
Sample Based Motion Planning

Robert Platt
Northeastern University

Problem we want to solve

Starting configuration

Goal configuration

Given:
– a point-robot (robot is a point in space)
– description of obstacle space and free space
– a start configuration and goal region

Find:
– a collision-free path from start to goal

Problem we want to solve

Starting configuration

Goal configuration

Given:
– configuration space
– free space
– start state
– goal region

Find:
– a collision-free path , such that and

Problem we want to solve

Given:
– configuration space
– free space
– start state
– goal region

Find:
– a collision-free path , such that and

Assumptions:
– the position of the robot can always be measured perfectly
– the motion of the robot can always be controlled perfectly

For example: think about a robot workcell in a factory...

Key challenge: high dimensions and
complex geometry of free space

None of the methods we have looked at
so far scale well to manipulator path
planning

– e.g. a 6-DOF UR5 arm

Methods studied so far:

– visibility graphs

– Voronoi diagrams

– cell decomposition

– potential functions

Only work for small num of obstacles

Only work for small dimensional spaces

Not complete

 6

Motion planning problem hardness

The general path planning problem is PSPACE-hard
– pspace-hard in complexity of free space, e.g. measured by
number of facets in total polyhedral obstacles

– in the worst case, path planning requires solving an
arbitrary difficult maze
– complexity generally increases exponentially in the
dimension of the configuration space

– the best we can do is find anytime algorithms that solve “simple”
problems quickly while retaining completeness for arbitrary
problems

 7

Motion planning problem hardness

The general path planning problem is PSPACE-hard
– pspace-hard in complexity of free space, e.g. measured by
number of facets in total polyhedral obstacles

– in the worst case, path planning requires solving an
arbitrary difficult maze
– complexity generally increases exponentially in the
dimension of the configuration space

– the best we can do is find anytime algorithms that solve “simple”
problems quickly while retaining completeness for arbitrary
problems

Another key practical challenge: most of the methods above require a
preprocessing step where workspace obstacles are projected into the
configuration space

– this is just as hard as the motion planning problem itself

Simple PRM (sPRM)

 9

Simple PRM (sPRM)

free spacelocal path

milestone

Simple PRM (sPRM)

Simple PRM (sPRM)

SampleFree: sample a state from

Near: return the set of vertices in G within radius r of v

CollisionFree: check whether a line segment
between v and u is completely within

Question

For a fully connected graph created using sPRM parameterized by radius r,
consider a vertex that is the nearest neighbor of another. What is the
maximum distance between these two vertices?

sPRM

What kind of graph does sPRM find?

Question

What kind of graph does sPRM find?

Does the graph become connected as n becomes large?

sPRM

What kind of graph does sPRM find?

Does the graph become connected as n becomes large?

https://www.youtube.com/watch?v=twjnAE3SjJw

https://www.youtube.com/watch?v=twjnAE3SjJw

Question

What kind of graph does sPRM find?

Does the graph become connected as n becomes large?

For sPRM, express the number of edges in the graph as a function of n
as n goes to infinity:

Volume of unit ball in d dim

 17

Probabilistic completeness of PRM

SPRM is not complete: not guaranteed to find a solution for any finite value of n

However, it is probabilistically complete in the following sense:

Finds a path with probability 1 as the number of vertices

increases as long as such a path if robustly feasible

 18

Probabilistic completeness of PRM

SPRM is not complete: not guaranteed to find a solution for any finite value of n

However, it is probabilistically complete in the following sense:

Finds a path with probability 1 as the number of vertices

increases as long as such a path if robustly feasible

Infinite monkey theorem:

A monkey typing keys randomly on a keyboard will
produce any given text (the works of William Shakespeare)
with probability one.

