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Q-learning

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S5

until S is terminal
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Deep Q-learning (DOQN)
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Deep Q-learning (DOQN)
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Where does “state” come from?

Agent takes actions
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Agent perceives states and rewards

Earlier, we dodged this question: “it's part of the MDP problem statement”
But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— It's too big (e.g. pacman has something like 2*(num pellets) + ... states)



Where does “state” come from?

Agent takes actions
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Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— it's too big (e.g. pacman has something like 2*(num pellets) + ... states)
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Convolutional Agent

input : possible
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DON

Convolutional Agent

input possible
image actions
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Instead of state, we have an image
— In practice, it could be a history of the kK most recent images
stacked as a single k-channel image

Hopefully this new image representation is Markov...
— in some domains, it might not be!



DON

Stack of images Q-function
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DON

Num output nodes equals
the number of actions

Stack of images Q-function

ot

Convl Conv2 FC1 Output



Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]



Q-function updates in DON

Here’s the standard Q-learning update equation:

Q(s,a) <+ Q(s,a) + a [7“ +ymaxQ(s',a’) = Q(s, a)}

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S+ S

until S is terminal



Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|



Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|
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let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target



Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) = Q(s,a) +a [r +ymax Q(s',a') = Q(s, )|

Rewriting:

Q(s,a) « (1 —a)Q(s,a) + « [r + 7y max Q(s', a’)}
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let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target




Q-function updates in DON

Use this loss function:

1 2
L(s,a,s;w) = 5 (r—l—vma}wa(s’,a’) — Qw(s,a))

a



Q-function updates in DON

Use this loss function:

L(s,a,s;w) =

(r +ymax Qu(s',a’) — Qu(s, “)) |

N,

Notice that Q is now
parameterized by the weights, w

DO | —



Q-function updates in DON

Use this loss function: I’m including the bias in the weights

r + 7 max Qu(s',a)

a

— Qu (S, a)) 2



Q-function updates in DON

Use this loss function:

| | 2
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))



Use this loss function:

L(s,a,s;w) =

1
2

Question

What's this called?



Q-function updates in DON

Use this loss function:

target
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:

VwL(s,a,s;w) ~ — (7“ +ymax Qq (s, a") — Qu (s, a)) VuwQuw(s,a)



Think-pair-share

Use this loss function:

target
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:
VwL(s,a,s;w) ~ — (7“ + 7y max Qu(s',a") — Qu(s, a)) VuwQuw(s,a)

What's wrong with this?



Q-function updates in DON

Use this loss function:

L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:
VwL(s,a,s;w) ~ — (7“ + 7y max Qu(s',a") — Qu(s, a)) VuwQuw(s,a)

What's wrong with this?

We call this the semigradient rather than the gradient
— semi-gradient descent still converges
— this is often more convenient



“Barebones” DON

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’
w <+ w — aVy,L(s,a,s;w)
s+ s
Until s is terminal

Where:

VwL(s,a,s;w) ~ — (7“ +ymax Qy(s',a’) — Qu(s, a)) VuwQuw(s,a)



“Barebones” DON

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

This is all that changed
relative to standard
g-learning

Until s is terminal

Where:

VwL(s,a,s;w) ~ — (’r +ymax Qy(s',a’) — Qu(s, a)) VuwQuw(s,a)



Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)
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reward
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.0649240016937
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.0835938453674
.150979042053
.155304908752
.194122076035
.102608919144
.0520431995392




Think-pair-share

Suppose the “barebones” DON alqorlthm w/ this DOQN network experiences
the following transition: s a1,3 r

Which weights in the network could be updated on this iteration?

VwL(s,a,s;w) ~ — (r + 7y max Qu(s',a") — Qw(s,a)) VuwQuw(s,a)



Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data



Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

— But s this true in the deep RL scenario?

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
~ Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

> w— w—aVy,L(s,a,s;w)
/
_ S¢S |
Until s is terminal




Experience replay

Deep learning typically assumes independent,
identically distributed (IID) training data

— But is this true in the deep RL scenario?

Initialize Q(s,a;w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)




Experience replay

Initialize ()., with random weights
D« Replay buffer

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

S < S
If mod(step, trainfreq) = Train every
sample batch B from D trainfreq steps

w<—w—aVy,L

One step grad
descent WRT buffer




Experience replay

Initialize ()., with random weights
D« Replay buffer

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

S < S
If mod(step, trainfreq) = Train every
sample batch B from D trainfreq steps

w<—w—aVy,L

One step grad
descent WRT buffer

1
Where: V., L(B;w) &~ 5] Z (target(s; w) — Qu(s,a)) VuQuw(s, a)
(s,a,s’,r)EB

target(s';w) =7 +ymax Qu(s',a’)



Experience replay

Initialize ()., with random weights

Buffers like this are pretty common in DL

]

"S Add this exp to buffer

sample batch B from D trainfreq steps

w — w — aV, L(B;w)

One step grad
descent WRT buffer

1
Where: V., L(B;w) &~ 5] Z (target(s; w) — Qu(s,a)) VuQuw(s, a)
(s,a,s’,r)EB

target(s';w) =7 +ymax Qu(s',a’)



Think-pair-share

Initialize ()., with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — oV, L(B;w)

What do you think are the tradeoffs between:
— large replay buffer vs small replay buffer?
— large batch size vs small batch size?




