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Topics

— depth sensors
— creating point clouds / maps

— voxelizing, calculating surface normals,
denoising

— ICP
— RANSAC

— Hough transform
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Laser range scanners
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sensor

Emit a short short pulse of laser

Capture the reflection.

Measure the time it took to come back.

Need a very fast clock.

Main advantage: can be done over long distances.
Used in terrain scanning.

Slide from Course INF 555 slides, Ecole Polytechnique, Paris
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Laser range scanners
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Structured light sensors

Audio



Structured light general principle:
project a known pattern onto the scene and
infer depth from the deformation of that pattern

Zhang et al, 3DPVT (2002)

Slide: John MacCormick, Dickinson University



Kinect uses speckled light pattern in IR spectrum




Stage 1: The depth map is constructed
by analyzing a speckle pattern of
infrared laser light

* The Kinect uses an infrared projector and

sensor; it does not use its RGB camera for
depth computation

 The technique of analyzing a known pattern is
called structured light

* The Kinect combines structured light with two |
classic computer vision techniques: depth
from focus, and depth from stereo

Slide: John MacCormick, Dickinson University



Depth from focus uses the principle
that stuff that is more blurry is further
away

Watanabe and Nayar, 1JCV 27(3), 1998

Slide: John MacCormick, Dickinson University



Depth from focus uses the principle
that stuff that is more blurry is further

away
* The Kinect dramatically improves the accuracy
of traditional depth from focus

* The Kinect uses a special (“astigmatic”) lens

with different focal length in x- and y-
directions

* A projected circle then becomes an ellipse
whose orientation depends on depth

Slide: John MacCormick, Dickinson University



The astigmatic lens causes a projected
circle to become an ellipse whose
orientation depends on depth
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Freedman et al, PrimeSense patent application
US 2010/0290698

Slide: John MacCormick, Dickinson University



Point cloud created using a depth sensor

Depth image Point cloud
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RGB image



Calculating surface normals

Point cloud Point cloud w/ surface normals
(normals are subsampled)



Calculating surface normals

¢ -9
Question: How do we calculate the surface normal given only
points?
Answer:

1. Calculate the sample covariance matrix of the points within
a local neighborhood of the surface normal

2. Take Eigenvalues/Eigenvectors of that covariance matrix



Calculating surface normals

© 9

Let C denote the set of points in the point cloud
Suppose we want to calculate the surface normalat = € C
Let B, (z) C R* denote the r-ball about x

N,(z) = B,(x) N C is the set of points in the cloud
within r of x



Calculating surface normals
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Calculating surface normals
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Length = \/>\—
g mar «-— Eigenvalues of E

Length = 4/ )\min

Principle axes of ellipse point in directions of corresponding eigenvectors



Calculating surface normals

© 9

So: surface normal is in the direction of
the Eigenvector corresponding to the
smallest Eigenvalue of )

There should be two large eigenvalues
and one small eigenvalue.



Calculating surface normals: Summary

1. calculate points within r-ball about x: N,.(z) = B,.(z) N C

2. calculate covariance matrix; ¥ = Z (p—p)(p—p)"
pENT.(CE)

3. calculate Eigenvectors: V1, U2, U3
and Eigenvalues: \i, Ao, A3 (\lambda_3 is smallest)

4.v_3is parallel or antiparallel to surface normal



Question

© 9

What if there are two small eigenvalues
and one large eigenvalue?



Calculating surface normals
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Important note: the points alone do not tell us the sign
of the surface normal



Calculating surface normals
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Important note: the points alone do not tell us the sign
of the surface normal



Question
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Important note: the points alone do not tell us the sign
of the surface normal

Any ideas about how we might estimate sign given a
set of points generated by one or more depth sensors?



Calculating surface normals

How large a point neighborhood to use when calculating Y, ?

Because points can be uneven, don't use k-nearest neighbor.
— it's important to select a radius r and stick w/ it.
— which what value of r to use?



Calculating surface normals

Collusive noise
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Because of noise in the data, small r may lead to underfitting.

