
A Closer Look at Function
Approximation

Robert Platt
Northeastern University

The problem of large and continuous state spaces

Example of a large state space: Atari Learning Environment
– state: video game screen
– actions: joystick actions
– reward: game score

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Why are large state spaces a problem for tabular methods?
1. many states may never be visited
2. there is no notion that the agent should behave similarly in

“similar” states.

Function approximation

Approximating the Value function using function approximator:

Some kind of function
approximator parameterized

by w

Which Function Approximator?

There are many function approximators, e.g.
– Linear combinations of features
– Neural networks
– Decision tree
– Nearest Neighbour
– Fourier / wavelet bases

We will require the function approximator to be differentiable

Need to be able to handle non-stationary, non-iid data

Approximating value function using SGD

Goal: find parameter vector w minimizing mean-squared error
between approximate value fn, , and the true value
function,

Approach: do gradient descent on this cost function

For starters, let’s focus on policy evaluation, i.e. estimating

Approximating value function using SGD

Goal: find parameter vector w minimizing mean-squared error
between approximate value fn, , and the true value
function,

Approach: do gradient descent on this cost function

Here’s the gradient:

For starters, let’s focus on policy evaluation, i.e. estimating

Linear value function approximation

Let’s approximate as a linear function of features:

where x(s) is the feature vector:

Think-pair-share

Can you think of some good features for pacman?

Linear value function approx: coarse coding

For example, the elts in x(s) could correspond to regions of state space:

Binary features
– one feature for each circle (above)

Linear value function approx: coarse coding

For example, the elts in x(s) could correspond to regions of state space:

Binary features
– one feature for each circle (above)

The value function is encoded
by the combination of all tiles
that a state intersects

The effect of overlapping feature regions

Think-pair-share

What type of linear features might be appropriate for this problem?

What is the relationship between feature shape and generalization?

Cliff region

Goal region

Linear value function approx: tile coding

For example, x(s) could be constructed using tile coding:

– Each tiling is a partition of the state space.
– Assigns each state to a unique tile.

Binary features
n = num tiles x num tilings
In this example: n = 16 x 4

Think-pair-share

The value function is encoded
by the combination of all tiles
that a state intersects

State aggregation is a special case of tile coding.

How many tilings in this case?

What do the weights correspond to in this case?

Binary features
n = num tiles x num tilings
In this example: n = 16 x 4

Think-pair-share

– what are the pros/cons of rectangular tiles like this?
– what are the pros/cons to evenly spacing the tilings vs placing

them at uneven offsets?

Binary features
n = num tiles x num tilings
In this example: n = 16 x 4

Recall monte carlo policy evaluation algorithm

Let’s think about how to do the same thing using function approximation...

Gradient monte carlo policy evaluation

Notice that in MC, the return is an unbiased, noisy sample of the
true value,

Can therefore apply supervised learning to “training data”:

The weight update “sampled” from the training data is:

Goal: calculate

Gradient monte carlo policy evaluation

Notice that in MC, the return is an unbiased, noisy sample of the
true value,

Can therefore apply supervised learning to “training data”:

The weight update “sampled” from the training data is:

For a linear function approximator, this is:

Goal: calculate

Gradient monte carlo policy evaluation

For linear function approximation, gradient MC converges to
the weights that minimize MSE wrt the true value function.

Even for non-linear function approximation, gradient MC
converges to a local optimum.

However, since this is MC, the estimates are high-variance.

Gradient MC example: 1000-state random walk

Gradient MC example: 1000-state random walk

The whole value function over 1000 states
will be approximated with 10 numbers!

Question

The whole value function over 1000 states
will be approximated with 10 numbers!

How many tilings are here?

Gradient MC example: 1000-state random walk

Gradient MC example: 1000-state random walk

Converges to unbiased
value estimate

Question

What is the relationship between the state distribution (mu) and the policy?

How do you correct for following a policy that visits states differently?

TD Learning with value function approximation

The TD target, is an estimate of the
true value,

But, let’s ignore that and use the TD target anyway…

Training data:

TD Learning with value function approximation

The TD target, is an estimate of the
true value,

But, let’s ignore that and use the TD target anyway…

Training data:

This gives us TD(0) policy evaluation with:

TD Learning with value function approximation

The TD target, is an estimate of the
true value,

But, let’s ignore that and use the TD target anyway…

Training data:

This gives us TD(0) policy evaluation with:

Next state

TD Learning with value function approximation

Think-pair-share

Why is this called “semi-gradient”?

Here’s the update
rule we’re using:

Is this really the gradient?

What is the gradient actually?

Loss function:

Semi-gradient TD(0) ex: 1000-state random walk

Converges to biased
value estimate

Convergence results summary

1. Gradient-MC converges for both linear and non-linear fn approx
2. Gradient-MC converges to optimal value estimates

– converges to values that min MSE

3. Semi-gradient-TD(0) converges for linear fn approx
4. Semi-gradient-TD(0) converges to a biased estimate

– converges to a point, , that does does not minimize MSE
– but we have:

Fixed point for semi-gradient TD

Point that min MSE

TD Learning with value function approximation

For linear function approximation, gradient TD(0) converges to
biased estimate of weights such that:

Fixed point for semi-gradient TD Point that min MSE

Think-pair-share

Write the semi-gradient weight update equation for the
special case of linear function approximation.

How would you update this algorithm for q-learning?

Linear Sarsa with Coarse Coding in Mountain Car

Linear Sarsa with Coarse Coding in Mountain Car

Least Squares Policy Iteration (LSPI)

Recall that for linear function approximation, J(w) is quadratic in the
weights:

We can solve for w that min J(w) directly.

First, let’s think about this in the context of batch policy evaluation.

Policy evaluation

Given:
– a dataset generated using
 policy

Find w that min:

Question

Given:
– a dataset generated using
 policy

Find w that min:

HOW?

Think-pair-share

Given: a dataset

Find w that min:

where a, b, w are scalars.

What if b is a vector?

Policy evaluation

Given:
– a dataset generated using
 policy

Find w that min:

1. Set derivative to zero:

Policy evaluation

Given:
– a dataset generated using
 policy

Find w that min:

1. Set derivative to zero:

2. Solve for w:

LSMC policy evaluation

1. collect a bunch of experience
 under policy

2. calculate weights using:

LSMC policy evaluation

1. collect a bunch of experience
 under policy

2. calculate weights using:

How to we ensure this matrix is well conditioned?

Question

1. collect a bunch of experience
 under policy

2. calculate weights using:

What effect does this term have?

What cost function is being minimized now?

LSMC policy iteration

1. Take an action according current policy,

2. Add experience to buffer:

3. Calculate new LS weights using:

4. Goto step 1

Is there a TD version of this?

1. Take an action according current policy,

2. Add experience to buffer:

3. Calculate new LS weights using:

4. Goto step 1

MC target

LSTD policy evaluation

In TD learning, the target is:

Substituting into the gradient of J(w):

Solving for w:

LSTD policy evaluation

In TD learning, the target is:

Substituting into the gradient of J(w):

Solving for w (and add regularization term):

LSTD policy evaluation

In TD learning, the target is:

Substituting into the gradient of J(w):

Solving for w (and add regularization term):

Notice this is slightly different from what was used for LSMC

LSTD policy evaluation

1. collect a bunch of experience
 under policy

2. calculate weights using:

LSTDQ

Approximate Q function as:

Now, the update is:

LSPI-TD

Policy improvement

Guaranteed to converge to near-optimal (linear fn approx)

Chain Walk Example

LSPI in Chain Walk: Action-Value Function

Notice that the policy is
optimal after iteration 4

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

