Sample Based Motion Planning

Robert Platt
Northeastern University

Problem we want to solve

Given:

— a point-robot (robot is a point in space)
— description of obstacle space and free space

— a start configuration and goal region

Find:

— a collision-free path from start to goal

Goal configuration

-

%QW%

7
7

(1)

Starting configuration

Problem we want to solve

Given:

— configuration space C

— free space Cfyee

— start state Tinit € Crree
— goal region X goa1 C Cree

Find:
— a collision-free path o, such that (0) = Z;n5: and (1) € Xgoar

I

Goal configuraton — | . N

Starting configuration

%QW%

7
ﬁ

Problem we want to solve

Given:

— configuration space C

— free space Cfyee

— start state Tinit € Crree
— goal region X goa1 C Cree

Find:
— a collision-free path o, such that (0) = Z;n5: and (1) € Xgoar

Assumptions:
— the position of the robot can always be measured perfectly

— the motion of the robot can always be controlled perfectly

For example: think about a robot workcell in a factory...

Key challenge: high dimensions and
complex geometry of free space
None of the methods we have looked at \
Z?aLa::irs]Sale well to manipulator path/ -
—e.g. a 6-DOF UR5 arm

Methods studied so far:

_ visibility graphs }/[Only work for small num of obstaclesj
:I_ Only work for small dimensional spaces j
— cell decomposition

— potential functions ﬁ Not complete j

— Voronoi diagrams

Motion planning problem hardness

The general path planning problem is PSPACE-hard
— pspace-hard in complexity of free space, e.g. measured by
number of facets in total polyhedral obstacles
— in the worst case, path planning requires solving an
arbitrary difficult maze
— complexity generally increases exponentially in the
dimension of the configuration space
— the best we can do is find anytime algorithms that solve “simple”
problems quickly while retaining completeness for arbitrary

problems
mﬁﬁ
£l

In

1

II_I_|IIIIIII|

a Hj—'
__I_—| |

L

|
-

Motion planning problem hardness

The general path planning problem is PSPACE-hard
— pspace-hard in complexity of free space, e.g. measured by
number of facets in total polyhedral obstacles
— In the worst case, path planning requires solving an
arbitrary difficult maze
— complexity generally increases exponentially in the
dimension of the configuration space
— the best we can do is find anytime algorithms that solve “simple”
problems quickly while retaining completeness for arbitrary
problems

Another key practical challenge: most of the methods above require a
preprocessing step where workspace obstacles are projected into the
configuration space

— this is just as hard as the motion planning problem itself

Simple PRM (sPRM)

Idea: Take random samples from C,
declare them as vertices if in C,,,, try to

reel

connect nearby vertices with local planner

The local planner checks if line-of-sight is
collision-free (powerful or simple methods)

Options for nearby: k-nearest neighbors
or all neighbors within specified radius

Configurations and connections are added
to graph until roadmap is dense enough

Simple PRM (sPRM)

local path free space

milestone

Simple PRM (sPRM)

= Example

specified radius

e\ "_'_1|
MO\
f — _}Ilr A rs\ f' ||.

L\ | \ j_ﬁ___J,
'_\ [=2 What means "nearby" on a manifold?
Example local planner Defining a good metric on C is crucial

Simple PRM (sPRM)

SampleFree: sample a state from Cy,..

Algorithm 2: sPRM

1V {-rinit} U {SampleFreei}iZI,...,n.; E « m;

2 foreach v € V do

3 U < Near(G = (V, E),v,r) \ {v};

4 foreach v € U do

5 L if CollisionFree(v,u) then E < EU {(v,u),(u,v)}

6 return G %(V, E);

Near: return the set of vertices in G within radius r of v

CollisionFree: check whether a line segment
between v and u is completely within C,..

Question

Algorithm 2: sPRM

1V {-rinit} U {SampleFreei}iZI,...,n.; E « m;

2 foreach v € V do

3 U < Near(G = (V, E),v,r) \ {v};

4 foreach v € U do

5 L if CollisionFree(v,u) then E < EU {(v,u),(u,v)}

6 return G = (V, E);

For a fully connected graph created using sPRM parameterized by radius r,
consider a vertex that is the nearest neighbor of another. What is the
maximum distance between these two vertices?

SPRM

What kind of graph does sPRM find?