Images from Course INF 555 slides, Ecole Polytechnique, Paris



Calculating surface normals

Curvature effect

Due to curvature, large r can lead to estimation bias.

Images from Course INF 555 slides, Ecole Polytechnique, Paris



Outlier removal

Similar approach as in normal estimation:
1. calculate local covariance matrix

2. estimate Eigenvectors/Eigenvalues

3. use that information somehow...

Images from Course INF 555 slides, Ecole Polytechnique, Paris



Outlier removal

If points lie on a plane or line, then IS
small )\max (Z
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Outlier removal: delete all points for which is above a threshold

)\maac (Z)

Images from Course INF 555 slides, Ecole Polytechnique, Paris




Point cloud registration: ICP

Find an affine transformation that aligns two partially overlapping point clouds

Images from Course INF 555 slides, Ecole Polytechnique, Paris



ICP Problem Statement

= Given: two corresponding point sets:
X ={xz1,...,xn}
P ={p1,.--;Pn}

= Wanted: translation t and rotation R that
minimizes the sum of the squared error:

E(R,t) = — Z |z; — Rp; — t||?
P@_

Where x; and p; are corresponding points.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



ICP: key idea

= If the correct correspondences are known,
the correct relative rotation/translation can
be calculated in closed form.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Step 1: center the two point clouds

1 Ng
AT Z Ly and MUp = Z Pi
Li=1 p i=1

are the centers of mass of the two point sets.
Idea:

Subtract the corresponding center of mass
from every point in the two point sets
before calculating the transformation.

The resulting point sets are:
X'= {.’133 ILI»U} — {3},}

, and
P' = {p; — up} = {p;}

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Step 2: use SVD toget mintand R

Let W = Z

/] 1T

i=1 Lil;

denote the singular value decomposition (SVD) of W

by:

W

U

cqg 0 O
O oo O
0 O o3

VT

where U,V & R3X3 are unitary, and
01 > 0o > 03 are the singular values of W.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Step 2: use SVD toget mintand R

Theorem (without proof):

If rank(W) = 3, the optimal solution of E(R,t) is
unique and is given by:

R=UV"
The minimal value of error function at (R,t) is:
Ny
E(R,t) = Y (l|1* + [14il1?) — 2(o1 + 02 + 03)
1=1

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



ICP data association problem

= If correct correspondences are not known, it
is generally impossible to determine the
optimal relative rotation/translation in one
step

— N\~

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



ICP Algorithm

Input: two point sets, X and P
Output: translation t and rotation R that best aligns pt sets

1. Start with a “good” alignment

2. Repeat until t and R are small:

3. for every point in X, find its closest neighbor in P

4. find min t and R for that correspondence assignment
5. translate and rotate P by t and R

6. Figure out net translation and rotation, t and R

— Converges if the point sets are initially well aligned
— Besl and McKay, 1992



ICP example

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Question

Where does ICP converge for this initial configuration?



Question

How does ICP align these two point sets?



W N

|ICP Variants

. Point subsets (from one or both point

sets)

. Weighting the correspondences
. Data association
. Rejecting certain (outlier) point pairs

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Selecting points to align

Use all points

Uniform sub-sampling
Random sampling
Feature based Sampling

Normal-space sampling

= Ensure that samples have normals distributed as
uniformly as possible

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Normal-space sampling

uniform sampling normal-space sampling

Idea:

— estimate surface normals of all points

— bucket points in surface normal space (i.e. discretize in normal space)

— select buckets uniformly randomly. Then select a point uniformly
randomly from within the bucket.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Comparison: normal space sampling vs random

= Normal-space sampling better for mostly-
smooth areas with sparse features
[Rusinkiewicz et al.]

Random sampling Normal-space sampling

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Comparison: normal space sampling vs random

Convergence rate for "wave” sceng
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Figure 2: Comparison of convergence rates for uniform, random, and
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Feature based sampling

try to find “important” points

= decrease the number of correspondences
* higher efficiency and higher accuracy

" requires preprocessing

3D Scan (~200.000 Points) Extracted Features (~5.000 Pointis.)

