Bandit Problems

Robert Platt
Northeastern University

(some slides/material borrowed from Rich Sutton)

A 1-armed Bandit

You walk into a casino...

A 1-armed Bandit

You walk into a casino...

... and there it is — your Nemisis!

A 1-armed Bandit

You walk into a casino...
... and there it is — your Nemisis!

You walk up to the machine and start
pulling the lever

In this case:
— there’s just one possible lever to pull
— you will eventually be able to estimate
the probability of a payout

A 1-armed Bandit

You walk into a casino...
... and there it is — your Nemisis!

You walk up to the machine and start
pulling the lever

In this case:
— there’s just one possible lever to pull
— you will eventually be able to estimate
the probability of a payout

For example:

expected payout per pull = 1.0 x —0.01 + 0.09 x 0.02 + 0.01 x 10.00 = 0.09

A 1-armed Bandit

You walk into a casino...

Pays out $10
1% of time

.. and there It is — your Nemisis!

Pays out 2 cents
9% of the time

\\ —

~ You walk up to the machi

One pull costs
one cent

~ _there. “one possible lever to pul‘u
—you will e
the probabm f a payout

For example:

expected payout per pull = 1.0 x —0.01 + 0.09 x 0.02 + 0.01 x 10.00 = 0.09

The k-armed bandit problem

Same as l-armed bandit except that there
are now k-levers instead of just one.

— at each time step, t=1, 2, 3, ..., you
choose one action from a set of k possible
actions

— you receive a real valued reward after
taking the action

— reward depends only on action taken; it is
identically, independently distributed (iid)

— the expected reward for any action is unknown; distribution of rewards is
unknown

The k-armed bandit problem

Same as l-armed bandit except that there
are now k-levers instead of just one.

— at each time step, t=1, 2, 3, ..., you
choose one action from a set of k possible
actions

— you receive a real valued reward after
taking the action

— reward depends only on action taken; it is
identically, independently distributed (iid)

— the expected reward for any action is unknown; distribution of rewards is
unknown

— Goal: maximize total reward. You must explore different actions and
eventually maximize reward by selecting the action with the highest
estimated expected reward.

Think-pair-share question

Example of a 4-armed bandit:

* Action | — Reward is always 8

 value of action | is q.(1) =
* Action 2 — 88% chance of 0, 12% chance of 100!
* value of action 2 is g«(2) = .88 x 0+ .12 x 100 =

* Action 3 — Randomly between -10 and 35, equiprobable

-10 0 ! 35 EA (5) -

q-(3)

* Action 4 — a third 0, a third 20, and a third from {8,9,..., 18}

|

0 g1y 20

q«(4) =

So, how should you act?

Q values

Define the Q-function to be: Q*(a) = E[R;|A; = al

Q values
Define the Q-function to be: Q*(a) = E[R;|A; = al

Suppose agent gets a lot of experience executing different actions.
How estimate g-function for a given action?

Q values
Define the Q-function to be: Q*(a) = E[R;|A; = al

Suppose agent gets a lot of experience executing different actions.
How estimate g-function for a given action?

. . t—1
sum of rewards when a taken priortot > .| R;-14.—4

Q:(a) =

number of times a taken prior to ¢ Zt_% |
1= [

Q values
Define the Q-function to be: Q*(a) = E[R;|A; = al

Suppose agent gets a lot of experience executing different actions.
How estimate g-function for a given action?

. . t—1
sum of rewards when a taken priortot > .| R;-14.—4

Qila) =

number of times a taken prior to ¢ Zt_% |

Call this the “g-value”

Q values
Define the Q-function to be: Q*(a) = E[R;|A; = al

Suppose agent gets a lot of experience executing different actions.
How estimate g-function for a given action?

. . t—1
sum of rewards when a taken priortot > .| R;-14.—4

Qila) =

number of times a taken prior to ¢ Zt_% |

Call this the “g-value”

In the limit, this estimate

converges to the true value: lim Qt(a) = Q" (a)
N¢(a)—o0

Exploration vs Exploitation

Given an estimate of (J+(a), how do we decide how to act?

