Deep RL

Robert Platt Northeastern University

Q-learning

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S'

$$\begin{array}{l} Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ S \leftarrow S' \end{array}$$

until S is terminal

Q-learning

Deep Q-learning (DQN)

Values of different possible discrete actions

Deep Q-learning (DQN)

Where does "state" come from?

Earlier, we dodged this question: "it's part of the MDP problem statement"

But, that's a cop out. How do we get state?

Typically can't use "raw" sensor data as state w/ a tabular Q-function – it's too big (e.g. pacman has something like 2^(num pellets) + ... states)

Where does "state" come from?

Typically can't use "raw" sensor data as state w/ a tabular Q-function — it's too big (e.g. pacman has something like 2^(num pellets) + ... states)

DQN

Convolutional Agent

DQN

Convolutional Agent

Instead of state, we have an image

 in practice, it could be a history of the k most recent images stacked as a single k-channel image

Hopefully this new image representation is Markov...

- in some domains, it might not be!

DQN

QN Num output nodes equals the number of actions Stack of images Q-function $Q(I,a_1)$ $Q(I, a_2)$ $Q(I, a_3)$ Conv 1 Conv 2 FC 1 Output

Here's the standard Q-learning update equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Here's the standard Q-learning update equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

until S is terminal

Here's the standard Q-learning update equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Rewriting:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a')\right]$$

Here's the standard Q-learning update equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Rewriting:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') \right]$$

let's call this the "target"

This equation adjusts Q(s,a) in the direction of the target

Here's the standard Q-learning update equation:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Rewriting:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a')\right]$$

let's call this the "target"

This equation adjusts Q(s,a) in the direction of the target

We're going to accomplish this same thing in a different way using neural networks...

Use this loss function:

$$L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$$

Use this loss function:

$$L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$$
Notice that Q is now

Notice that Q is now parameterized by the weights, *w*

Use this loss function:

$$L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$$

target

Question

Use this loss function: target
$$L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$$

We're going to optimize this loss function using the following gradient:

$$\nabla_w L(s, a, s'; w) \approx -\left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right) \nabla_w Q_w(s, a)$$

Think-pair-share

Use this loss function: $\operatorname{target} L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$

We're going to optimize this loss function using the following gradient:

$$\nabla_w L(s, a, s'; w) \approx -\left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right) \nabla_w Q_w(s, a)$$

What's wrong with this?

Use this loss function: $\operatorname{target} L(s, a, s'; w) = \frac{1}{2} \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2$

We're going to optimize this loss function using the following gradient:

$$\nabla_w L(s, a, s'; w) \approx -\left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right) \nabla_w Q_w(s, a)$$

What's wrong with this?

We call this the *semigradient* rather than the gradient – semi-gradient descent still converges – this is often more convenient

"Barebones" DQN

Initialize Q(s,a;w) with random weights Repeat (for each episode):

Initialize s

Repeat (for each step of the episode):

Choose *a* from *s* using policy derived from Q (e.g. e-greedy) Take action *a*, observe *r*, *s*'

$$w \leftarrow w - \alpha \nabla_w L(s, a, s'; w)$$
$$s \leftarrow s'$$

Until s is terminal

Where:

$$\nabla_w L(s, a, s'; w) \approx -\left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right) \nabla_w Q_w(s, a)$$

"Barebones" DQN

Example: 4x4 frozen lake env

Get to the goal (G) Don't fall in a hole (H)

FHFH FFFH HFFG (Left)

steps:	11582,	episodes:	770,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0873818397522
steps:	11609,	episodes:	771,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0872020721436
steps:	11652,	episodes:	772,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.138998985291
steps:	11672,	episodes:	773,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0649240016937
steps:	11689,	episodes:	774,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0546970367432
steps:	11697,	episodes:	775,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0260739326477
steps:	11731,	episodes:	776,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.110991954803
steps:	11773,	episodes:	777,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.135339975357
steps:	11798,	episodes:	778,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0810689926147
steps:	11818,	episodes:	779,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0643260478973
steps:	11870,	episodes:	780,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.169064044952
steps:	11906,	episodes:	781,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.117113113403
steps:	11992,	episodes:	782,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.279519796371
steps:	12064,	episodes:	783,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.234206199646
steps:	12090,	episodes:	784,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.0835938453674
steps:	12137,	episodes:	785,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.150979042053
steps:	12185,	episodes:	786,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.155304908752
steps:	12245,	episodes:	787,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.194122076035
steps:	12277,	episodes:	788,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.102608919144
steps:	12293,	episodes:	789,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.0520431995392

Demo!

