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Problem we want to solve

Starting configuration

Goal configuration

Given:
– a point-robot (robot is a point in space)
– description of obstacle space and free space
– a start configuration and goal region

Find:
– a collision-free path from start to goal
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Problem we want to solve

Given:
– configuration space
– free space
– start state
– goal region

Find:
– a collision-free path    , such that                            and 

Assumptions:
– the position of the robot can always be measured perfectly
– the motion of the robot can always be controlled perfectly

For example: think about a robot workcell in a factory...



Key challenge: high dimensions and 
complex geometry of free space

None of the methods we have looked at 
so far scale well to manipulator path 
planning

– e.g. a 6-DOF UR5 arm

Methods studied so far:

– visibility graphs

– Voronoi diagrams

– cell decomposition

– potential functions

Only work for small num of obstacles

Only work for small dimensional spaces

Not complete
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Motion planning problem hardness

The general path planning problem is PSPACE-hard
– pspace-hard in complexity of free space, e.g. measured by 
number of facets in total polyhedral obstacles

– in the worst case, path planning requires solving an 
arbitrary difficult maze
– complexity generally increases exponentially in the 
dimension of the configuration space

– the best we can do is find anytime algorithms that solve “simple” 
problems quickly while retaining completeness for arbitrary 
problems
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Motion planning problem hardness

The general path planning problem is PSPACE-hard
– pspace-hard in complexity of free space, e.g. measured by 
number of facets in total polyhedral obstacles

– in the worst case, path planning requires solving an 
arbitrary difficult maze
– complexity generally increases exponentially in the 
dimension of the configuration space

– the best we can do is find anytime algorithms that solve “simple” 
problems quickly while retaining completeness for arbitrary 
problems

Another key practical challenge: most of the methods above require a 
preprocessing step where workspace obstacles are projected into the 
configuration space

– this is just as hard as the motion planning problem itself



Simple PRM (sPRM)
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Simple PRM (sPRM)

free spacelocal path

milestone



Simple PRM (sPRM)



Simple PRM (sPRM)

SampleFree: sample a state from 

Near: return the set of vertices in G within radius r of v

CollisionFree: check whether a line segment
between v and u is completely within 



Question

For a fully connected graph created using sPRM parameterized by radius r, 
consider a vertex that is the nearest neighbor of another. What is the 
maximum distance between these two vertices?



sPRM

What kind of graph does sPRM find?
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sPRM

What kind of graph does sPRM find?

Does the graph become connected as n becomes large?

https://www.youtube.com/watch?v=twjnAE3SjJw

https://www.youtube.com/watch?v=twjnAE3SjJw


Question

What kind of graph does sPRM find?

Does the graph become connected as n becomes large?

For sPRM, express the number of edges in the graph as a function of n
as n goes to infinity:

Volume of unit ball in d dim
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Probabilistic completeness of PRM

SPRM is not complete: not guaranteed to find a solution for any finite value of n

However, it is probabilistically complete in the following sense:

Finds a path with probability 1 as the number of vertices 

increases as long as such a path if robustly feasible
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Probabilistic completeness of PRM

SPRM is not complete: not guaranteed to find a solution for any finite value of n

However, it is probabilistically complete in the following sense:

Finds a path with probability 1 as the number of vertices 

increases as long as such a path if robustly feasible

Infinite monkey theorem:

A monkey typing keys randomly on a keyboard will 
produce any given text (the works of William Shakespeare) 
with probability one.
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Probabilistic completeness of PRM

Probability of not finding a solution to a robustly feasible 

problem decreases exponentially with the number of vertices



Optimality

Recall:

Cost:                     cost of path

Cost of min cost path found by the algorithm Optimal cost



Optimality of sPRM

K-nearest sPRM is variation where connect vertices 
w/ k-NN instead of neighbors within radius



PRM*

Problem w/ sPRM: number of edges grows nearly quadratically with the 
number of edges

Num NEAR vertices 
grows linearly w/ n

Idea: reduce the connection radius as the number of vertices grows

– BUT: if you do it too quickly, the graph becomes 
asymptotically disconnected



PRM*

Idea: set r to exactly 

Recall:

Technically, we need to adjust r for the volume of obstacles:

Volume of unit ball in d dim



PRM*

PRM* adds a constant 
number of edges on 

each step, but remains 
asyptotically optimal



PRM sampling strategies

Can we do better with a smarter sampling strategy?



PRM sampling strategies

Problem: it may take a lot of samples to reach a fully connected graph



PRM sampling strategies

Let’s think about the “online” version of algorithm



PRM sampling strategies

Let’s think about the “online” version of algorithm



Resampling

Idea: expand vertices that are close to obstacles

1. Sample a vertex to expand
– select vertices for which many link failures have 
occurred

2. Pick a random motion direction in c-space and move in this 
direction until an obstacle is hit.

3. When a collision occurs, choose a new random direction and 
proceed for some distance.

4. Add the resulting nodes and edges to the tree. Re-run tree 
connection step.

Expand nodes w/ prob:

Where:
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Resampling (expansion)
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So far, we have only discussed uniform sampling...

