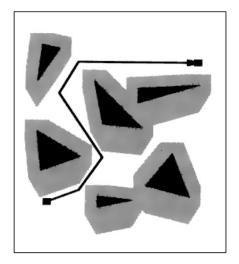
Classical Path Planning

Robert Platt Northeastern University



Slides contain significant material from Uni Freiburg course Original slide author: Kai Arras

Problem we want to solve

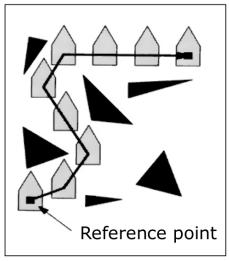
<u>Given:</u>

- a point-robot (robot is a point in space)
- description of obstacle space and free space
- a start configuration and goal region

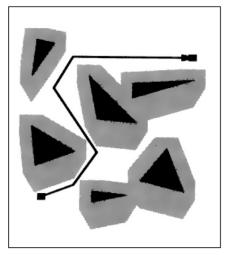
<u>Find:</u>

- a collision-free path from start to goal

workspace



configuration space



Problem we want to solve

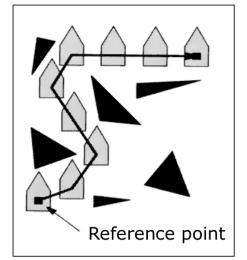
<u>Given:</u>

- configuration space $\,\,\mathcal{C}\,$
- free space \mathcal{C}_{free}
- start state $x_{init} \in \mathcal{C}_{free}$
- goal region $X_{goal} \subset \mathcal{C}_{free}$

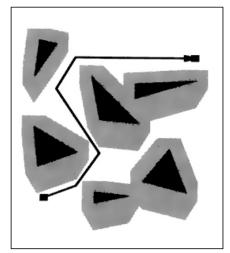
Find:

– a collision-free path σ , such that $\sigma(0) = x_{init}$ and $\sigma(1) \in X_{goal}$

