Deep RL

Robert Platt
Northeastern University

Q-learning

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S5

until S is terminal

Q-function

argmax
state \ .
> / action
Update rule

Q-learning

Q-function

argmax

\
/

Update rule

State :
action

Deep Q-learning (DOQN)

Q-function

@,
state >‘ ‘

argmax

:\ action
°

Values of different
possible discrete actions

Deep Q-learning (DOQN)

Q-function

e ‘w‘
state >‘ ‘ ‘

action

Where does “state” come from?

Agent takes actions

/

A\ 4
*

*

Agent

*
-»
*»
*»
*
*
-»
*»
L

Agent perceives states and rewards

Earlier, we dodged this question: “it's part of the MDP problem statement”
But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— It's too big (e.g. pacman has something like 2*(num pellets) + ... states)

Where does “state” come from?

Agent takes actions

/

d rewards

Earlier, we d atement”
But, that's a

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— it's too big (e.g. pacman has something like 2*(num pellets) + ... states)

DON

Convolutional Agent

input : possible

image actions

DON

Convolutional Agent

input possible
image actions

jJau |einad |euonnjoAuod

Instead of state, we have an image
— In practice, it could be a history of the kK most recent images
stacked as a single k-channel image

Hopefully this new image representation is Markov...
— in some domains, it might not be!

DON

Stack of images Q-function

ot

Convl Conv2 FC1 Output

DON

Stack of images Q-function

ot

Convl Conv2 FC1 Output

DON

Num output nodes equals
the number of actions

Stack of images Q-function

ot

Convl Conv2 FC1 Output

Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Q-function updates in DON

Here’s the standard Q-learning update equation:

Q(s,a) <+ Q(s,a) + a [7“ +ymaxQ(s',a’) = Q(s, a)}

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S+ S

until S is terminal

Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|

Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|

(G 4
Y

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Q-function updates in DON

Here’s the standard Q-learning update equation:

Qs,a) = Q(s,a) +a [r +ymax Q(s',a') = Q(s,)|

Rewriting:

Q(s,a) « (1 —a)Q(s,a) + « [r + 7y max Q(s', a’)}

\ J/
Y

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Q-function updates in DON

Use this loss function:

1 2
L(s,a,s;w) = 5 (r—l—vma}wa(s’,a’) — Qw(s,a))

a

Q-function updates in DON

Use this loss function:

L(s,a,s;w) =

(r +ymax Qu(s',a’) — Qu(s, “)) |

N,

Notice that Q is now
parameterized by the weights, w

DO | —

Q-function updates in DON

Use this loss function: I’m including the bias in the weights

r + 7 max Qu(s',a)

a

— Qu (S, a)) 2

Q-function updates in DON

Use this loss function:

| | 2
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

Use this loss function:

L(s,a,s;w) =

1
2

Question

What's this called?

Q-function updates in DON

Use this loss function:

target
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:

VwL(s,a,s;w) ~ — (7“ +ymax Qq (s, a") — Qu (s, a)) VuwQuw(s,a)

Think-pair-share

Use this loss function:

target
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:
VwL(s,a,s;w) ~ — (7“ + 7y max Qu(s',a") — Qu(s, a)) VuwQuw(s,a)

What's wrong with this?

Q-function updates in DON

Use this loss function:

L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

We're going to optimize this loss function using the following gradient:
VwL(s,a,s;w) ~ — (7“ + 7y max Qu(s',a") — Qu(s, a)) VuwQuw(s,a)

What's wrong with this?

We call this the semigradient rather than the gradient
— semi-gradient descent still converges
— this is often more convenient

“Barebones” DON

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’
w <+ w — aVy,L(s,a,s;w)
s+ s
Until s is terminal

Where:

VwL(s,a,s;w) ~ — (7“ +ymax Qy(s',a’) — Qu(s, a)) VuwQuw(s,a)

“Barebones” DON

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

This is all that changed
relative to standard
g-learning

Until s is terminal

Where:

VwL(s,a,s;w) ~ — (’r +ymax Qy(s',a’) — Qu(s, a)) VuwQuw(s,a)