Two possibilities:

1. Greedy action selection: A; = arg max QQ+(a)
a

2. Do something else

Exploration vs Exploitation

Given an estimate of Qt(a), act?

Exploitation

Two possibilities:

1. Greedy action selection: A; = arg max QQ+(a)
a

2. Do something else

Exploration

Exploration vs Exploitation

Given an estimate of Qt(a), act?

Exploitation

Two possibilities:

1. Greedy action selection: A; = arg max QQ+(a)
a

2. Do something else

Exploration

— if we don’t explore, then our g-value estimates may be wrong!

— if we don’t exploit, then we never utilize our knowledge!

E-greedy action selection

- In greedy action selection, you always exploit

- In e-greedy, you are usually greedy, but with
probability € you instead pick an action at random
(possibly the greedy action again)

- This is perhaps the simplest way to balance
exploration and exploitation

E-greedy k-armed bandit algorithm

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) < 0
N(a) <+ 0

Repeat forever:
A .] argmax, Q(a) with probability 1 —e (breaking ties randomly)
a random action with probability &
R < bandit(A)
N(A) < N(A) +1
Q(A) « Q(A) + vi [R - Q(A)]

E-greedy k-armed bandit algorithm

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) < 0
N(a) <+ 0

Repeat forever:
A .] argmax, Q(a) with probability 1 —e (breaking ties randomly)
a random action with probability &
R < bandit(A)
N(A) < N(A) +1
Q(A) « Q(A) + wiy [R— Q(4)]

Incremental estimate of (A ZR J

Incremental g-value estimate

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n—1 rewards:

Ri+Ro+---+Rp 1
n—1

QTL i

How can we do this incrementally (without storing all the rewards)?
Could store a running sum and count (and divide), or equivalently:
1
Qn—l—l — Qn + a [Rn — Qn]

This is a standard form for learning/update rules:

NewEstimate <— OldEstimate + StepSize [Target — OldEstimate

Incremental g-value estimate

Qn—i—l — % Z R1

n—1
1 1
— n —1 7
~ | Rn + (n)n_lgR)
1
— _(Rn + n — 1)@%)
T
1
— (RTL + nQn Qﬂ)
T

[
<

+ — [Qn] 3 SB, eq 2.3
n

Example: 10-armed bandit problem

qx(5)

Reward
distribution

1
\%]

[
—h o —h N w
|
[l
| ¥
Cam)
-'J:J
= |
m
— |
b
=]
[m
Cam)
| [¥5)
R
2
[—
| =
|
|
|
[oe=]
* |
_—
[m]
e
= |
»*
—_
-l
—
o]
* |
—
o I—
o
| =
*
| —
=)
e
=]
—
—
)
S

Action
Create a new 10-armed bandit by sampling: Q* (CL) ~ N(O, 1)

For each action, reward drawn from a Gaussian distribution: [{; ~ N(Q* (a), 1)

How does e-greedy action selection perform
on the 10-armed bandit problem?

1.5 _

£=0.
)
=001
| 1 U
e =0 (greedy)
Average
reward
0.5 -
0 I | | |
| 250 500 750 1000
Steps
100% _
80% |
e/ 60% _
Optimal
action 0%
20% |
0%

I 1 | 1
| 250 500 750 1000
Steps

Results averaged over 2000 10-armed bandit problems and 1000 runs per problem.

Think-pair-share question

Exercise 2.3 In the comparison shown in Figure 2.2, which method will perform best in the long run
in terms of cumulative reward and probability of selecting the best action? How much better will it
be? Express your answer quantitatively.]

Average
reward
0.5
0 I I | |
I 250 500 750 1000
Steps
100% _
0% _| L ke Aoy _-".'!"_j‘.‘_n_rk.' i
o) 60%
7o £=0.01
Optimal
action 40% 4
20%
0% I | | | |
I 250 500 750 1000

Steps
Figure 2.2

Non-stationary problems

+(5)

Reward
distribution

J 1
N - o - [\e] w
|
=
| ¥
—
_'J:
= |
"
— |
b
e |
[2
—
| o
[
=
*
=
I W=
|
I
|
(=]
ol |
—_—
(=2}
Rt
=
*
—_
-
R—
=}
|
—_
® |
= —
I =
¥
' =
)
=]
—_
—
=
a—

Action

What if the true action-values change over time?

