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The RL Setting

On a single time step, agent does the following:
1. observe some information
2. select an action to execute
3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the 
long run
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Let’s turn this into an MDP

On a single time step, agent does the following:
1. observe state
2. select an action to execute
3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the 
long run
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Let’s turn this into an MDP

On a single time step, agent does the following:
1. observe state
2. select an action to execute
3. take note of any reward

Goal of agent: select actions that maximize cumulative reward in the 
long run

Action

Observation
Reward

Agent WorldState

This part is the MDP



  

Example: Grid world

Grid world:
– agent lives on grid
– always occupies a single cell
– can move left, right, up, down
– gets zero reward unless in “+1” or “-1” cells



  

States and actions

State set:

Action set:



  

Reward function

Reward function:

Otherwise:



  

Reward function

Reward function:

Otherwise:

In general:



  

Reward function

Reward function:

Otherwise:

In general:

Expected reward on this time step given
that agent takes action    from state



Transition function

Transition model:

For example:



Transition function

Transition model:

For example:

– This entire probability distribution 
can be written as a table over
state, action, next state.

probability of 
this transition



Definition of an MDP

An MDP is a tuple:

where

State set:

Action set:

Reward function:

Transition model:



Example: Frozen Lake

State set:

Action set:

Reward function:

Transition model: only one third chance of going in specified direction
                             – one third chance of moving +90deg
                             – one third change of moving -90deg

if

otherwise

Frozen Lake is this 4x4 grid



Example: Recycling Robot

Example 3.4 in SB, 2nd Ed.



Think-pair-share

Mobile robot:
– the robot moves on a flat surface
– the robot can execute point turns either left or right. It can also go 

forward or back with fixed velocity
– it must reach a goal while avoiding obstacles

Express mobile robot control problem as an MDP



Definition of an MDP

An MDP is a tuple:

where

State set:

Action set:

Reward function:

Transition model:
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Definition of an MDP

An MDP is a tuple:

where

State set:

Action set:

Reward function:

Transition model:

Why is it called a Markov decision process?

Because we’re making the following assumption:

– this is called the “Markov” assumption



The Markov Assumption

Suppose agent starts in        and follows this path:
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The Markov Assumption

Suppose agent starts in        and follows this path:



The Markov Assumption

Suppose agent starts in        and follows this path:

Notice that probability of arriving in         if agent executes right action
does not depend on path taken to get to         :



Think-pair-share

Cart-pole robot:
– state is the position of the cart and the orientation of the pole
– cart can execute a constant acceleration either left or right

1. Is this system Markov? 
2. Why / Why not?
3. If not, how do you change it to make it Markov?



Policy

A policy is a rule for selecting actions:

If agent is in this state, then take this action
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Policy

A policy is a rule for selecting actions:
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A policy can be stochastic:



Question

A policy is a rule for selecting actions:

If agent is in this state, then take this action

A policy can be stochastic:

Why would we want to 
use a stochastic policy?



Episodic vs Continuing Process

Episodic process: execution ends at some point and starts over.
– after a fixed number of time steps
– upon reaching a terminal state

Terminal state

Example of an episodic task:
– execution ends upon reaching terminal state OR

         after 15 time steps



Episodic vs Continuing Process

Continuing process: execution goes on forever.

Process doesn’t stop
– keep getting rewards

Example of a continuing task



Rewards and Return

On each time step, the agent gets a reward:



Rewards and Return

On each time step, the agent gets a reward:

– could have positive reward at goal, zero reward elsewhere
– could have negative reward on every time step
– could have an arbitrary reward function
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Rewards and Return

On each time step, the agent gets a reward:

Return can be a simple sum of rewards:

But, it is often a discounted sum of rewards:

What effect does gamma have?



Rewards and Return

On each time step, the agent gets a reward:

Return can be a simple sum of rewards:

But, it is often a discounted sum of rewards:

Reward received k time steps in the future is only 
worth          of what it would have been worth immediately



Rewards and Return

On each time step, the agent gets a reward:

Return can be a simple sum of rewards:

But, it is often a discounted sum of rewards:



Rewards and Return

On each time step, the agent gets a reward:

Return can be a simple sum of rewards:

But, it is often a discounted sum of rewards:

Return is often evaluated over an infinite horizon:

Return



Think-pair-share



Value Function

Value of state      when acting according to policy      :
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Value Function

Value of state      when acting according to policy      :

Value of taking action      from state      when acting according to policy      :

Value of a state == expected return from that state
                if agent follows policy

Value of a state/action pair == expected return when 
                                                        taking action a from state s

                                                     and following     after that



Value Function

Value of state      when acting according to policy      :

Value of taking action      from state      when acting according to policy      :



Value function example 1

Policy:

Discount factor:

Value fn: 1098.17.36.66.9



Value function example 2

Policy:

Discount factor:

Value fn: 10.660.660.730.810.91



Value function example 2

Policy:

Discount factor:

Value fn: 10.660.660.730.810.91

Notice that value function can help 
us compare two different policies

– how?



Value function example 3

Policy:

Discount factor:

Value fn: 101010101011



Think-pair-share

Policy:

Discount factor:

Value fn: ??????



Value Function Revisited

Value of state      when acting according to policy      :



Value Function Revisited

Value of state      when acting according to policy      :



Value Function Revisited

Value of state      when acting according to policy      :

This is called a “backup diagram”



Value Function Revisited

Value of state      when acting according to policy      :



Value Function Revisited

Value of state      when acting according to policy      :



Think-pair-share 1

Value of state      when acting according to policy      :

Write this expectation in terms 
of P(s’,r|s,a) for a deterministic policy,        



Think-pair-share 2

Value of state      when acting according to policy      :

Write this expectation in terms 
of P(s’,r|s,a) for a stochastic policy,            



Think-pair-share



Value Function Revisited

Can we calculate Q in terms of V?



Value Function Revisited

Can we calculate Q in terms of V?



Think-pair-share

Can we calculate Q in terms of V?

Write this expectation in terms of P(s’,r|s,a) and     



Optimal policies

Given a policy,    , we know how to compute the value function, 

But, how do we compute the optimal policy,      ?
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Optimal policies

Given a policy,    , we know how to compute the value function, 

But, how do we compute the optimal policy,      ?

Definition:

Best out of all possible policies



Optimal policies

Given a policy,    , we know how to compute the value function, 

But, how do we compute the optimal policy,      ?

Definition:

Definition: 



Optimal policies

Given a policy,    , we know how to compute the value function, 

But, how do we compute the optimal policy,      ?

Definition:

Definition: 

Bellman Equation:

Bellman optimality condition:



Think-pair-share



Value function example 3

Policy:

Discount factor:

Value fn: 1098767
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