
Deep RL

Robert Platt 
Northeastern University



  

Q-learning

World
state action

argmaxQ action

st
a

te
Q-function

Update rule



  

World
state action

argmaxQ action

st
at

e

Q-function

Update rule

Q-learning



  

World
state action

argmax

Q-function

Deep Q-learning (DQN)

Values of different 
possible discrete actions



  

World
state action

argmax

Q-function

But, why would we 
want to do this?

Deep Q-learning (DQN)



  

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)



  

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)

Is it possible to do RL WITHOUT
hand-coding states?



  

DQN



  

Instead of state, we have an image
– in practice, it could be a history of the k most recent images
   stacked as a single k-channel image

Hopefully this new image representation is Markov…
– in some domains, it might not be!

DQN



  

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

DQN



  

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

DQN



  

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Num output nodes equals 
the number of actions

DQN



  

Q-function updates in DQN

Here’s the standard Q-learning update equation:



  

Here’s the standard Q-learning update equation:

Q-function updates in DQN



  

Here’s the standard Q-learning update equation:

Rewriting:

Q-function updates in DQN



  

Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Q-function updates in DQN



  

Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

We’re going to accomplish this same thing in 
a different way using neural networks...

This equation adjusts Q(s,a) in the direction of the target

Q-function updates in DQN



  

Use this loss function:

Q-function updates in DQN



  

Use this loss function:

Notice that Q is now 
parameterized by the weights, w

Q-function updates in DQN



  

Use this loss function: I’m including the bias in the weights

Q-function updates in DQN



  

Use this loss function:
target

Q-function updates in DQN



  

Use this loss function:
target

Question

What’s this called?



  

Use this loss function:
target

Q-function updates in DQN

We’re going to optimize this loss function using the following gradient:



  

Use this loss function:
target

Think-pair-share

We’re going to optimize this loss function using the following gradient:

What’s wrong with this?



  

Use this loss function:
target

Q-function updates in DQN

We’re going to optimize this loss function using the following gradient:

What’s wrong with this?

We call this the semigradient rather than the gradient
– semi-gradient descent still converges
– this is often more convenient



  

“Barebones” DQN

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:



  

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:

This is all that changed 
relative to standard 

q-learning

“Barebones” DQN



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Think-pair-share

Suppose the “barebones” DQN algorithm w/ this DQN network experiences
the following transition:

Which weights in the network could be updated on this iteration?



  

Experience replay

Deep learning typically assumes independent, 
identically distributed (IID) training data



  

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?



  

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?

Our solution: buffer experiences and then 
“replay” them during training



  

Experience replay

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps



  

Experience replay

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Where:

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps



  

Experience replay

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Where:

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps

Buffers like this are pretty common in DL



  

Think-pair-share

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

What do you think are the tradeoffs between:
– large replay buffer vs small replay buffer?
– large batch size vs small batch size?



  

With target network

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:

Where:

Target network helps stabilize DL
– why?



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Comparison: replay vs no replay

(Avg final score achieved)



  

Double DQN

Recall the problem of maximization bias:



  

Double DQN

Recall the problem of maximization bias:

Our solution from the TD lecture:

Can we adapt this to the DQN setting?



  

Where:

Double DQN

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:



  

Where:

Think-pair-share

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:

1. In what sense is this double 
q-learning?

2. What are the pros/cons vs earlier 
version of double-Q? 

3. Why not convert the original 
double-Q algorithm into a 
deep version?



  

Double DQN



  

Double DQN



  

Prioritized Replay Buffer

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Previously this sample was uniformly random

Can we do better by sampling the batch intelligently?



  

Prioritized Replay Buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1



  

Question

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Why is the sampling method 
particularly important in this

Domain?



  

Prioritized Replay Buffer

Num of updates needed to learn true value 
fn as a function of replay buffer size

Larger replay buffer corresponds to larger 
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that 
minimize loss over entire buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1



  

Prioritized Replay Buffer

Num of updates needed to learn true value 
fn as a function of replay buffer size

Larger replay buffer corresponds to larger 
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that 
minimize loss over entire buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Minimizing loss over entire buffer is impractical

Can we achieve something similar online?



  

Question

Idea: sample elements of minibatch 
by drawing samples with probability:

Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates…

Question: qualitatively, how should we re-weight experiences?
– e.g. how should we re-weight an experience that prioritized

replay does not sample often?

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)



  

Prioritized Replay Buffer

Idea: sample elements of minibatch 
by drawing samples with probability:

Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates:

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)



  

Prioritized Replay Buffer

Idea: sample elements of minibatch 
by drawing samples with probability:

Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates:

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)
Why is epsilon 

needed?



  

Prioritized Replay Buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Prioritized buffer is not as good as oracle, but it is better 
than uniform sampling...



  

Prioritized Replay Buffer

– averaged results over 57 atari games



  

Dueling networks for Q-learning

Recall architecture of Q-network:



  

Dueling networks for Q-learning

This is a more common way of drawing it:

CONV Layers

Fully Connected
Layers



  

Dueling networks for Q-learning

This is a more common way of drawing it:

CONV Layers

Fully Connected
Layers

We’re going to express the q-function using a new network architecture



  

Dueling networks for Q-learning

Decompose Q as:

Advantage function



  

Think-pair-share

Decompose Q as:

Advantage function

1. Why might this decomposition be better?        
2. is A always positive, negative, or either? Why?



  

Intuition



  

Dueling networks for Q-learning

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: 



  

Question

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: 

Why does this help?



  

Dueling networks for Q-learning

Notice that the V/Q decomposition is not unique, given Q targets only

Actually: 



  

Dueling networks for Q-learning

Action set: left, right, up, down, no-op (arbitrary number of no-op actions).
SE: squared error relative to true value function
Compare dueling w/ single stream networks (all networks are three-layer MLPs)
Increasing number of actions in above corresponds to increases in no-op actions

Conclusion: Dueling networks can help a lot for large numbers of actions.



  

Dueling networks for Q-learning

Change in avg rewards for 57 ALE domains versus DQN w/ single network.



  

Asynchronous methods

Idea: run multiple RL agents in parallel
– all agents run against their own environments and Q fn
– periodically, all agents synch w/ a global Q fn.

Instantiations of the idea:
– asynchronous Q-learning
– asynchronous SARSA
– asynchronous advantage actor critic (A3C)



  

Asynchronous Q-learning

Periodically, apply batch 
of weight updates

Accumulate gradients

Update target network

Shared Q functions



  

Asynchronous Q-learning

Why does this approach help?



  

Asynchronous Q-learning

Why does this approach help?

It helps decorrelate training data
– standard DQN relies on the replay buffer and the target network
   to decorrelate data
– asynchronous methods accomplish the same thing by having
   multiple learners
– makes it feasible to use on-policy methods like SARSA (why?)



  

Asynchronous Q-learning

Different numbers of learners versus wall clock time



  

Asynchronous Q-learning

Different numbers of learners versus number of SGD steps across all threads
– speedup is not just due to greater computational efficiency



  

Combine all these ideas!


	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