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg
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|ICP: data association

. Point subsets (from one or both point

sets)

. Weighting the correspondences
. Data association
. Rejecting certain (outlier) point pairs

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



|ICP: data association

has greatest effect on convergence and
speed

Closest point

Normal shooting

Closest compatible point
Projection

Using kd-trees or oc-trees

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Closest point matching

= Find closest point in other the point set

\

Closest-point matching generally stable,
but slow and requires preprocessing

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Normal shooting

= Project along normal, intersect other point
set

Slightly better than closest point for smooth
structures, worse for noisy or complex
structures

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Data association comparison: fractal scene

Convergence rate for "fractal” scene
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Ficure 7: Comparison of convergence rates for the “fractal”™ meshes, for

a variety of matching algorithms.
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Data association comparison: incised plane

Convergance rate for “incised plane” sceneg
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Ficure 9: Comparison of convergence rates for the “incised plane™

meshes, for a variety of matching algorithms. Normal-space-directed sam-
pling was used for these measurements.
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Question

How might one use feature based sampling to improve data association?

3D Scan (~200.000 Points) Extracted Features (~5.000 Point:_-"._)



Point-to-plane distances

= Using point-to-plane distance instead of
point-to-point lets flat regions slide along
each other [Chen & Medioni 91]

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Closest compatible point

= Improves the previous two variants by
considering the compatibility of the points

= Compatibility can be based on normals,
colors, etc.

= In the limit, degenerates to feature
matching

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



ICP: summary

= ICP is a powerful algorithm for
calculating the displacement between
scans.

= The major problem is to determine the
correct data associations.

= Given the correct data associations,
the transformation can be computed
efficiently using SVD.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg



Another approach to alignment: RANSAC

12

Mile

This slide from: Kavita Bala, Cornell U.



RANSAC
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This slide from: Kavita Bala, Cornell U.



How does regression work here?

Problem: Fit a line to these datapoints

Least squares fit




RANSAC key idea

* Given a hypothesized line

* Count the number of points that “agree” with
the line
— “Agree” = within a small distance of the line

— |.e., the inliers to that line

* For all possible lines, select the one with the
largest number of inliers

This slide from: Kavita Bala, Cornell U.



Counting inliers

Inliers: 3

This slide from: Kavita Bala, Cornell U.



Counting inliers

Inliers: 20

This slide from: Kavita Bala, Cornell U.



How do we find the best line?

* Unlike least-squares, no simple closed-form
solution

* Hypothesize-and-test

— Try out many lines, keep the best one
— Which lines?

This slide from: Kavita Bala, Cornell U.



RANSAC ®

Line fitting example % O
O
@

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

This slide from: Kavita Bala, Cornell U. lllustration by Savarese



RANSAC

Line fitting example

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

This slide from: Kavita Bala, Cornell U.




RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

This slide from: Kavita Bala, Cornell U.




RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

This slide from: Kavita Bala, Cornell U.




Question

How would you use this approach to fit a plane in 3 dimensions?



Question

Suppose we want to find the best fit line in the plane (as above)

m: number of points on line
n: total number of points in the plane

What is the expected number of samples required to find the line
using the procedure outlined above?

What is the prob of NOT finding the line after k iterations?



Using RANSAC to Fit a Sphere



Using RANSAC to Fit a Sphere



Using RANSAC to Fit a Sphere
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Using RANSAC to Fit a Sphere

How generate candidate spheres? How score spheres?




Using RANSAC to Fit a Sphere
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How generate candidate spheres? How score spheres?

1. sample a point



Using RANSAC to Fit a Sphere
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How generate candidate spheres? How score spheres?

1. sample a point
2. estimate surface normal



Using RANSAC to Fit a Sphere
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How generate candidate spheres? How score spheres?

1. sample a point
2. estimate surface normal
3. sample radius



Using RANSAC to Fit a Sphere
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How generate candidate spheres? How score spheres?