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:

episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode

reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:

reward

lcjocoBoRoNoNoooNoooNoNoBoRoNoNoloNo)

exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:

elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:

lcooNoRoNoNoooNoooNoNoNoRoNoNoRoNo)

.0873818397522
.0872020721436
.138998985291
.0649240016937
.0546970367432
.0260739326477
.110991954803
.135339975357
.0810689926147
.0643260478973
.169064044952
.117113113403
.279519796371
.234206199646
.0835938453674
.150979042053
.155304908752
.194122076035
.102608919144
.0520431995392

Think-pair-share

Suppose the “barebones” DON alqorlthm w/ this DOQN network experiences
the following transition: s a1,3 r

Which weights in the network could be updated on this iteration?

VwL(s,a,s;w) ~ — (r + 7y max Qu(s',a") — Qw(s,a)) VuwQuw(s,a)

Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

— But s this true in the deep RL scenario?

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
~ Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

> w— w—aVy,L(s,a,s;w)
/
_ S¢S |
Until s is terminal

Experience replay

Deep learning typically assumes independent,
identically distributed (IID) training data

— But is this true in the deep RL scenario?

Initialize Q(s,a;w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

Experience replay

Initialize ()., with random weights
D« Replay buffer

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

S < S
If mod(step, trainfreq) = Train every
sample batch B from D trainfreq steps

w<—w—aVy,L

One step grad
descent WRT buffer

Experience replay

Initialize ()., with random weights
D« Replay buffer

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

S < S
If mod(step, trainfreq) = Train every
sample batch B from D trainfreq steps

w<—w—aVy,L

One step grad
descent WRT buffer

1
Where: V., L(B;w) &~ 5] Z (target(s; w) — Qu(s,a)) VuQuw(s, a)
(s,a,s’,r)EB

target(s';w) =7 +ymax Qu(s',a’)

Experience replay

Initialize ()., with random weights

Buffers like this are pretty common in DL

]

"S Add this exp to buffer

sample batch B from D trainfreq steps

w — w — aV, L(B;w)

One step grad
descent WRT buffer

1
Where: V., L(B;w) &~ 5] Z (target(s; w) — Qu(s,a)) VuQuw(s, a)
(s,a,s’,r)EB

target(s';w) =7 +ymax Qu(s',a’)

Think-pair-share

Initialize ()., with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — oV, L(B;w)

What do you think are the tradeoffs between:
— large replay buffer vs small replay buffer?
— large batch size vs small batch size?

With target network

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w4 w—aVy,L(B;w,w™)
If mod(step,copyfreq) == O:

w —w

Target network helps stabilize DL
— why?

Where: V., L(B;w,w™) & ! Z (target(s';w™) — Qu(s,a)) ViQu(s, a)

|B| (s,a,s’,7)EB

target(s';w™) = r +ymax Q.- (s',a)

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:

episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode

reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:

reward

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)
~ =~~~ OO Dh

W e W W W W W W W W W W W W W W W e e

exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:

PR PR RMNRMNMMRMPMRMMRMRMBPMRMRMNMBPRNRN PN

W e W W W W W W W W W W W W W W W W e

elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:

[cRoNoNoNoNoNoNoNoNooNoNoooNoNoNoNoNo)

.0873818397522
.0872020721436
.138998985291
.0649240016937
.0546570367432
.0260739326477
.110991954803
.135339975357
.0810689926147
.0643260478973
.169064044952
.117113113403
.279519796371
.234206199646
.0835938453674
.150979042053
.155304908752
.194122076035
.102608919144
.0520431995392

Comparison: replay vs no replay

Replay Replay | No replay | No replay

Fixed-Q | Q-learning Fixed-Q | Q-learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894 .4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

(Avg final score achieved)

Double DQN

Recall the problem of maximization bias:

100% N(=0.1,1)

RN 0 0
| . i o (A3 .
75% | : eft _/ right

% left |
actions 50%} \
from A \Q-learning
Double "
25% Q-learning
% f—————— = — — — optimal
oL . . .
1 100 200 300

Episodes

Double DQN

Recall the problem of maximization bias:

Our solution from the TD lecture:

Initialize Q1(s,a) and Q2(s,a), for all s € 8, a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Q2 (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’

With 0.5 probabilility:

Q1(8, 4) « Qu(S, 4) + a(R+ 7Q2(S', argmax, Q1(S',a)) — Qu(S, 4))
else:

Qs(S, A) < Qa(S, A) + a(R + Q1 (S, argmax, Q2(5’,a)) — Qa(5, A))
S« 9

until S is terminal

Can we adapt this to the DQN setting?

