evgluatlon
7(S;) < argmax, Q(S;, a) — "

7T Q

7~ greedy(Q)

improvement
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Monte Carlo Control
n*

STICK 120

HIT 14

A234567 8910

STICK 119 €

s
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113 O-
112

A2345678910
Dealer showing




Monte Carlo Control

HIT

STICK
No

usable

ace HIT

L

A2345678910

Dealer showing

What the MC agent learned
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The official “basic strategy”

If doubling down after splitting is not allowed, then just hit the following:

o,6vs. 2

ddvys. SandB

22and3,3vs. 2and 3



Monte Carlo Control: Convergence

1 Greedified policy meets the conditions for policy improvement:
Gy, (55 Th1(5)) Gm, (8, ArgMax gr, (s, a))

a

Ingucqﬂk(s,a)

qr. (55 Tk (5))

Ur,. (S).

v IV

[ And thus must be = m, by the policy improvement theorem

1 This assumes exploring starts and infinite number of episodes
for MC policy evaluation
1 To solve the latter:
= update only to a given level of performance

= alternate between evaluation and improvement per episode



Monte Carlo Control: Convergence

1 Greedified policy meets the conditions for policy improvement:

Qry, (S, Trt1(5))

v IV

[ And thus must be = T, by the

qr,. (S, argmax qr, (s, a))

a

max qr. (S, Q)

qr. (55 Tk (5))

Ur,. (S).

policy improvement theorem

=] Thi%agg.,mmwwim@l@“ o wﬂf‘enisodes
O a5 (5)) 2 vn(s). Vs €S

T qn x(8), :
. then v,/ (s) > v, (s) i.e. ' is better than =




Policy Improvement Theorem: Proof (Sketch)

Ur(8) < g (5,7 (5))

= E[R1_|_l + "jf'i}ﬂ(fﬂ_|_l) | Slt — &, At :}TF(S)] {h} (f—lb))
= ]Eﬂ-f R1_|_l —+ "‘If'-!}ﬂ(a.91+l) | St :S]
< Ex|Rip1 +7qn(Sit1 ?'T;(Sr+l)) | S¢=s] (by (4.7))

= ]Eﬂ-f R1_|_l —+ ﬂFEﬂrlRt_Fg + ﬂ."r"Uf.'r(St+2)|St+l: At—l—l :?Tf(St_Fl )] | St :S]
= Eﬂ’jRI—Fl +vRip2 + "‘.f’z'ﬂw(SrJrzj | St ZS]
< E. er+1 + ":f.Rr+2 + ﬁFERHH + ".f’g'ﬂn- (SH-H)

J.S't = S]

< Eﬂ’[Rt+l +vRiy2 + "‘.f’ERt+3 + "‘.-"ERt—l—:L + |5 ZS]

= Vg (8).



E-Greedy Exploration

" Without exploring starts, we are not \
Monte Carlo. Exploring Starts: guaranteed to explore the state/action
Initialize: space
7(s) € A(s) (arbitrarily), for all s — Why is this a problem?
Q{e a) € R (arbitrarily), for all s ¢ —Wwhat happens if we never experience
Returns(s, a) < empty list, for al . certain transitions? y.

Loop forever (for each episode): —
Choose Sy € 8, Ag € A(Sp) randomly 511-?11 that all pairs have probability > 0
Generate an episode from Sy, Ag, following 7: Sy, Ag, R1,...,57-1, Ar_1, Ry
G+ 0
Loop for each step of episode, t =T-1,T-2,...,0:

G "‘,f‘fr + Rt—l—l

Unless the pair S;, A; appears in Sg, Ag, S1, A1 ..., 5 —1, A _1:
Append G to Returns(St, Ay)
Q(S;, Ay) «+ average( Returns(S;, A;))
m(S;) + argmax, Q(S;, a)




E-Greedy Exploration

e
e
//

Without exploring starts, we are not
guaranteed to explore the state/action
space

— why Is this a problem?

— what happens if we never experience
certain transitions?