Definition 5 (Random r-disc graph) Let r € R-g, and n,d € N. A random r-disc graph
., Xn}, are independent, uni-

Gdi“(n, r) in d dimensions is a graph whose n vertices, {Xy, Xs,.
formly distributed random variables in (0,1)%, and such that (Xi, Xj), 4,5 € {1,...,n}, i # 37, is

an edge if and only if | X; — X;|| <.

Question

What kind of graph does sPRM find?

Definition 5 (Random r-disc graph) Let r € R-g, and n,d € N. A random r-disc graph
., Xn}, are independent, uni-

Gdi“(n, r) in d dimensions is a graph whose n vertices, {X, Xs,
formly distributed random variables in (0,1)%, and such that (Xi, Xj), 4,5 € {1,...,n}, i # 7, is

an edge if and only if | X; — X;|| <.

Does the graph become connected as n becomes large?

SPRM

What kind of graph does sPRM find?

Definition 5 (Random r-disc graph) Let r € R-g, and n,d € N. A random r-disc graph
., Xn}, are independent, uni-

Gdis"(n, r) in d dimensions is a graph whose n vertices, {X, Xs,
formly distributed random variables in (0,1)%, and such that (Xi, Xj), 4,5 € {1,...,n}, i # 37, is

an edge if and only if | X; — X;|| <.

Does the graph become connected as n becomes large?

Theorem 7 (Connectivity of random r-disc graphs (Penrose, 2003)) Let GY¢(n,r) be a
random r-disc graph in d dimensions. Then,
. 1, if Cgr? > log(n)/n,
lim P ({Gdlsc(n,'r‘) is connected }) — f G 8(n)/
0, if Car® <log(n)/n,

n—oo

where (4 is the volume of the unit ball in d dimensions.

https://www.youtube.com/watch?v=twjnAE3SjJw

https://www.youtube.com/watch?v=twjnAE3SjJw

Question

What kind of graph does sPRM find?

Definition 5 (Random r-disc graph) Let r € R-g, and n,d € N. A random r-disc graph
., Xn}, are independent, uni-

Gdi“(n, r) in d dimensions is a graph whose n vertices, {X, Xs,
formly distributed random variables in (0,1)%, and such that (Xi, Xj), 4,5 € {1,...,n}, i # 7, is

an edge if and only if | X; — X;|| <.

Does the graph become connected as n becomes large?

Theorem 7 (Connectivity of random r-disc graphs (Penrose, 2003)) Let GY¢(n,r) be a
random r-disc graph in d dimensions. Then,
. 1, if Cgr? > log(n)/n,
lim P ({Gdlsc(n,*r') is connected }) = N
0, if Cr® < log(n)/n,

n—oo

where (g is the volume of the unit ball in d dimensions. - _ -
Volume of unit ball in d dim |

For sSPRM, express the number of edges in the graph as a function of n

as n goes to infinity:

lim |E| =7

n—oo

Probabilistic completeness of PRM

SPRM is not complete: not guaranteed to find a solution for any finite value of n
However, it is probabilistically complete in the following sense:

Definition 14 (Probabilistic completeness). An algorithm
ALG is probabilistically complete, if, for any robustly feasi-
ble path planning problem (Xgee, Xinit, Xgoal),

lim inf P({Ixgoar € V% N Xyoul

H— 00

such that xinit is connected 10 Xgoql in G?LG}) = 1.

//\ —~

Finds a path with probability 1 as the number of vertices

Increases as long as such a path if robustly feasible
N— A

Probabilistic completeness of PRM

Infinite monkey theorem:

A monkey typing keys randomly on a keyboard will
produce any given text (the works of William Shakespeare)

with probability one.

UCreases as long as such a path if robustly feasible/‘

Probabilistic completeness of PRM

Theorem 15 (Probabilistic completeness of sSPRM (Kavraki
et al. 1998)). Consider a robustly feasible path planning
problem (Xgee, Xinit, Xgoal)- There exist constants a > 0 and
ng € N, dependent only on Xgee and Xypa1, sSuch that

P({3xg0al € VjPRM M Xyoal : Xgoal IS connected to

Xinit IN G;PRM}) >1—e %", Vn> ny.