 19

Probabilistic completeness of PRM

Probability of not finding a solution to a robustly feasible

problem decreases exponentially with the number of vertices

Optimality

Recall:

Cost: cost of path

Cost of min cost path found by the algorithm Optimal cost

Optimality of sPRM

K-nearest sPRM is variation where connect vertices
w/ k-NN instead of neighbors within radius

PRM*

Problem w/ sPRM: number of edges grows nearly quadratically with the
number of edges

Num NEAR vertices
grows linearly w/ n

Idea: reduce the connection radius as the number of vertices grows

– BUT: if you do it too quickly, the graph becomes
asymptotically disconnected

PRM*

Idea: set r to exactly

Recall:

Technically, we need to adjust r for the volume of obstacles:

Volume of unit ball in d dim

PRM*

PRM* adds a constant
number of edges on

each step, but remains
asyptotically optimal

PRM sampling strategies

Can we do better with a smarter sampling strategy?

PRM sampling strategies

Problem: it may take a lot of samples to reach a fully connected graph

PRM sampling strategies

Let’s think about the “online” version of algorithm

PRM sampling strategies

Let’s think about the “online” version of algorithm

Resampling

Idea: expand vertices that are close to obstacles

1. Sample a vertex to expand
– select vertices for which many link failures have
occurred

2. Pick a random motion direction in c-space and move in this
direction until an obstacle is hit.

3. When a collision occurs, choose a new random direction and
proceed for some distance.

4. Add the resulting nodes and edges to the tree. Re-run tree
connection step.

Expand nodes w/ prob:

Where:

 30

Resampling (expansion)

 31

So far, we have only discussed uniform sampling...

Problem: uniform sampling is not a great way to find
paths through narrow passageways.

start

goal

C-obst

C-obst

C-obst

C-obst

PRM Roadmap

Gaussian sampler

 32

Gaussian sampler
Gaussian sampler:

1. Sample points uniformly at random (as before)

2. For each sampled point, sample a second point
from a Gaussian distribution centered at the first
sampled point

3. Discard both samples if both samples are either
free or in collision

4. Keep the free sample if the two samples are NOT
both free or both in collision (that is, keep the
sample if the free/collision status of the second
sample is different from the first).

 33

Gaussian sampler

Probability of sampling a point under the Gaussian sampler
as a function of distance from a c-space obstacle

Example of samples drawn
from Gaussian sampler

 34

Lazy PRM Precomputation: roadmap construction

• Nodes
– Randomly chosen configurations, which may or may

not be collision-free
– No call to CLEAR

• Edges
– an edge between two nodes if the corresponding

configurations are close according to a suitable metric
– no call to LINK

Lazy PRM

Single query problem: you are only interested in connecting start and goal
configurations. Don’t care about cull connectivity of the map.

Lazy PRM idea: only check edges that could potentially be on the shortest
path through the graph.

 35

Lazy PRM

1. Find a shortest path in the roadmap

2. Check whether the nodes and
edges in the path are free.

3. If yes, then done. Otherwise,
remove the nodes or edges in
violation. Go to (1).

We either find a collision-free path, or exhaust all paths in the
roadmap and declare failure.

Query processing: Using UCS or A*

Rapidly Exploring Random Trees (RRTs)

Problems with PRM:

– two steps: graph construction, then graph search

– hard to apply to problems where edges are directed, i.e. kinodynamic problems

RRTs solve both of these problems:

– create a tree instead of graph: no graph search needed!

– tree rooted at start or goal – edges can be directed

RRT Algorithm

RRT Algorithm

RRT Algorithm

RRT Algorithm

RRT Algorithm

RRT Algorithm

RRT Algorithm

RRT versus a naïve random tree

Growing the naïve random tree:
1. pick a node at random
2. sample a new node near it
3. grow tree from random node to
new node

RRT Naïve random tree

RRTs and
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Biases
• Bias toward larger spaces
• Bias toward goal

 When generating a random sample, with some
probability pick the goal instead of a random
node when expanding

 This introduces another parameter
 5-10% is probably the right choice

 47

RRT probabilistic completeness

Notice that this is exactly the same bound as for sPRM.