Double DON

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — aVy, L(B;w,w™)
If mod(step,copyfreq) == O:

w —w

1
Where: V,L(B;w,w™) ~ Z (target(s’,a’;w,w™) — Qu(s,a)) VuQuw(s,a)

|B| (s,a,s’,7)EB

target(s',a';w,w”) =1 +4Q,- (s, arg max Qy, (5", a’))

a

Think-pair-share

Initialize (),,, @,,— with random weights
D«
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU (s,a,s,7)
s+ s
If mod(step,trainfreq) == O:
sample batch B from D
w — w — aVy, L(B;w,w™)

1. In what sense is this double
g-learning?

2. What are the pros/cons vs earlier
version of double-Q?

3. Why not convert the original

1t mod_(step,copyfreq) — v double-Q algorithm into a
wo—w deep version?
1
Where: V,L(B;w,w™) ~ 1B Z (target(s’,a’;w,w™) — Qu(s,a)) VuQuw(s,a)
(s,a,s’,7)EB

target(s',a';w,w”) =r 4+ vQ,- (s, arg max Qu(s',a"))

a

Score

4000
3000
2000

1000

Wizard of Wor

50 100 150
Training steps (in millions)

Double DON

Double DQN

DQN

200

Asterix

6000 Double DQN

4000

2000

DQN

0 50 100 150 200
Training steps (in millions)

Double DON

BN Double DON (tuned)
] Double DQN

. DON

DQN

Double DQN

Double DQN (tuned)

Median

47.5%

88.4%

116.7%

Mean

122.0%

273.1%

475 2%

| Human

I n “ F I H.nn””n. 5 (L .n o
r B a-E-E-E 2 e Y #T L g oD T T — T T
e B L EEER B8 gL g s bEOrpEs||lcgorSgqgueTROES S
] = TEREg Sl darfr 8 sl BRoeMUBW eSO ELY 2902 ma;ﬁ_;-:;:;.g:ﬂ
E 3 JEQAERAEESOAER gA s By EAN oM B EER||gE<PESE 52 EG .
= 1 : = _— e A : o o et kL oy e[® o= A = o & 5a R =
& £ = & TETSgo B ng¥ed Nuw 33;5=5%3E;: BE <L BESSHE
g RE A = ¥ 287 F FPoBfHg i fEEpgemgnsa A » B o E

) = g = =i = = = &) o iy
= g = 8 8 Y _C @ Y a0 = R S=g @ ¢ - é o o% &

= s P 2 = Al aa= B0 = 1] - o [T » e B0 = » o

i g & B - = £ g

= = N ¥ %= 8.2 g e % * a 8 F 8

= ot . w= 2 * & g = 8

-] = 7‘ =] -4 by

= + = o - =

E rh ™ g

a Mo * S

-

«xSolaris«+ [

Normalized score

Table 2: Summary of normalized performance up to 30 minutes
of play on 49 games with human starts. Results for DQN are from
Nair et al. (2015).

Prioritized Replay Buffer

Initialize ()., with random weights
D+
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
D <+ DU(s,a,s’,r)
s+ s
If mod(step,trainfreq) == 0:
sample batch B from D

Previously this sample was uniformly random

Can we do better by sampling the batch intelligently?

Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

Question

Why is the sampling method
particularly important in this
Domain?

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

updates needed

oracle
— uniform

10° 10° 10

#samples

Num of updates needed to learn true value
fn as a function of replay buffer size

Larger replay buffer corresponds to larger
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that
minimize loss over entire buffer

Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

Minimizing loss over entire buffer is impractical

Can we achieve something similar online?

10° 10° 10
#samples

Num of updates needed to learn true value
fn as a function of replay buffer size

Larger replay buffer corresponds to larger
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that
minimize loss over entire buffer

Question

|dea: sample elements of minibatch P(z) I
by drawing samples with probability: o Zk Die

where p,; denotes the priority of a sample
— simplest case: p; = T'D error + €
(this is “proportional” sampling)

Problem: since we're changing the distribution of updates
performed, this is off policy.