Think-pair-share

Suppose the "barebones" DQN algorithm w/ this DQN network experiences the following transition: s,a_1,s^\prime,r

Which weights in the network *could* be updated on this iteration?

$$\nabla_w L(s, a, s'; w) \approx -\left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right) \nabla_w Q_w(s, a)$$

Deep learning typically assumes independent, identically distributed (IID) training data

Deep learning typically assumes independent, identically distributed (IID) training data

```
But is this true in the deep RL scenario?
```

```
Initialize Q(s,a;w) with random weights Repeat (for each episode):
```

Initialize s

Repeat (for each step of the episode):

```
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s'
```

$$w \leftarrow w - \alpha \nabla_w L(s, a, s'; w)$$

$$s \leftarrow s'$$

ntil s is terminal

Deep learning typically assumes independent, identically distributed (IID) training data

But is this true in the deep RL scenario?

```
Initialize Q(s,a;w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
```

Our solution: buffer experiences and then "replay" them during training

Think-pair-share

What do you think are the tradeoffs between:

- large replay buffer vs small replay buffer?
- large batch size vs small batch size?
With target network

Example: 4x4 frozen lake env

Get to the goal (G) Don't fall in a hole (H)

FHFH FFFH HFFG (Left)

steps:	11582,	episodes:	770,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0873818397522
steps:	11609,	episodes:	771,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0872020721436
steps:	11652,	episodes:	772,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.138998985291
steps:	11672,	episodes:	773,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0649240016937
steps:	11689,	episodes:	774,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0546970367432
steps:	11697,	episodes:	775,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0260739326477
steps:	11731,	episodes:	776,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.110991954803
steps:	11773,	episodes:	777,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.135339975357
steps:	11798,	episodes:	778,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0810689926147
steps:	11818,	episodes:	779,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.0643260478973
steps:	11870,	episodes:	780,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.169064044952
steps:	11906,	episodes:	781,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.117113113403
steps:	11992,	episodes:	782,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.279519796371
steps:	12064,	episodes:	783,	mean	100	episode	reward:	0.6,	%	time	spent	exploring:	2,	time	elapsed:	0.234206199646
steps:	12090,	episodes:	784,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.0835938453674
steps:	12137,	episodes:	785,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.150979042053
steps:	12185,	episodes:	786,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.155304908752
steps:	12245,	episodes:	787,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.194122076035
steps:	12277,	episodes:	788,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.102608919144
steps:	12293.	episodes:	789,	mean	100	episode	reward:	0.7,	%	time	spent	exploring:	2,	time	elapsed:	0.0520431995392

Demo!

Comparison: replay vs no replay

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

(Avg final score achieved)

Recall the problem of maximization bias:

Recall the problem of maximization bias:

Our solution from the TD lecture:

Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S, a \in \mathcal{A}(s)$, arbitrarily Initialize $Q_1(terminal-state, \cdot) = Q_2(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A from S using policy derived from Q_1 and Q_2 (e.g., ε -greedy in $Q_1 + Q_2$) Take action A, observe R, S'With 0.5 probabilility: $Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S',a)) - Q_1(S,A) \right)$ else: $Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{arg\,max}_a Q_2(S',a) \big) - Q_2(S,A) \Big)$ $S \leftarrow S'$ until S is terminal

Can we adapt this to the DQN setting?

```
Initialize Q_w, Q_{w^-} with random weights
D \leftarrow \emptyset
Repeat (for each episode):
    Initialize s
    Repeat (for each step of the episode):
        Choose a from s using policy derived from Q (e.g. e-greedy)
         Take action a, observe r, s'
        D \leftarrow D \cup (s, a, s', r)
         s \leftarrow s'
        If mod(step,trainfreq) == 0:
             sample batch B from D
             w \leftarrow w - \alpha \nabla_w L(B; w, w^-)
             if mod(step,copyfreq) == 0:
                  w^- \leftarrow w
```

Where: $\nabla_w L(B; w, w^-) \approx -\frac{1}{|B|} \sum_{(s, a, s', r) \in B} \left(target(s', a'; w, w^-) - Q_w(s, a) \right) \nabla_w Q_w(s, a)$ $target(s', a'; w, w^-) = r + \gamma Q_{w^-}(s', \arg\max_{a'} Q_w(s', a'))$

Think-pair-share

```
Initialize Q_w, Q_{w^-} with random weights
  D \leftarrow \emptyset
 Repeat (for each episode):
      Initialize s
      Repeat (for each step of the episode):
           Choose a from s using policy derived from Q (e.g. e-greedy)
           Take action a, observe r, s'
           D \leftarrow D \cup (s, a, s', r)
                                                     1. In what sense is this double
           s \leftarrow s'
                                                          q-learning?
           If mod(step,trainfreq) == 0:
                                                     2. What are the pros/cons vs earlier
               sample batch B from D
                                                          version of double-Q?
               w \leftarrow w - \alpha \nabla_w L(B; w, w^-)
                                                     3. Why not convert the original
               if mod(step,copyfreq) == 0:
                                                          double-Q algorithm into a
                    w^- \leftarrow w
                                                          deep version?
<u>Where:</u> \nabla_w L(B; w, w^-) \approx -\frac{1}{|B|} \sum_{(s,a,s',r)\in B} \left( target(s', a'; w, w^-) - Q_w(s, a) \right) \nabla_w Q_w(s, a)
        target(s', a'; w, w^{-}) = r + \gamma Q_{w^{-}}(s', \arg\max_{a'} Q_w(s', a'))
```


	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Table 2: Summary of normalized performance up to 30 minutes of play on 49 games with human starts. Results for DQN are from Nair et al. (2015).

```
Initialize Q_w with random weights
D \leftarrow \emptyset
Repeat (for each episode):
    Initialize s
    Repeat (for each step of the episode):
        Choose a from s using policy derived from Q (e.g. e-greedy)
        Take action a, observe r, s'
        D \leftarrow D \cup (s, a, s', r)
        s \leftarrow s'
        If mod(step,trainfreq) == 0:
            sample batch B from D
                         \nabla_w L(B;w)
            w \leftarrow w
            Previously this sample was uniformly random
     Can we do better by sampling the batch intelligently?
```


- Left action transitions to state 1 w/ zero reward
- Far right state gets reward of 1

Question

Why is the sampling method particularly important in this Domain?