N\

— TN
Probability of not finding a solution to a robustly feasible

problem decreases exponentially with the number of vertices
) -

19

Optimality

Recall: ¢ :[0,1] = C c: 22— Rxg

Cost: C(O‘) — cost of path

Definition 24 (Asymptotic optimality). An algorithm ALG
is asymptotically optimal if, for any path planning prob-
lem (Xfree, Xinit, Xgoal) and cost function ¢ : X — R that
admit a robustly optimal solution with finite cost c*,

Est of min cost path found by the algorithm

Optimal cost :|

Optimality of SPRM

Theorem 30 (Asymptotic optimality of sSPRM). The sPRM
algorithm is asymptotically optimal.

Theorem 31 (Non-optimality of k-nearest SPRM). The k-

nearest SPRM algorithm is not asymptotically optimal, for
any constant k € N.

K-nearest sPRM is variation where connect vertices
w/ k-NN instead of neighbors within radius

PRM~*

Problem w/ sSPRM: number of edges grows nearly quadratically with the
number of edges

Algorithm 2: sPRM

1V« {minit} U {SmpleFreeg}iZI,.. n; E 0

2 foreach v € V do | /lr Num NEAR vertices j
3 | U< VNear(G=(V,E),v,r)\{v}; —__grows linearly w/ n

4 foreach u € U do

5 L if CollisionFree(v,u) then E « EU{(v,u),(u,v)}

6 return G = (V, E);

Idea: reduce the connection radius as the number of vertices grows

— BUT: if you do it too quickly, the graph becomes
asymptotically disconnected

PRM~*

log(n) \

|Idea: setrto exactly 7 —
Can

Recall: Volume of unit ball in d dim I

Theorem 7 (Connectivity of random r-disc graphs (Penrose, 2003)) Let GY5¢(n,r) be a
random r-disc graph in d dimensions. Then,
1, if ¢r? > log(n)/n,

lim P ({Gdisc(n,;r') is connected }) =
0, if {gr? < log(n)/n,

n—oo

where (g 18 the volume of the unit ball in d dimensions.

Technically, we need to adjust r for the volume of obstacles:

Q=

log(n)

r ="YPRM

PRM~*

Algorithm 2: sSPRM.

V <« {xinit} U {SampleFree,;}i—;
foreach v € IV do
U < Near(G =(V,E),v,r)\{v};
foreach v € U do
L if CollisionFree(v,u) then
E<—~EU{(v,u),(uv)}

return G =(V,E);

.....

U W N e

(=)

Algorithm 4: PRM*.
V <« {xinit} U {SampleFree;}i—

f—

) foreachve Vdo | /
3| U<« Near(G= L PRM* adds a constant
(V,E), v, yerm(log(n) /n) ") \{v}; number of edges on
4 foreach v € U do }
5 L if CollisionFree(v,u) then each Step’ but rerr_1ams
E < EU{(v,u),(u,v)} asyptotically optimal

return G =(V,E);

™

N

Theorem 34 (Asymptotic optimality of PRM™). If yprm >

1/d
2(1 + 1/d)/4 (%) , then the PRM* algorithm is

asymptotically optimal.

PRM sampling strategies

Algorithm 2: sPRM.

2
3

4
5

6

foreachv € " do
U < Near(G =(V,E),v,r)\{v};
foreach u € U do

if CollisionFree(v,u) then
L E<—EU{(v,u),(u,v)}

return G =(V,E);

Can we do better with a smarter sampling strategy?

PRM sampling strategies

Problem: it may take a lot of samples to reach a fully connected graph

PRM sampling strategies

Algorithm 1: PRM (preprocessing phase).

@ Ut R W N =

N

V < 0, E < 0;
fori=0,...,ndo
Xrand < SampleFree;;

U < Near(G =(V,E), Xund, 1) ;

V<~ VU {xrand};
foreach u € U, in order of increasing ||[u — Xgand|l,
do
if xang and u are not in the same connected
component of G =(V,E) then

L if CollisionFree(Xmand,u) then

E < EU {(Xrand, #) , (%, Xrand) };

return G =(V,E);

Let’s think about the “online” version of algorithD

PRM sampling strategies

Algorithm 1: PRM (preprocessing phase).