1. sample a point

2. estimate surface normal

3. sample radius

4. estimate center to be radius distance
from sampled point along surface normal



Using RANSAC to Fit a Sphere

How generate candidate spheres? How score spheres?
1. sample a point 1. count num pts within epsilon of
2. estimate surface normal candidate sphere surface

3. sample radius
4. estimate center to be radius distance
from sampled point along surface normal



Using RANSAC to Fit a square

Think of strategies for using RANSAC-like
technologies for fitting a square in the plane

— sguare of known side length and orientation?

— sguare of known side length and unknown
orientation?

— square of unknown side length and
orientation?

— arbitrary rectangle?

What assumptions are you making with your
sample strategies?



Using RANSAC to Fit a Cylinder

o

How generate candidate cylinders?




Using RANSAC to Fit a Cylinder

o

How generate candidate cylinders?
1. sample two pts




Using RANSAC to Fit a Cylinder

o

How generate candidate cylinders?
1. sample two pts
2. estimate surface normal at both pts




Using RANSAC to Fit a Cylinder

v

How generate candidate cylinders?

1. sample two pts o
2. estimate surface normal at both pts

3. get sample axis by taking cross product

between two normals




Using RANSAC to Fit a Cylinder

How generate candidate cylinders?

1. sample two pts

2. estimate surface normal at both pts

3. get sample axis by taking cross product
between two normals

4. project points onto plane orthogonal to axis T ‘
5. fit a circle using a method similar to what we A "
did for the sphere.

-
-
.....



Using RANSAC to Fit a Cylinder

3xn matrix of
3x1 unit vector in  pts in 3d space

3xn matrix of pts direction of axis /

projected onto plane ( >/ \
Iy N

Tplane = (I —aa™ )x

How generate candidate cylinders?

1. sample two pts

2. estimate surface normal at both pts

3. get sample axis by taking cross product
between two normals

4. project points onto plane orthogonal to axis
5. fit a circle using a method similar to what we
did for the sphere.

-
.....



RANSAC: the parameters

* Inlier threshold related to the amount of
noise we expect in inliers

— Often model noise as Gaussian with some
standard deviation (e.g., 3 pixels)

* Number of rounds related to the percentage
of outliers we expect, and the probability of
success we’d like to guarantee

— Suppose there are 20% outliers, and we want to
find the correct answer with 99% probability

— How many rounds do we need?

This slide from: Kavita Bala, Cornell U.



RANSAC: how many parameters to sample?

* For alignment, depends on the motion model

— Here, each sample is a correspondence (pair of
matching points)
sunilariey Q projective

iranslation
—F
__—-—_'_'_7
Euclidean /ﬁf;: e -
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atfine A |3 6 parallelism + - - - j_—’
projective [ H ::{_H b straight lines |__-_|

This slide from: Kavita Bala, Cornell U.



RANSAC Summary

® Pros
— Simple and general
— Applicable to many different problems
— Often works well in practice

e Cons
— Parameters to tune
— Sometimes too many iterations are required
— Can fail for extremely low inlier ratios
— We can often do better than brute-force sampling

This slide from: Kavita Bala, Cornell U.



Hough transform

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese

This slide from: Kavita Bala, Cornell U.



Hough transform

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

This slide from: Kavita Bala, Cornell U.



Hough transform

X

This slide from: Kavita Bala, Cornell U.



Hough transform

This slide from: Kavita Bala, Cornell U.



Hough transform

Input Image Rendering of Transform Results

Distance from Centre

Angle



Hough transorm

This slide from: Kavita Bala, Cornell U.



Hough transorm

Why aren’t there eight intersections instead of seven?

This slide from: Kavita Bala, Cornell U.



Hough transorm for circles

Binary picture Edge picture Qriginal picture with Detected circles

What is the parameter space for the circle Hough transform?

What about 2-D ellipses? (x,¥y) = (acost,bsint),t € 0,27
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