 Left action transitions to state 1 w/ zero reward

– Far right state gets reward of 1

- Left action transitions to state 1 w/ zero reward
- Far right state gets reward of 1

Num of updates needed to learn true value fn as a function of replay buffer size

Larger replay buffer corresponds to larger values of *n* in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that minimize loss over entire buffer

 Left action transitions to state 1 w/ zero reward

- Far right state gets reward of 1

Num of updates needed to learn true value fn as a function of replay buffer size

Larger replay buffer corresponds to larger values of *n* in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that minimize loss over entire buffer

Question

<u>Idea</u>: sample elements of minibatch by drawing samples with probability:

where p_i denotes the priority of a sample – simplest case: $p_i = \text{TD error} + \epsilon$ (this is "proportional" sampling)

<u>Problem</u>: since we're changing the distribution of updates performed, this is *off policy.*

– need to weight sample updates...

Question: qualitatively, how should we re-weight experiences?

– e.g. how should we re-weight an experience that prioritized replay does not sample often?

Idea: sample elements of minibatch <u>Idea</u>: sample elements of minibatch by drawing samples with probability: $P(i) = \frac{Pi}{\sum_k p_k}$

where p_i denotes the priority of a sample – simplest case: $p_i = \text{TD error} + \epsilon$ (this is "proportional" sampling)

<u>Problem</u>: since we're changing the distribution of updates performed, this is off policy.

- need to weight sample updates: $w_{s,a,s'} = \frac{1}{|B|P_{s,a,s'}}$

$$\nabla_{w} L(B; w, w^{-}) \approx -\frac{1}{|B|} \sum_{(s, a, s', r) \in B} w_{s, a, s'} \left(target(s', a'; w, w^{-}) - Q_w(s, a) \right) \nabla_{w} Q_w(s, a)$$

Idea: sample elements of minibatch by drawing samples with probability:

$$P(i) = \frac{p_i}{\sum_k p_k}$$

where p_i denotes the priority of a sample – simplest case: $p_i = \text{TD error} + \epsilon$ (this is "proportional" sampling)

Why is epsilon needed?

<u>Problem</u>: since we're changing the distribution of updates performed, this is off policy.

- need to weight sample updates: $w_{s,a,s'} = \frac{1}{|B|P_{s,a,s'}}$

$$\nabla_w L(B; w, w^-) \approx -\frac{1}{|B|} \sum_{(s, a, s', r) \in B} w_{s, a, s'} \left(target(s', a'; w, w^-) - Q_w(s, a) \right) \nabla_w Q_w(s, a)$$

- Left action transitions to state 1 w/ zero reward

- Far right state gets reward of 1

Prioritized buffer is not as good as oracle, but it is better than uniform sampling...

- averaged results over 57 atari games

Recall architecture of Q-network:

This is a more common way of drawing it:

This is a more common way of drawing it:

We're going to express the q-function using a new network architecture

Think-pair-share

Why might this decomposition be better?
 is A always positive, negative, or either? Why?

Intuition

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore:
$$Q(s, a) = V(s) + A(s, a) - \max_{a} A(s, a)$$

Question

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore:
$$Q(s, a) = V(s) + A(s, a) - \max_{a} A(s, a)$$

Why does this help?

Notice that the V/Q decomposition is not unique, given Q targets only

Actually:
$$Q(s,a) = V(s) + A(s,a) - \sum_{a} A(s,a)$$

Action set: left, right, up, down, no-op (arbitrary number of no-op actions). SE: squared error relative to true value function Compare dueling w/ single stream networks (all networks are three-layer MLPs) Increasing number of actions in above corresponds to increases in no-op actions

Conclusion: Dueling networks can help a lot for large numbers of actions.

Change in avg rewards for 57 ALE domains versus DQN w/ single network.

Asynchronous methods

Idea: run multiple RL agents in parallel

- all agents run against their own environments and Q fn
- periodically, all agents synch w/ a global Q fn.

Why does this approach help?

Why does this approach help?

It helps decorrelate training data

- standard DQN relies on the replay buffer and the target network to decorrelate data
- asynchronous methods accomplish the same thing by having multiple learners
- makes it feasible to use on-policy methods like SARSA (why?)

Different numbers of learners versus wall clock time

Different numbers of learners versus number of SGD steps across all threads – speedup is not just due to greater computational efficiency
Combine all these ideas!