Monte Carlo, Exploring Starts:

Initialize:
m(s) € A(s) (arbitrarily), for all s
(?(s,a) € R (arbitrarily), for all s «

/’//

Returns(s, a) < empty list, for all 5 B
Loop forever (for each episode): 7 .
Choose Sy € 8, Ag € A(Sp) randomly suc> Y
renerate an episode from Sy, Ag, followin Can we accomplish this without
G+ 0 exploring starts?

Loop for each step of episode, t=T—-1,1T- _
GG +— "‘I.-’(; + Rt—l—l
Unless the pair S;, A; appears in Sg, Ag, S1. A1 ..., 51, A _1:
Append G to Returns(St, A;)
Q(S;, A;) + average( Returns(S;, A;))
m(S;) < argmax,_ Q(S;, a)




E-Greedy Exploration

/ /,/ \\\\

Without exploring starts, we are not
Monte Carlo, Exploring Starts: guaranteed to explore the state/action

Initialize: space

m(s) € A(s) (arbitrarily), for all s — why is this a pr_ObIem? _
Q(s,a) € R (arbitrarily), for all s — what happens if we never experience

| certain transitions?

Returns(s, a) < empty list, for alh P %
Loop forever (for each episode): ///

Choose Sy € 8, Ag € A(Sp) randomly such e I |

senerate an episode from Sp. Ao, followin Can we accomplish this without

G0 exploring starts?

Loop for each step of episode, t =T—1,
Unless the pair S;, A; appears in Sy Yes: create a stochastic ]
Append G to Returns(Sy, As) (e-greedy) policy
Q(S;, A;) + average(Returns(Sy, A;))
m(S;) < argmax,_ Q(S;, a)




E-Greedy Exploration

Greedy policy:

1 lf a=a a* — arg max Q(S7 CL)

mlals) = <
(als) 0 otherwise aeA

.

E-Greedy policy:
- €
1 — € _|_ T Al 1f a = a,*
_ A
m(als) =<«
W otherwise




E-Greedy Exploration

Greedy policy:

_
o *
W(G‘S) — < 1fa=a a* = arg?eai{Q(Sw)
0 otherwise
.
ety pales
| €
l—e+— ifa=a"
_ .
L
W otherwise

Action drawn uniformly from 4




E-Greedy Exploration

Greedy policy:

(als) B
T(a|s) = <
0
E-Greedy policy:
r €
1 — € _|_ T a1 lf a = CL*
_ Al
m(als) =<
m otherwise
.

— Notice that this is a stochastic policy (not deterministic).
— This is an example of an soft policy
— soft policy: all actions in all states have non-zero probability




E-Greedy Exploration

Monte Carlo, e-greedy exploration:

Algorithm parameter: small £ > ()

Initialize:

m +— an arbitrary e-soft policy

(Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) + empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sg, Ag, Ry, ..., 571, Ap_1, Ry

G0

Loop for each step of episode, t =T —1,T -2,

G+ vG+ Ry

Unless the pair S;, A; appears in Sp, Ag, S1, Al E-greedy exploration

Append G to Retur

()(S;, A;) « average( Returns(S;, A;))

HS( Sf: Af)

e

For all a € A(S}):

m(alS;) {

A* « argmax, Q(S;,

a)

1—e+e/|A(S:)

e/|A(S)|

(w1t11 ties broken arbitrarily)

if a = A*
if a £ A*




Off-Policy Methods

« On-policy methods evaluate or improve the policy that is used to
make decisions.

« Off-policy methods evaluate or improve a policy different from that
used to generate the data.

« The target policy is the policy (1) we wish to evaluate/improve.
« The behavior policy is the policy (b) used to generate experiences.

« Coverage:

Vs,a|m(als) >0 = b(als) > 0]



MC Summary

MC methods estimate value function by doing rollouts

Can estimate either the state value function, V (s), or the action value function, Q)(s, a)
MC Control alternates between policy evaluation and policy improvement

E-greedy exploration explores all possible actions while preferring greedy actions

Off-policy methods update a policy other than the one used to generate experience



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