With target network

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w4 w—aVy,L(B;w,w™)
If mod(step,copyfreq) == O:

w  —w

Target network helps stabilize DL
— why?

Where: V., L(B;w,w™) & ! Z (target(s';w™) — Qu(s,a)) ViQu(s, a)

|B| (s,a,s’,7)EB

target(s';w™) = r +ymax Q.- (s',a)



Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)
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Comparison: replay vs no replay

Replay Replay | No replay | No replay

Fixed-Q | Q-learning Fixed-Q | Q-learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894 .4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

(Avg final score achieved)




Double DQN

Recall the problem of maximization bias:

100% N(=0.1,1)
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Double DQN

Recall the problem of maximization bias:

Our solution from the TD lecture:

Initialize Q1(s,a) and Q2(s,a), for all s € 8, a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Q2 (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’

With 0.5 probabilility:

Q1(8, 4) « Qu(S, 4) + a( R+ 7Q2(S', argmax, Q1(S',a)) — Qu(S, 4))
else:

Qs(S, A) < Qa(S, A) + a(R + Q1 (S, argmax, Q2(5’,a)) — Qa(5, A))
S« 9

until S is terminal

Can we adapt this to the DQN setting?



Double DON

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — aVy, L(B;w,w™)
If mod(step,copyfreq) == O:

w  —w

1
Where: V,L(B;w,w™) ~ Z (target(s’,a’;w,w™) — Qu(s,a)) VuQuw(s,a)

|B| (s,a,s’,7)EB

target(s',a';w,w”) =1 +4Q,- (s, arg max Qy, (5", a’))

a



Think-pair-share

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — aVy, L(B;w,w™)

1. In what sense is this double
g-learning?

2. What are the pros/cons vs earlier
version of double-Q?

3. Why not convert the original

1t mod_(step,copyfreq) — v double-Q algorithm into a
wo—w deep version?
1
Where: V,L(B;w,w™) ~ 1B Z (target(s’,a’;w,w™) — Qu(s,a)) VuQuw(s,a)
(s,a,s’,7)EB

target(s',a';w,w”) =r 4+ vQ,- (s, arg max Qu(s',a"))

a
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Double DON

BN Double DON (tuned)
] Double DQN

. DON

DQN

Double DQN

Double DQN (tuned)

Median

47.5%

88.4%
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Table 2: Summary of normalized performance up to 30 minutes
of play on 49 games with human starts. Results for DQN are from
Nair et al. (2015).



Prioritized Replay Buffer

Initialize ()., with random weights
D+
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU(s,a,s’,r)
s+ s
If mod(step,trainfreq) == 0:
sample batch B from D

Previously this sample was uniformly random

Can we do better by sampling the batch intelligently?



Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1



Question

Why is the sampling method
particularly important in this
Domain?

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1



Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

updates needed

oracle
— uniform

10° 10° 10

#samples

Num of updates needed to learn true value
fn as a function of replay buffer size

Larger replay buffer corresponds to larger
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that
minimize loss over entire buffer



Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

Minimizing loss over entire buffer is impractical

Can we achieve something similar online?

10° 10° 10
#samples

Num of updates needed to learn true value
fn as a function of replay buffer size

Larger replay buffer corresponds to larger
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that
minimize loss over entire buffer



Question

|dea: sample elements of minibatch P(z) I
by drawing samples with probability: o Zk Die

where p,; denotes the priority of a sample
— simplest case: p; = T'D error + €
( this is “proportional” sampling)

Problem: since we're changing the distribution of updates
performed, this is off policy.

— need to weight sample updates...

Question: qualitatively, how should we re-weight experiences?

— e.g. how should we re-weight an experience that prioritized
replay does not sample often?



Prioritized Replay Buffer

|dea: sample elements of minibatch (Z) I
by drawing samples with probability: o Zk Die
where p,; denotes the priority of a sample

— simplest case: p; = T'D error + €
( this is “proportional” sampling)

Problem: since we're changing the distribution of updates
performed, this is off policy. 1

— need to weight sample updates: w; , o = B[P
s,a,s’

o

_E Z Ws a,s’ (taTget(S/,a/;’w,w_) o Qw<87a)) Vwa(S,a)

(s,a,s’",1)EB

Vol(B;w,w™) &



Prioritized Replay Buffer

|dea: sample elements of minibatch (Z) _ Pi
by drawing samples with probability: Zk Die
where p,; denotes the priority of a sample

— simplest case: p; = T'D error + €

( this is “proportional” sampling) Why is epsilon
needed?