— need to weight sample updates...

Question: qualitatively, how should we re-weight experiences?

— e.g. how should we re-weight an experience that prioritized
replay does not sample often?

Prioritized Replay Buffer

|dea: sample elements of minibatch (Z) I
by drawing samples with probability: o Zk Die
where p,; denotes the priority of a sample

— simplest case: p; = T'D error + €
(this is “proportional” sampling)

Problem: since we're changing the distribution of updates
performed, this is off policy. 1

— need to weight sample updates: w; , o = B[P
s,a,s’

o

E Z Ws a,s’ (taTget(S/,a/;’w,w) o Qw<87a)) Vwa(S,a)

(s,a,s’",1)EB

Vol(B;w,w™) &

Prioritized Replay Buffer

|dea: sample elements of minibatch (Z) _ Pi
by drawing samples with probability: Zk Die
where p,; denotes the priority of a sample

— simplest case: p; = T'D error + €

(this is “proportional” sampling) Why is epsilon
needed?

Problem: since we're changing the distribution of updates
performed, this is off policy. 1

— need to weight sample updates: w; , o = B[P
s,a,s’

o

E Z Ws a,s’ (taTget(S/,a/;’w,w) o QUJ(S’CL)) Vwa(S,a)

(s,a,s’,r)EB

Vol(B;w,w™) &

updates needed

oracle
— uniform

Prioritized Replay Buffer

— Left action transitions to state 1 w/
zero reward

— Far right state gets reward of 1

oracle
—— rmank-based
10° —— proportional
— uniform

eged

[

updates n

10° 10 10*

#samples
#samples

Prioritized buffer is not as good as oracle, but it is better
than uniform sampling...

normalized max score

Prioritized Replay Buffer

140% - : : : - 140% - _ -
120% - 120% -
: @
100% - e S 100% === =~ i
u
c
80% 4y O 80%4
£
o
60% - LoB0%
o
40% 4 g 40% -
c
20% - 20% 4
0% : : : 0% - - T
0 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)
—— uniform == rank-based - proportional uniform DQN

— averaged results over 57 atari games

Dueling networks for Q-learning

Recall architecture of Q-network:

Dueling networks for Q-learning

This Is a more common way of drawing It:

' I"I»Q (s,a)

Fully Connected
Layers

CONV Layers

Dueling networks for Q-learning

This Is a more common way of drawing It:

' I"I»Q (s,a)

Fully Connected
Layers

CONV Layers

We’'re going to express the g-function using a new network architecture

Dueling networks for Q-learning

| Q(s,a)
-»l ~

) - Advantage function

/

Decompose Q as: (Q(s,a) = V(s) + A(s, a)

Think-pair-share

Intuition

VALUE ADVANTAGE

VALUE ADVANTAGE

st [TIMGSI0N s (NI5ioN

Dueling networks for Q-learning

A<
' | Q(s,a)
-»l /

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: Q(s,a) =V (s) + A(s,a) — max A(s, a)

a

Question

-»ll

A(s,a)

Notice that the V/Q decomposition is not unique, given Q targets only
Therefore: Q(s,a) =V (s) + A(s,a) — max A(s, a)
a

Why does this help?

Dueling networks for Q-learning

)

| Q(s,a)
-»l ~

A(s,a)

Notice that the V/Q decomposition is not unique, given Q targets only

Actually: Q(s,a) =V (s) + A(s,a) ZA s,a)

Dueling networks for Q-learning

CORRIDOR ENVIRONMENT

5 ACTIONS 10 ACTIONS 20 ACTIONS

SE

No. Iterations

No. Iterations No. Iterations

Action set: left, right, up, down, no-op (arbitrary number of no-op actions).
SE: squared error relative to true value function

Compare dueling w/ single stream networks (all networks are three-layer MLPS)
Increasing number of actions in above corresponds to increases in no-op actions

Conclusion: Dueling networks can help a lot for large numbers of actions.

