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Values of different 
possible discrete actions
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But, why would we 
want to do this?

Deep Q-learning (DQN)



  

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)



  

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)

Is it possible to do RL WITHOUT
hand-coding states?



  

DQN



  

Instead of state, we have an image
– in practice, it could be a history of the k most recent images
   stacked as a single k-channel image

Hopefully this new image representation is Markov…
– in some domains, it might not be!

DQN



  

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

DQN
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Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Num output nodes equals 
the number of actions

DQN



  

Q-function updates in DQN

Here’s the standard Q-learning update equation:
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Rewriting:

let’s call this the “target”
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Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

We’re going to accomplish this same thing in 
a different way using neural networks...

This equation adjusts Q(s,a) in the direction of the target

Q-function updates in DQN



  

Use this loss function:

Q-function updates in DQN



  

Use this loss function:

Notice that Q is now 
parameterized by the weights, w

Q-function updates in DQN



  

Use this loss function: I’m including the bias in the weights

Q-function updates in DQN



  

Use this loss function:
target

Q-function updates in DQN



  

Use this loss function:
target

Question

What’s this called?



  

Use this loss function:
target

Q-function updates in DQN

We’re going to optimize this loss function using the following gradient:



  

Use this loss function:
target

Think-pair-share

We’re going to optimize this loss function using the following gradient:

What’s wrong with this?



  

Use this loss function:
target

Q-function updates in DQN

We’re going to optimize this loss function using the following gradient:

What’s wrong with this?

We call this the semigradient rather than the gradient
– semi-gradient descent still converges
– this is often more convenient



  

“Barebones” DQN

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:



  

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:

This is all that changed 
relative to standard 

q-learning

“Barebones” DQN



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Think-pair-share

Suppose the “barebones” DQN algorithm w/ this DQN network experiences
the following transition:

Which weights in the network could be updated on this iteration?



  

Experience replay

Deep learning typically assumes independent, 
identically distributed (IID) training data



  

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?



  

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?

Our solution: buffer experiences and then 
“replay” them during training



  

Experience replay

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps
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Experience replay

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Where:

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps

Buffers like this are pretty common in DL



  

Think-pair-share

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

What do you think are the tradeoffs between:
– large replay buffer vs small replay buffer?
– large batch size vs small batch size?



  

With target network

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:

Where:

Target network helps stabilize DL
– why?



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Comparison: replay vs no replay

(Avg final score achieved)



  

Double DQN

Recall the problem of maximization bias:



  

Double DQN

Recall the problem of maximization bias:

Our solution from the TD lecture:

Can we adapt this to the DQN setting?



  

Where:

Double DQN

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:



  

Where:

Think-pair-share

Initialize                  with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

if mod(step,copyfreq) == 0:

1. In what sense is this double 
q-learning?

2. What are the pros/cons vs earlier 
version of double-Q? 

3. Why not convert the original 
double-Q algorithm into a 
deep version?



  

Double DQN



  

Double DQN



  

Prioritized Replay Buffer

Initialize        with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Previously this sample was uniformly random

Can we do better by sampling the batch intelligently?



  

Prioritized Replay Buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1



  

Question

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Why is the sampling method 
particularly important in this

Domain?



  

Prioritized Replay Buffer

Num of updates needed to learn true value 
fn as a function of replay buffer size

Larger replay buffer corresponds to larger 
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that 
minimize loss over entire buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1



  

Prioritized Replay Buffer

Num of updates needed to learn true value 
fn as a function of replay buffer size

Larger replay buffer corresponds to larger 
values of n in cliffworld.

Black line selects minibatches randomly

Blue line greedily selects transitions that 
minimize loss over entire buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Minimizing loss over entire buffer is impractical

Can we achieve something similar online?



  

Question

Idea: sample elements of minibatch 
by drawing samples with probability:

Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates…

Question: qualitatively, how should we re-weight experiences?
– e.g. how should we re-weight an experience that prioritized

replay does not sample often?

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)
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Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates:

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)



  

Prioritized Replay Buffer

Idea: sample elements of minibatch 
by drawing samples with probability:

Problem: since we’re changing the distribution of updates 
performed, this is off policy.

– need to weight sample updates:

where      denotes the priority of a sample
– simplest case: 

( this is “proportional” sampling)
Why is epsilon 

needed?



  

Prioritized Replay Buffer

– Left action transitions to state 1 w/ 
zero reward

– Far right state gets reward of 1

Prioritized buffer is not as good as oracle, but it is better 
than uniform sampling...



  

Prioritized Replay Buffer

– averaged results over 57 atari games



  

Dueling networks for Q-learning

Recall architecture of Q-network:



  

Dueling networks for Q-learning

This is a more common way of drawing it:

CONV Layers

Fully Connected
Layers



  

Dueling networks for Q-learning

This is a more common way of drawing it:

CONV Layers

Fully Connected
Layers

We’re going to express the q-function using a new network architecture



  

Dueling networks for Q-learning

Decompose Q as:

Advantage function



  

Think-pair-share

Decompose Q as:

Advantage function

1. Why might this decomposition be better?        
2. is A always positive, negative, or either? Why?



  

Intuition



  

Dueling networks for Q-learning

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: 



  

Question

Notice that the V/Q decomposition is not unique, given Q targets only

Therefore: 

Why does this help?



  

Dueling networks for Q-learning

Notice that the V/Q decomposition is not unique, given Q targets only

Actually: 



  

Dueling networks for Q-learning

Action set: left, right, up, down, no-op (arbitrary number of no-op actions).
SE: squared error relative to true value function
Compare dueling w/ single stream networks (all networks are three-layer MLPs)
Increasing number of actions in above corresponds to increases in no-op actions

Conclusion: Dueling networks can help a lot for large numbers of actions.



  

Dueling networks for Q-learning

Change in avg rewards for 57 ALE domains versus DQN w/ single network.



  

Asynchronous methods

Idea: run multiple RL agents in parallel
– all agents run against their own environments and Q fn
– periodically, all agents synch w/ a global Q fn.

Instantiations of the idea:
– asynchronous Q-learning
– asynchronous SARSA
– asynchronous advantage actor critic (A3C)



  

Asynchronous Q-learning

Periodically, apply batch 
of weight updates

Accumulate gradients

Update target network

Shared Q functions



  

Asynchronous Q-learning

Why does this approach help?



  

Asynchronous Q-learning

Why does this approach help?

It helps decorrelate training data
– standard DQN relies on the replay buffer and the target network
   to decorrelate data
– asynchronous methods accomplish the same thing by having
   multiple learners
– makes it feasible to use on-policy methods like SARSA (why?)



  

Asynchronous Q-learning

Different numbers of learners versus wall clock time



  

Asynchronous Q-learning

Different numbers of learners versus number of SGD steps across all threads
– speedup is not just due to greater computational efficiency



  

Combine all these ideas!
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