Non-stationary problems

* Suppose the true action values change slowly over time

» then we say that the problem is nonstationary
* In this case, sample averages are not a good idea (Why?)
* Better is an “exponential, recency-weighted average”:
Qni1 = Qn +a|Rn— Q)

T
=(1—a)"Q1 + Z a(l—a)" 'R,
i=1
where « i1s a constant, step-size parameter, 0 < a <1

* There is bias due to (; that becomes smaller over time

Convergence conditions

* To assure convergence with probability I:

i ap(a) = oo and i o2 (a) < 0o
n=1 n=1

1
¢ e.g., ap — E
if a,=n"", pe(0,1)
1 :
* not a,=—; then convergence is
" at the optimal rate:
O(1/v/n)

These are standard conditions for convergence for any monte carlo estimate

Think-pair-share

FEzxercise 2.4 If the step-size parameters, «,,, are not constant, then the estimate @,, is
a weighted average of previously received rewards with a weighting different from that
given by (2.6). What is the weighting on each prior reward for the general case, analogous
to (2.6), in terms of the sequence of step-size parameters?]

Qni1 = Qnta|Ry,— Qn]
= aR,+(1—a)Q,

= aR,+(1—a)laR, 1+ (1 —a)Qpn_1]

= aR,+(1—a)aR,—1+ (1— o;)an_l

= aR,+ (1 —a)aR, 1+ (1— (I)ZC}:Rn_Q +

o+ (1—a)" taR) + (1 —a)"Qy

= (1—a)"Q1+ Zq(l —)”_/T’R@

i=1 '

Y

|

Weighting on prior rewards for constant-alpha case

Optimistic initial values

* All methods so far depend on Q;(a),i.e., they are biased.
So far we have used Qi(a) =0

 Suppose we initialize the action values optimistically (Q1(a) = 5),
e.g., on the |0-armed testbed (with = 0.1)

100%
optimistic, greedy o -
80% — 0,=5,€=0
A 60% - realistic, e-greedy
Optimal 0,=0,€=0.1
action 40%
20% —
0% =7 T T T T |
0 200 400 600 800 1000

Think-pair-share question

_—~

— these curves are averages over 2000
different 10-armed bandit tasks

100,

" What do you think accounts for these spikes?

| optimistic, greedy o -
80% 0,=5,€=0
% 60% —{ realistic, e-greedy
Optimal 0,=0,€=0.1
action 40% -
20%
0% =7 T T T T |
0 200 400 600 800

UCB action selection

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

» Select the action with the largest (estimated) upper bound

logt
A; = ar ;
¢ argénax {Qt(a) + ¢ N, () }

UCB action selection

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

» Select the action with the largest (estimated) upper bound

Ay = argénax {Qt(a) + ¢y | ;Zif) :|

N

This term is an upper bound on the likely
value of this action based on our uncertainty

The cool thing about the UCB form is that regret is bounded
logarithmically w/ the number of actions.

* A clever way of reducing exploration over time

* Estimate an upper bound on the true action values

UCB action selection

Select the action with the largest (estimated) upper bound

Ay = argénax {Qt(a) + ¢y | ;Zif) :|

A

Regret: difference between your expected return
using this strategy and how well you might have

done if you knew which arm was best in advance

) —

ikely

sertainty

The cool thing about the UCB form is that regret is bounded

logarithmically w/ the number of actions.

UCB action selection

1.5} UCB ¢ =2
] L
Average
reward
0.5}
ry
i 350 500 750 1000

Steps

Summary

151
UCB greedy with
_ optimistic
Lar N\ initialization
o =0.1
Average 3l . greedy
reward -
Frot gradient
over 1irs ol bandit
1000 steps
1.1}
1/128 1/64 1/32 1/16 1/8 14 12 1 2 4

e o ¢ Qo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