Dueling networks for Q-learning

%0000 IEEG— /0334

%159 I
%95 (1- M
%E6yT- Il

VAN |
%LEL W
%z e
%8 E- |
%68'T- |
%40°0-
%000
%20
%LED
%SH'0
%621 |
%IEZ |
%157
%Ly 1l
VITAY |
%pS's B
%209 M
%z5's M
%95'6 W
%pe0T M
%6¢ 91 I
%951 I
%5961 IR
%8791 I
%377z
%3897z
%39v¢ N
%5797 I
%Sy (7 N
%g89'.7 N
%¢g7 N
%0r'1¢ I
%09°cc N
%606 INEGN
%67y I
%rZyy (N
%269y NEEGN
%9.cs INEG_N
%58'sS I
%61 LS G
9%05°LS [NEG—_—
%L1'e9 I
%e 69 I
%200, NG
%9, I
%1505 I
%0720 NG
%se98 G
%ee ve I
%06°L6 NG
%1191 I
%00'087T I
%.9'967 G

|[equld OapIA
noxealg
j|nessy
Japry weag
SLIej0S

puog Sauef
weyyuein|
buimog
3/3 91eAlq
2bU3A3Y S, euwnzajuop
buod
Juejoqoy
il[eAld

UIYS
'0Y3H
SPI0JR)SY
YIENY UoWa(
J0M JO PJezim
JejiAeIo
Jaydon)
Buixog
PIEFIE]:
uslly
ooJebuey
Jaisep n4-Buny
Uo7 JpIeg
AWe9 S1y| AWeN
Japuajaq
apadiua
Jaquip Azen
£320H 97
uoxxez
198:0
AgJag buiys4
Jepiuy
EIDUE
PIEY JoAlY
yunq 3|qnogq
punouns
Jauuno Jeys
uepy-2ed ‘s
[InIX
1SI9H yueq
Jauuny peoy
XLR)SY
10]id awi|
mw_ﬁme“_
EIIET NN
15anbeag
puewwo) Jaddoy)
oJnpu3
X|U30Ud
umoq pue dn
SJapeAu| 92eds
sluuaj
Sijuepy

Change in avg rewards for 57 ALE domains versus DQN w/ single network.

Asynchronous methods

ldea: run multiple RL agents in parallel
— all agents run against their own environments and Q fn

— periodically, all agents synch w/ a global Q fn.

Global Network Instantiations of the idea:
Polioy) |19 — asynchronous Q-learning
Ntwk — asynchronous SARSA
=3 — asynchronous advantage actor critic (A3C)

Input (s)

» w - -

Worker 1 Worker 2 Worker 3 Worker n

! ! ! !

Environment 1 Environment 2 Environment3 | ... | Environmentn

Asynchronous Q-learning

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T’ = (. <4 Shared Q functions
Initialize thread step counter £ <— 0
Initialize target network weights 6~ < 6
Initialize network gradients df < 0
Get initial state s
repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r
y=1 for terminal s’

r+ymax, Q(s',a’;07) for non-terminal s’ Accumulate gradients

O(y=Q(s.0,6))’ -

Accumulate gradients wrt 0: df < df +
/
S=s

T+ T+1landt +—t+1
if 7' mod Ii4rgec == 0 then /

Update the target network 6~ < 6

Update target network

end if

if ¢ mod Iasynctpdate == 0 or s is terminal then Periodically, apply batch
Perform asynchronous update of € using df. of weight updates
Clear gradients df < O.

end if

until 7’ > Tma:c

Asynchronous Q-learning

Why does this approach help?

Asynchronous Q-learning

Why does this approach help?

It helps decorrelate training data
— standard DQN relies on the replay buffer and the target network
to decorrelate data
— asynchronous methods accomplish the same thing by having
multiple learners
— makes it feasible to use on-policy methods like SARSA (why?)