@ Ut R W N =

N

V < 0, E < 0;
fori=0,...,ndo
Xrand < SampleFree;;

U < Near(G =(V,E), Xund, 1) ;

V<~ VU {xrand};
foreach u € U, in order of increasing ||[u — Xgand|l,
do
if xang and u are not in the same connected
component of G =(V,E) then

L if CollisionFree(Xmand,u) then

E < EU {(Xrand, #) , (%, Xrand) };

return G =(V,E);

Let’s think about the “online” version of algorithD

Resampling

\

Expand nodes w/ prob:

rate(q)
D qcy rate(%

|Idea: expand vertices that are close to obstacles

w(q) =

1. Sample a vertex to expand
— select vertices for which many link failures have
occurred

2. Pick a random motion direction in c-space and move in this
direction until an obstacle is hit.

3. When a collision occurs, choose a new random direction and
proceed for some distance.

4. Add the resulting nodes and edges to the tree. Re-run tree
connection step.

Where:

num failed link attempts
rate(q) =

num link attempts

Resampling (expansion)

30

Gaussian sampler

So far, we have only discussed uniform sampling...

Problem: uniform sampling is not a great way to find
paths through narrow passageways.

PRM Roadmap

goal
C obst C-obst
C- obst C-obst

start

31

Gaussian sampler

Gaussian sampler:

1. Sample points uniformly at random (as before)

2. For each sampled point, sample a second point
from a Gaussian distribution centered at the first
sampled point

3. Discard both samples if both samples are either
free or in collision

4. Keep the free sample if the two samples are NOT
both free or both in collision (that is, keep the
sample if the free/collision status of the second
sample is different from the first). 32

Gaussian sampler

Probability of sampling a point under the Gaussian sampler
as a function of distance from a c-space obstacle

Example of samples drawn
from Gaussian sampler

33

Lazy PRM

Single query problem: you are only interested in connecting start and goal
configurations. Don'’t care about cull connectivity of the map.

Lazy PRM idea: only check edges that could potentially be on the shortest
path through the graph.

Lazy PRM Precomputation: roadmap construction

e Nodes

— Randomly chosen configurations, which may or may
not be collision-free

— No call to cLEar
* Edges

— an edge between two nodes if the corresponding
configurations are close according to a suitable metric

— no call to LNk

34

Lazy PRM

Query processing: nging UCS or A]

Find a shortest path in the roadmap

Check whether the nodes and
edges in the path are free.

If yes, then done. Otherwise,
remove the nodes or edges In
violation. Go to (1).

We either find a collision-free path, or exhaust all paths in the
roadmap and declare failure.

35

Rapidly Exploring Random Trees (RRTS)

Problems with PRM:

— two steps: graph construction, then graph search

— hard to apply to problems where edges are directed, i.e. kinodynamic problems

RRTs solve both of these problems:

— create a tree instead of graph: no graph search needed!

— tree rooted at start or goal — edges can be directed

RRT Algorithm

= Idea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration ¢,

= The explored territory is marked by a

tree rooted at ¢,
h’g}%‘\ Y IHATT
= S5
_&& e

45 iterations 2345 iterations

RRT Algorithm
= The algorithm: Given C and g,

Algorithm 1: RRT

1
2
3
4
5
6

G .init(qo)
repeat

G-a’dd—Edge(QHem": Q*mnd)
until condition

Qo

Grand — RANDOM_CONFIG(C) 4m Sample from a bounded
Anear < NEAREST(G:Qde)

region centered around g,

E.g. an axis-aligned
relative random translation
or random rotation

(but recall sampling over
rotation spaces problem)

RRT Algorithm
= The algorithm

Algorithm 1: RRT

1 G.init({}‘{})

2 repeat

s | grana — RANDOM_CONFIG(C)

4 Gnear — NEAREST(G, ¢rand) 4m Finds closest vertex in G
o

6

G.add_edge(qnear, Grand) using a distance function
until condition p:CxC— [(]j oc)
formally a metric
defined on C

An

o

RRT Algorithm
= The algorithm

Algorithm 1: RRT

1 G.init(qo)

2 repeat

3 Grand — RANDOM_CONFIG(C)

4 Gnear — NEAREST(G, grand) 4 Several stategies to find
5

6

G.add_edge(qnear; Grand) q,... given the closest
vertex on G:

+ Take closest vertex

» Check intermediate
an points at regular intervals

and split edge at ¢,

until condition

Grand

RRT Algorithm
= The algorithm

Algorithm 1: RRT

1 G.init(fm)

2 repeat

3 Granda — RANDOM_CONFIG(C)
4 Qnear < NEAREST(G:Qde)
5

6

G.add_edge(¢nears Grand) 4m Connect nearest point

until condition with random point using
a local planner that

traVEIS from 4 near tD qQrand
* No collision: add edge

* Collision: new vertex is
g q,, @s close as possible
q':' tD Q}hﬁ

Qn

RRT Algorithm

= The algorithm

Algorithm 1: RRT

o - - I -

]

G .init(qo)
repeat
Grand — RANDOM_CONFIG(C)

Anear < NEAREST(G: q'rand)

G-a*dd—EdgE(QHeara Q"mnd)
until condition

€ Connect nearest point
with random point using

a local planner that
travels from q,we’a:u' tU qfu:md

* No collision: add edge

* Collision: new vertex is
q., as close as possible
to C

obs

RRT Algorithm

= How to perform path planning with RRTs?