Problem: since we're changing the distribution of updates
performed, this is off policy. 1

— need to weight sample updates: w; , o = B[P
s,a,s’

o

_E Z Ws a,s’ (taTget(S/,a/;’w,w_) o QUJ(S’CL)) Vwa(S,a)

(s,a,s’,r)EB

Vol(B;w,w™) &



updates needed

oracle
— uniform

Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

oracle
—— rmank-based
10° —— proportional
— uniform

eged

[

updates n

10° 10 10*

#samples
#samples

Prioritized buffer is not as good as oracle, but it is better
than uniform sampling...



normalized max score

Prioritized Replay Buffer

140% - : : : - 140% - _ -
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0 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)
—— uniform == rank-based - proportional uniform DQN

— averaged results over 57 atari games



Dueling networks for Q-learning

Recall architecture of Q-network:




Dueling networks for Q-learning

This Is a more common way of drawing It:

' I"I»Q (s,a)

Fully Connected
Layers

CONV Layers



Dueling networks for Q-learning

This Is a more common way of drawing It:

' I"I»Q (s,a)

Fully Connected
Layers

CONV Layers

We’'re going to express the g-function using a new network architecture



Dueling networks for Q-learning

| Q(s,a)
-»l ~

) - Advantage function

/

Decompose Q as:  (Q(s,a) = V(s) + A(s, a)




Think-pair-share




Intuition

VALUE ADVANTAGE

VALUE ADVANTAGE
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Dueling networks for Q-learning

A<
' | Q(s,a)
-»l /

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: Q(s,a) =V (s) + A(s,a) — max A(s, a)

a



Question

-»ll

A(s,a)

Notice that the V/Q decomposition is not unique, given Q targets only
Therefore: Q(s,a) =V (s) + A(s,a) — max A(s, a)
a

Why does this help?



Dueling networks for Q-learning

)

| Q(s,a)
-»l ~

A(s,a)

Notice that the V/Q decomposition is not unique, given Q targets only

Actually:  Q(s,a) =V (s) + A(s,a) ZA s,a)



Dueling networks for Q-learning

CORRIDOR ENVIRONMENT

5 ACTIONS 10 ACTIONS 20 ACTIONS

SE

No. Iterations

No. Iterations No. Iterations

Action set: left, right, up, down, no-op (arbitrary number of no-op actions).
SE: squared error relative to true value function

Compare dueling w/ single stream networks (all networks are three-layer MLPS)
Increasing number of actions in above corresponds to increases in no-op actions

Conclusion: Dueling networks can help a lot for large numbers of actions.
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Asynchronous methods

ldea: run multiple RL agents in parallel
— all agents run against their own environments and Q fn

— periodically, all agents synch w/ a global Q fn.

Global Network Instantiations of the idea:
Polioy ) |19 — asynchronous Q-learning
Ntwk — asynchronous SARSA
=3 — asynchronous advantage actor critic (A3C)

Input (s)

» w - -

Worker 1 Worker 2 Worker 3 Worker n

! ! ! !

Environment 1 Environment 2 Environment3 | ... | Environmentn



Asynchronous Q-learning

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T’ = (. <4 Shared Q functions
Initialize thread step counter £ <— 0
Initialize target network weights 6~ < 6
Initialize network gradients df < 0
Get initial state s
repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r
y=1 for terminal s’

r+ymax, Q(s',a’;07) for non-terminal s’ Accumulate gradients

O(y=Q(s.0,6))’ -

Accumulate gradients wrt 0: df < df +
/
S=s

T+ T+1landt +—t+1
if 7' mod Ii4rgec == 0 then /

Update the target network 6~ < 6

Update target network

end if

if ¢ mod Iasynctpdate == 0 or s is terminal then Periodically, apply batch
Perform asynchronous update of € using df. of weight updates
Clear gradients df < O.

end if

until 7’ > Tma:c




Asynchronous Q-learning

Why does this approach help?



Asynchronous Q-learning

Why does this approach help?

It helps decorrelate training data
— standard DQN relies on the replay buffer and the target network
to decorrelate data
— asynchronous methods accomplish the same thing by having
multiple learners
— makes it feasible to use on-policy methods like SARSA (why?)
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— Sspeedup is not just due to greater computational efficiency



Median human-normalized score
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Combine all these ideas!

DQN

— DDQN
— Prioritized DDQN

— Dueling DDQN /

A3C

Distributional DQN
Noisy DQN
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— no double

— no priority
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no multi-step
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