Problem: uniform sampling is not a great way to find 
paths through narrow passageways.

start

goal

C-obst

C-obst

C-obst

C-obst

PRM Roadmap

Gaussian sampler
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Gaussian sampler
Gaussian sampler:

1. Sample points uniformly at random (as before)

2. For each sampled point, sample a second point 
from a Gaussian distribution centered at the first 
sampled point

3. Discard both samples if both samples are either 
free or in collision

4. Keep the free sample if the two samples are NOT 
both free or both in collision (that is, keep the 
sample if the free/collision status of the second 
sample is different from the first).
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Gaussian sampler

Probability of sampling a point under the Gaussian sampler 
as a function of distance from a c-space obstacle

Example of samples drawn 
from Gaussian sampler
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Lazy PRM Precomputation: roadmap construction

• Nodes
– Randomly chosen configurations, which may or may 

not be collision-free
– No call to CLEAR

• Edges
– an edge between two nodes if the corresponding 

configurations are close according to a suitable metric
– no call to LINK

Lazy PRM

Single query problem: you are only interested in connecting start and goal 
configurations. Don’t care about cull connectivity of the map.

Lazy PRM idea: only check edges that could potentially be on the shortest 
path through the graph.
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Lazy PRM

1. Find a shortest path in the roadmap

2. Check whether the nodes and 
edges in the path are free.

3. If yes, then done. Otherwise, 
remove the nodes or edges in 
violation. Go to (1). 

We either find a collision-free path, or exhaust all paths in the 
roadmap and declare failure.

Query processing: Using UCS or A*



Rapidly Exploring Random Trees (RRTs)

Problems with PRM:

– two steps: graph construction, then graph search

– hard to apply to problems where edges are directed, i.e. kinodynamic problems

RRTs solve both of these problems:

– create a tree instead of graph: no graph search needed!

– tree rooted at start or goal – edges can be directed



RRT Algorithm



RRT Algorithm



RRT Algorithm



RRT Algorithm



RRT Algorithm



RRT Algorithm



RRT Algorithm



  

RRT versus a naïve random tree

Growing the naïve random tree:
1. pick a node at random
2. sample a new node near it
3. grow tree from random node to 
new node

RRT Naïve random tree



  

RRTs and 
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html



  

Biases
• Bias toward larger spaces
• Bias toward goal

 When generating a random sample, with some 
probability pick the goal instead of a random 
node when expanding

 This introduces another parameter
 5-10% is probably the right choice
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RRT probabilistic completeness

Notice that this is exactly the same bound as for sPRM.



RRT does not find optimal paths



Is there a version of RRT that is optimal?

Don’t just 
connect              to

Attempt to connect to every 
vertex within a radius r

Use same variable radius 
as in PRM*

Yes: RRG and RRT*



RRG Properties

RRG is complete … how do you know?



RRG Properties

RRG is complete … how do you know?



RRG Properties

RRG is complete … how do you know?

But, why might RRT still be preferable to RRG?



RRT* Algorithm

Don’t just 
connect              to

Attempt to connect to every 
vertex within a radius r

Use same variable radius 
as in PRM*

Get position and cost 
of min-cost vertex in 

Rewire parents of 
nodes in              to go 
through              if 
that’s faster



RRT* Algorithm



RRT* Algorithm

RRT* is complete … how do you know?



Bidirectional RRT (RRT Connect)



Bidirectional RRT (RRT Connect)

RRT_CONNECT (qinit, qgoal)  {

   Ta.init(qinit);   Tb.init(qgoal); 

   for k =  1 to K do 
      qrand = RANDOM_CONFIG();    

      if (qnew= EXTEND(Ta, qrand) == Reached) then

          if (EXTEND(Tb, qnew) == Reached) then

               Return PATH(Ta, Tb);

      SWAP(Ta, Tb);

   Return Failure;
}

Instead of switching, use Ta as smaller tree.



  

qinit

qgoal

A single RRT-Connect iteration...



  

qinit

qgoal

1) One tree grown using random target



  

qinit

qgoal

qtarget

2) New node becomes target for other tree



  

qinit

qgoal

qtarget

qnear

3) Calculate node “nearest” to target



  

qinit

qgoal

qnew

qtarget

qnear

4) Try to add new collision-free branch



  

qinit

qgoal

qnew

qtarget

qnear

5) If successful, keep extending branch
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qinit

qgoal

qnew

qtarget

qnear

5) If successful, keep extending branch



  

qinit

qgoal

qnear

6) Path found if branch reaches target



  

qinit

qgoal

7) Return path connecting start and goal



Bidirectional RRT (RRT Connect)

Is bi-directional RRT always better?



  

Kinodynamic planning with RRTs
So far, we have assumed that the system has no dynamics
– the system can instantaneously move in any direction in c-space
– but what if that's not true???

Consider the Dubins car:
– c-space: x-y position and velocity, angle
– control forward velocity and steering angle
– plan a path through c-space with the 

corresponding control signals

where:
x_t – state (x/y position and velocity, steering angle)
u_t – control signal (forward velocity, steering angle)



  

Kinodynamic planning with RRTs

But, what if x_{near} isn't the right node to expand ???



  

So, what do they do?
• Use nearest neighbor anyway

• As long as heuristic is not bad, it helps 
            (you have already given up completeness and optimality, so what 

the heck?)

• Nearest neighbor calculations begin to 
dominate the collision avoidance

• Remember K-D trees



  

Left-turn only forward car



  

Hovercraft with 2 Thusters



Path Smoothing

Paths produced by sample based planners are generally not smooth

– RRT* and PRM* converge to optimal paths in the limit, but it’s 
generally not possible to run these algorithms long enough to 
converge.
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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