RRT does not find optimal paths

Is there a version of RRT that is optimal?

Don’t just
connect to

Attempt to connect to every
vertex within a radius r

Use same variable radius
as in PRM*

Yes: RRG and RRT*

RRG Properties

RRG is complete … how do you know?

RRG Properties

RRG is complete … how do you know?

RRG Properties

RRG is complete … how do you know?

But, why might RRT still be preferable to RRG?

RRT* Algorithm

Don’t just
connect to

Attempt to connect to every
vertex within a radius r

Use same variable radius
as in PRM*

Get position and cost
of min-cost vertex in

Rewire parents of
nodes in to go
through if
that’s faster

RRT* Algorithm

RRT* Algorithm

RRT* is complete … how do you know?

Bidirectional RRT (RRT Connect)

Bidirectional RRT (RRT Connect)

RRT_CONNECT (qinit, qgoal) {

 Ta.init(qinit); Tb.init(qgoal);

 for k = 1 to K do
 qrand = RANDOM_CONFIG();

 if (qnew= EXTEND(Ta, qrand) == Reached) then

 if (EXTEND(Tb, qnew) == Reached) then

 Return PATH(Ta, Tb);

 SWAP(Ta, Tb);

 Return Failure;
}

Instead of switching, use Ta as smaller tree.

qinit

qgoal

A single RRT-Connect iteration...

qinit

qgoal

1) One tree grown using random target

qinit

qgoal

qtarget

2) New node becomes target for other tree

qinit

qgoal

qtarget

qnear

3) Calculate node “nearest” to target

qinit

qgoal

qnew

qtarget

qnear

4) Try to add new collision-free branch

qinit

qgoal

qnew

qtarget

qnear

5) If successful, keep extending branch

qinit

qgoal

qnew

qtarget

qnear

5) If successful, keep extending branch

qinit

qgoal

qnew

qtarget

qnear

5) If successful, keep extending branch

qinit

qgoal

qnear

6) Path found if branch reaches target

qinit

qgoal

7) Return path connecting start and goal

Bidirectional RRT (RRT Connect)

Is bi-directional RRT always better?

Kinodynamic planning with RRTs
So far, we have assumed that the system has no dynamics
– the system can instantaneously move in any direction in c-space
– but what if that's not true???

Consider the Dubins car:
– c-space: x-y position and velocity, angle
– control forward velocity and steering angle
– plan a path through c-space with the

corresponding control signals

where:
x_t – state (x/y position and velocity, steering angle)
u_t – control signal (forward velocity, steering angle)

Kinodynamic planning with RRTs

But, what if x_{near} isn't the right node to expand ???

So, what do they do?
• Use nearest neighbor anyway

• As long as heuristic is not bad, it helps
 (you have already given up completeness and optimality, so what

the heck?)

• Nearest neighbor calculations begin to
dominate the collision avoidance

• Remember K-D trees

Left-turn only forward car

Hovercraft with 2 Thusters

Path Smoothing

Paths produced by sample based planners are generally not smooth

– RRT* and PRM* converge to optimal paths in the limit, but it’s
generally not possible to run these algorithms long enough to
converge.

 75

Smoothing the path

 76

Smoothing the path

 77

Smoothing the path

 78

Smoothing the path

 79

Smoothing the path

 80

Smoothing the path

 81

Smoothing the path

 82

Smoothing the path

 83

Smoothing the path

 84

Smoothing the path

 85

Smoothing the path

 86

Smoothing the path

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Difficulty with classic approaches
	Slide 7
	Slide 8
	Probabilistic Roadmap (PRM): multiple queries
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Precomputation: roadmap construction
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Naïve Random Tree
	RRTs and Bias toward large Voronoi regions
	Biases
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	qnear
	Slide 70
	So, what do they do?
	Left-turn only forward car
	Hovercraft with 2 Thusters
	Slide 74
	Smoothing the path
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