Score

Score

Score

Beamrider

aooo 300
= latep Q. 1threads

gogn — l4tep Q. 2 threads
— lstep Q, 4threads 250

Lstep Q, 8 threads
L-step Q. 16 threads

TO00

6000 200
5000 w
2
g5 150
4000 L
3000 100
2000
50 e
1000
o]
] 2 4]] 10 12 14]]
Training time [hours) Training time (hours)
12000 Bearnrider 350 Breakout
— nestep Q. | thieads — neatep Q, 1 threads
— mritep . 2 threads — mrstep Q, 2 threads
10000 — ™ Q.4 thiesds 300 — mestep Q. 4 threads
n-step Q. 8 threads n-atep 0. 8 threads
nitep G, 16 thrasds n-step 0, 16 threads
250
BoOOO
200
B
G000 &‘3
150
4000 /
100
./"”
2000 50
]] =
] 2 4 6] 10 12 14] 2 4 6]
Training time [hours) Training time [hours)
16000 Beamrider 500 Breakout
— A3C, 1 threads — A3C, 1 threads
=— A3C, 2 threads — AJC, 2 threads
L4000 p3c, 4 theeads oo — AIC. 4 thresds
— A3C, B threads — A3C, B threads
12000 A3C, 16 threads A3, 16 threads
10000
BOOO
G000
4000
2000
0 .
o 2 4 6 B 10 12 14 o 2 4 6 B

Training time (hours)

Asynchronous Q-learning

— 1-atep Q. 1 threads
— Llatep Q. 2 thieads
— l-stepQ, 4 threads
l-step Q. 8 threads
1-atep 0. 16 thresd:

Breakout

3

14

14

Training time (hours)

14

Score

Score

Pong

20 4000
= l-step O, 1 threads
15 — latepQ, 2threads S
— LstepQ, Athreads J S
l-step Q, 8 threads
0 1-step Q, 16 threads f 3000

5
2500
0 o
g 2000
-5 o
-10
-15
—20
—-25
i} 2 4] B 10 12 4 o
Training time (hours)
20 Pong 4500
15 4000
10 3500
5 3000
0 @ 2500
a
o
=5 w1 E000
=10 1500
=15 Q. 1 threads 1000

Shep O, 2 thieads
rratep Q, 4 threads
frstep O, 8 threads
ratep Q, L6 threads
=25 o
] 2 4 6] 10 12 14
Training time (hours)

=20

30 Fong 12000
— A3IC, 1 threads
— AIC, 2 threads
w— A3C, 4 threads
20— AIC, @ threads = 10000
A3C, 16 threads ’/— —
1 8000
o
o 5 6000
{d Ll
£ w
.".
/
-1 / 4000
/f.
i — — 2000
—30 .
0 x4 & B 10 12 14

Training time (hours)

O*bert

= Latep @, 1 threads

— ltep @, 2 theeads

— latep @, 4 threads
lstep O, 8 threads
latep Q. 16 threads

2 4 6

Training time (hours)

— nestep Q. 1 threads

— mritepq, 2 threads

— mritep Q. 4 threads
restep Q, 8 threads
nitep Q, 16 thresds

Training time [hours)

— A3C, 1 threads
— AJC, 2 threads
= A3C, 4 threads
—— A3C, 8 thesads
A3C, 16 threads

]

Fhert

]

Obert

Training time (hours)

Different numbers of learners versus wall clock time

]

Space Invaders

= l-step Q.1 threads
— 1-step Q.2 threads

BOO

700 — Ll-step Q.4 threads
l-step Q.8 threads
1-step Q. 16 threads —
600
w 500
=1
It
400
300
200
100
] 2 4 &] 10 12 14
Training time (hours)
800 Space Invaders
— edtep O, 1 thraads
— n-step Q. 2 threads
700 — nestep Q. 4 threads
n-step Q. 8 threads P, M
n-stap Q. 16 thras S N i
600
/
500 /
@ /
o
@
400
300
200 //
100
] 2 4 6] 10 12 14
Training time [hours)
1600 Space Invaders
— A3C, 1 threads
— AJC, 2 threads
1400 p3c, 4 threads
— A3C, B threads

Score

1200 A3, 16 threads

1000

800

600

400

200

o 2 4 6 B 10 1z 14
Training time [hours)

10000

BOOD

6000

Score

4000

2000

12000

10000

BOOO

E 6000
i]

4000

2000

16000
14000
12000
10000

BOOO

Score

6000

4000

2000

Beamrider

— Lstep Q.1 threads

— Lstep Q.2 thresds
Latep §, 4 threads
Latep G, § threads
Lstep @, 16 threads

10 20 30
Training epochs

Beamrider

— estep G, 1 thieads
— nestep G, 2 thieads
— mrestep §, 4 threads
festep O, B threads
watep G, 16 thieads