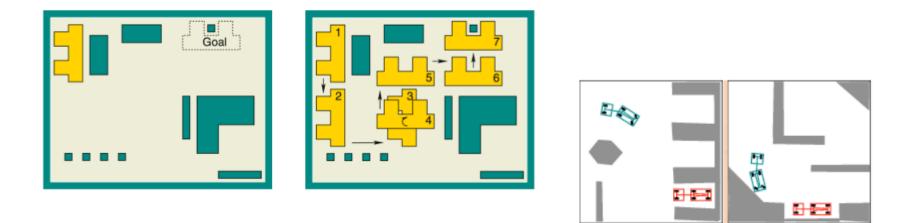
workspace

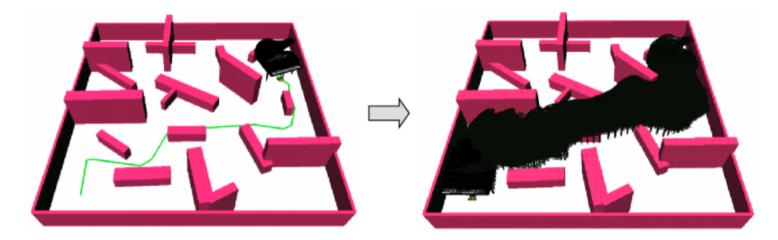


configuration space



Problem we want to solve

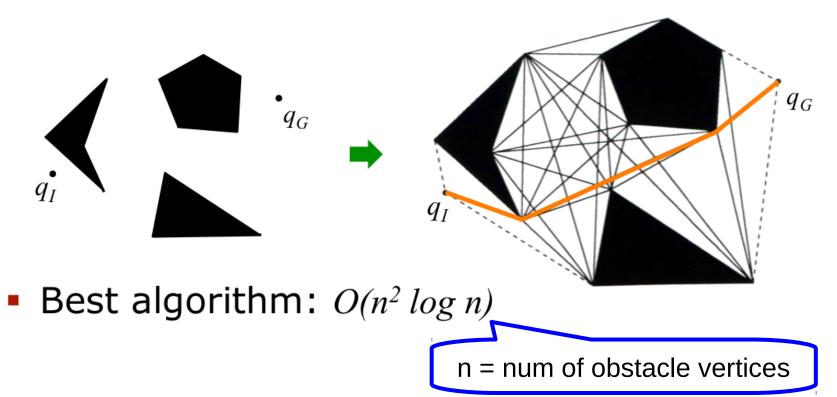




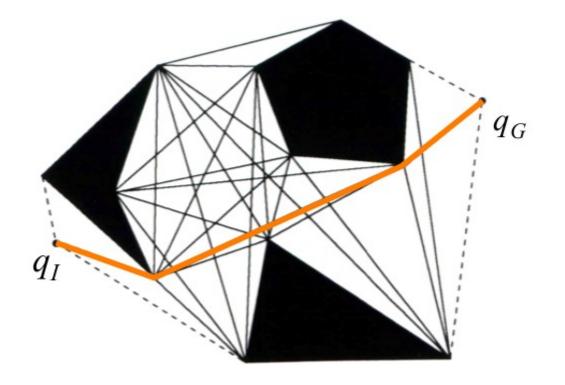
Motion planning is sometimes also called **piano mover's problem**

Method #1: Visibility Graphs

- Idea: construct a path as a polygonal line connecting q_I and q_G through vertices of C_{obs}
- Existence proof for such paths, optimality
- One of the earliest path planning methods



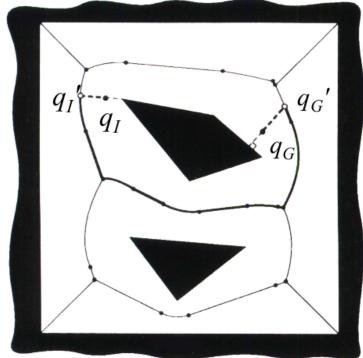
Question



Can you think of an n^3 algorithm to compute the visibility graph?

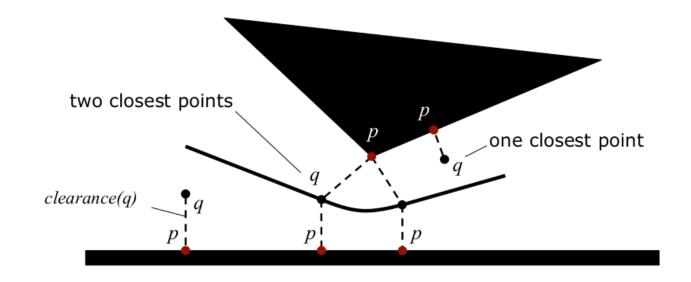
Method #2: Generalized Voronoi Diagram

- Defined to be the set of points q whose cardinality of the set of boundary points of C_{obs} with the same distance to q is greater than 1
- Let us decipher this definition...
- Informally: the place with the same maximal clearance from all nearest obstacles



Method #2: Generalized Voronoi Diagram

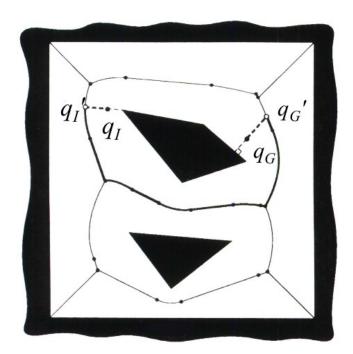
Geometrically:



- For a polygonal C_{obs}, the Voronoi diagram consists of (n) lines and parabolic segments
- Naive algorithm: O(n⁴), best: O(n log n)

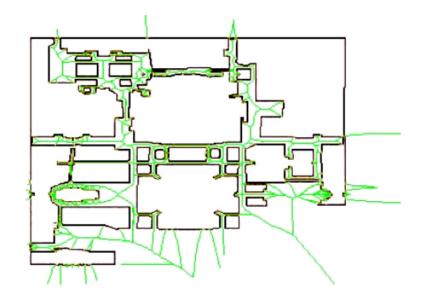
Question

How many regions in a voronoi diagram with n objects?