1. Start RRT at ¢,
2. At every, say, 100th iteration, force ¢,,,,= g,
3. If g, is reached, problem is solved

= Why not picking ¢, every time?

RRT versus a nalve random tree

RRT Naive random tree

Growing the naive random tree:
1. pick a node at random

2. sample a new node near it

3. grow tree from random node to
new node

RRTs and
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Bilases

* Bias toward larger spaces

* Bias toward goal

= When generating a random sample, with some
probability pick the goal instead of a random
node when expanding

= This introduces another parameter
= 5-10% is probably the right choice

RRT probabilistic completeness

Theorem 16 (Probabilistic completeness of RRT (LaValle
and Kuftner 2001)). Consider a robustly feasible path plan-
ning problem (Xtree, Xinit, Xgoal). There exist constants a > 0
and ny € N, both dependent only on Xgee and Xyoa, such
that

P({VIE{RT N Xooal 7 VJ}) >1—e %", Vn> np.

Notice that this is exactly the same bound as for sSPRM.

47

RRT does not find optimal paths

Theorem 33 (Non-optimality of RRT). The RRT algorithm
is not asymptotically optimal.

Is there a version of RRT that is optimal?

Yes: RRG and RRT*

Algorithm S: RRG.

~1 & n Ak W N

[—

V< {Xit}; £ < 9;
fori=1,...,ndo
Xrand <— SampleFree;;
Xnearest < NeareSt(G =(V, E) gxrand);
Xnew <— Steer(xnearest;xrand))
if ObtacleFree(Xpearest, Xnew) then “
Xnear < Near(G = Don't just
(V,E), Xnew, min{yrrg(log(card (V)) / connect Lnew t0 LTyear
card (V) n}) ;
V < VU {Xpewl; Attempt to connect to every
E <« E U {(Xnearest> Xnew) » (Xnews Xnearest) } ; vertex within a radius r
foreach x e,y € Xpear do
L if CollisionFree(Xpear, Xnew) then Us_e same variable radius
E < E U {(Xnear, Xnew) » (Ynews Xnear) }) 85 1N PRM

return G =(V, E);

RRG Properties

RRG is complete ... how do you know?

RRG Properties

RRG is complete ... how do you know?

Theorem 36 (Asymptotic optimality of RRG). If yprm >

1/d
2(1 + 1/d)'/ (%‘gee)) , then the RRG algorithm is

asymptotically optimal.

RRG Properties

RRG is complete ... how do you know?

Theorem 36 (Asymptotic optimality of RRG). If yprm >
1/d

2(1 + 1/d)'/ (%‘jﬁ‘e)) , then the RRG algorithm is

asymptotically optimal.

But, why might RRT still be preferable to RRG?

RRT~

Algorithm 6: RRT*.

1
2
3
4
5
6
7

10

11

12

13
14
15

16

17

V < {Xinith; £ < 9;
fori=1,...,ndo

Xrand <— SampleFreeg;;

Xnearest <— Nearest(G =(V,E),Xrand);
Xnew <— Steer(Xnearests Xrand) 5

if ObtaC 1 EFI ee(xnearest, xnew) then

Xiear < Near(G =

(V,E), Xnew, min{yrrr*(log(card (V')) /
card (1)), n});

V <= VU {Xpew}:

Xmin < Xnearests Cmin <—

>

Cost(Xnearest) +¢(Line(Xnearest> Xnew))i -
foreach x,ear € Xpear do
minimum-cost path

if
+ c(Line(Xpears Xnew)) < Cmin then
L Xmin < Xnears Cmin <—
Cost(Xnpear) +¢(Line(Xnear, Xnew))
E < EU {(Xmin, Xnew) };
foreach x,ear € Xpear do
if