10 20 30
Training epochs

Beamrider
—— A3C, 1 thréads
—— A3C, 2 threads
— A3C, 4 thréads
—— A3C, 8 threads
A3C, 16 threads

10 20 30
Training epochs

Score

8O0

700

600

500

400

Score

300

200

100

Breakout

— LstepQ, lthreads
— LstepQ, 2threads
l-step Q, 4 threads
l-step Q, 8 threads
1-step Q, 16 threads

10 20

30

Training epochs

Breakout

— edtep g, 1 threads
fedtep G, 2 threads
n-step Q, 4 threads
f-itep O, 8 threads
f-dtep G, 16 thieads

10 20

30

Training epochs

Breakout

10 20
Training epochs

30

40

40

A3C, 1threads
A3C, 2 threads
A3C, Athreads
A3C, 8 threads
A3C, 16 threads

40

=— lstepq. 1 threads
= l-itep (.2 threads
= latep .4 thresds
— Llatep Q.8 threads

L-step), 16 threads

i) 10 20 30 40
Training epochs

Pang

———
e ———

— rritepQ, 1 threads
= rritep 0,2 threads
—— frstep (. 4 threads
fritep (O, 8 threads
rritep O, 16 threads

i) 10 20 30 40
Training epochs

30 Pang
20
10
|4
s 0
@
=10
— 03T, 1 threads
— A3C,2 threads
=20 _ — AIC, 4 threads
A3C, 8 threads
A3C, 16 threads
—30
10 20 30 40

Training epochs

Score

Scom

Score

Asynchronous Q-learning

4500 Fhert 800 Space Invaders
— LstepQ, 1 threads
— Lstep,2 threads
4000 Lstep {4 threads 700
l-step O, 8 threads
3500 Lstep O, 16 threads
600
M 500
-]
A
400
300
! — l-step Q. 1 threads
| = 1-dtep Q. 2 threads
200 ¥ — l-itep Q. 4 threads
— l-step Q. B threads
l-step Q. 16 threads
100
i} 10 20 30 40 i) 10 20 30 40
Training epochs Training epochs
G000 Qhert 800 Space Invaders
— eitep @, 1 thieads -
— nedtep), 2 threads -~
— nestep O, 4 threads 700
5000 fritep O, 8 threads
nestep G, 16 thieads
600
4000
o 500
3000 §
400
2000
300
— festep 0, 1 threads
— frdtep Q. 2 threads
1000 200 n-step Q. 4 threads
frdtep Q. B threads
| n-step Q, 16 threads
] 100
i} 10 20 30 40 i) 10 20 30 40
Training epochs Training epochs
12000 Qthert 1400 Space Invaders
—— A3, 1 threads —— A3C, 1 threads
— A3C, 2 thraads —— A3C, 2 threads
— A3, 4 threads 1200 — A3C, 4 ads
10000 — A3, B threads 1 —— A3C, Bthreads

A3C, 16 threads A3C, 16 threads
1000

8OO0

G000

Score

4000

2000

20 30 40 i) 10 20 30 40
Training epochs Training epochs

Different numbers of learners versus number of SGD steps across all threads
— Sspeedup is not just due to greater computational efficiency

Median human-normalized score

200%

100%

0%

Combine all these ideas!

DQN

— DDQN
— Prioritized DDQN

— Dueling DDQN /

A3C

Distributional DQN
Noisy DQN

Rainbow f

J 3 2 'fM v
| AfW*"" -’M
3 ‘\"}"
/ (‘
..
414 1(|)O ZCI)O

Millions of frames

Median normalized score

200%

100%

DQN

— no double

— no priority

— no dueling
no multi-step
no distribution

0o L

— i 1
Nno NoISsY \
== Rainbow A !
’,fl\l‘ N Pty
Tt ,\Q\J'\‘,l‘-nf“-f L
A
’
i A "W
- i
,'\..do X
.x.,__;“\,_--"""“'s"’
| | |
50 100 150 200

Millions of frames

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