+ c(Line(Xpew, Xnear)) < COSt(Xpear)
then xparent <« Par ent(xnear);

L E<—(E\ {(xparent,xnear) D) U{(Xnew, Xnear) }

return G =(V,E),

// Connect along a

~

CollisionFree(Xpear, Xnew) ACOSE(Xpear)

-

// Rewire the tree ™\

CollisionFree(Xpew,Xnear) ACOSt(Xpew)

Algorithm

Don’t just
connect Lnew 0 Lpear

Attempt to connect to every
vertex within a radius r

Use same variable radius
as in PRM*

Get position and cost

>~ of min-cost vertex in

Rewire parents of

> nodesin X, ., 0 Q0
through XLy eq If
that's faster

RRT* Algorithm

RRT* Algorithm

RRT* is complete ... how do you know?

Theorem 38 (Asymptotic optimality of RRT*). If yrrr* >

(2(1+ 1/d))"/4 (“(Xﬁ'ee)) , then the RRT* algorithm is
asymptotically optimal.

Bidirectional RRT (RRT Connect)

= However, some problems require more
effective methods: bidirectional search

= Grow two RRTs, one from ¢,, one from ¢
= In every other

step, try to a %
extend each . jig
tree towards /ﬂ\%%?@%

the newest]

vertex of the
other tree

] QG

Filling a well A bug trap

Bidirectional RRT (RRT Connect)

RRT_CON NECT (qinit, CIgoal) {

T-init(Q); Ty init(Qye,);
fork= 1toK do
q,..., = RANDOM_CONFIG();

if (9,.,—~ EXTEND(T,, q,.,,) == Reached) then
if (EXTEND(T,, q,.,) == Reached) then
Return PATH(T, T,);

SWAP(Ta’ Tb);
Return Failure;

}

Instead of switching, use T, as smaller tree.

qinit

qinit

qinit

qtarget

qgoal

qtarget

qtarget

C7neM/

\ qtarget

qinit

—0—0—0—0-

c7near

Bidirectional RRT (RRT Connect)

Is bi-directional RRT always better?

Kinodynamic planning with RRTs

So far, we have assumed that the system has no dynamics
— the system can instantaneously move in any direction in c-space

— but what if that's not true???

Consider the Dubins car:
— c-space: x-y position and velocity, angle |
— control forward velocity and steering angle ’
— plan a path through c-space with the

corresponding control signals

=<

where:
Lit4+1 = f(iUt, Ut) X_t — state (x/y position and velocity, steering angle)
u_t — control signal (forward velocity, steering angle)

Kinodynamic planning with RRTs
=<

Ti+1 = f(xta Ut)

'U/* — arg min(d(xrand, f(xnea/l“v U)))
xneafr

Lrand
Lrand

But, what if x_{near} isn't the right node to expand ??

So, what do they do?

* Use nearest neighbor anyway

* As long as heuristic Is not bad, it helps

(you have already given up completeness and optimality, so what
the heck?)

* Nearest neighbor calculations begin to
dominate the collision avoidance

 Remember K-D trees

Left-turn only forward car

y / 4r“j‘§‘ Q !.-‘ . ;:"ér A
% sif@w{'ﬁ‘&i! S
A5 q (X

O

liep

yad

s ‘ h o7 o< N
SN A EEA
| - I" ' \-- :"'.",*I
L'r 4" v M
o, = h 5
0% AV g ==
i

-
g.

A

- 4
L f'ﬁ
‘

Hovercraft with 2 Thusters

Path Smoothing

Paths produced by sample based planners are generally not smooth

— RRT* and PRM* converge to optimal paths in the limit, but it's
generally not possible to run these algorithms long enough to
converge.

Smoothing the path

A0

75

Smoothing the path

/6

Smoothing the path

a7

Smoothing the path

Y
a7

Smoothing the path

Smoothing the path

Smoothing the path

Smoothing the path

a0

Smoothing the path

Smoothing the path

Smoothing the path

Smoothing the path

86

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Difficulty with classic approaches
	Slide 7
	Slide 8
	Probabilistic Roadmap (PRM): multiple queries
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Precomputation: roadmap construction
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Naïve Random Tree
	RRTs and Bias toward large Voronoi regions
	Biases
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	qnear
	Slide 70
	So, what do they do?
	Left-turn only forward car
	Hovercraft with 2 Thusters
	Slide 74
	Smoothing the path
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