Method #2: Generalized Voronoi Diagram

- Voronoi diagrams have been well studied for (reactive) mobile robot path planning
- Fast methods exist to compute and update the diagram in real-time for low-dim. C's
 - Pros: maximize clearance is a good idea for an uncertain robot
 - Cons: unnatural attraction to open space, suboptimal paths
- Needs extensions

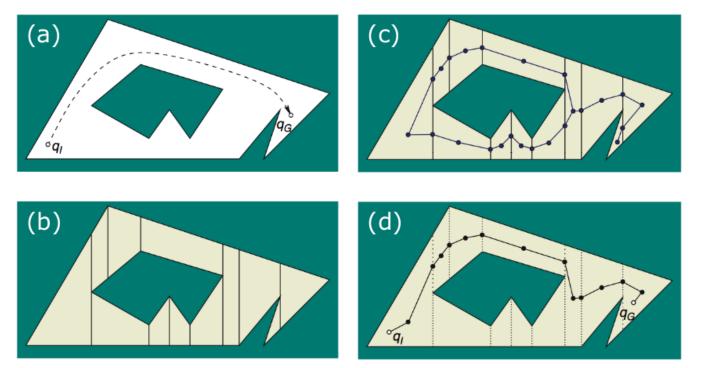


Method #3: Exact Cell Decomposition

- Idea: decompose C_{free} into non-overlapping cells, construct connectivity graph to represent adjacencies, then search
- A popular implementation of this idea:
 - 1. Decompose C_{free} into **trapezoids** with vertical side segments by shooting rays upward and downward from each polygon vertex
 - Place one vertex in the interior of every trapezoid, pick e.g. the centroid
 - 3. Place one **vertex** in every vertical **segment**
 - 4. Connect the vertices

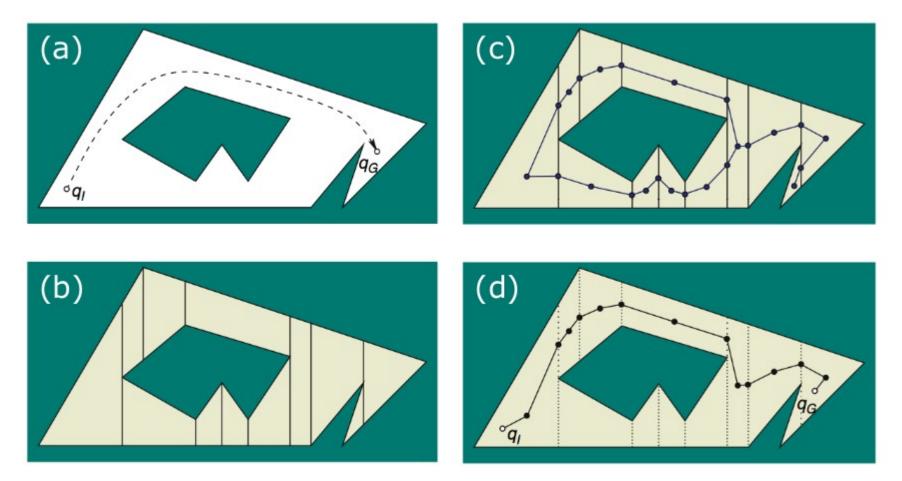
Method #3: Exact Cell Decomposition

• Trapezoidal decomposition ($C = \mathbb{R}^3$ max)



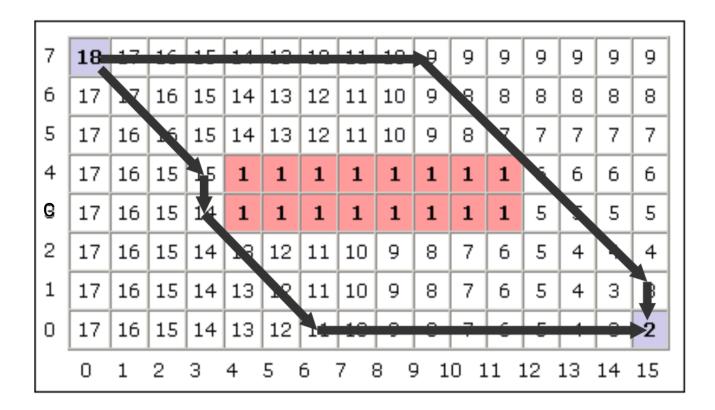
 Best known algorithm: O(n log n) where n is the number of vertices of C_{obs}

Question



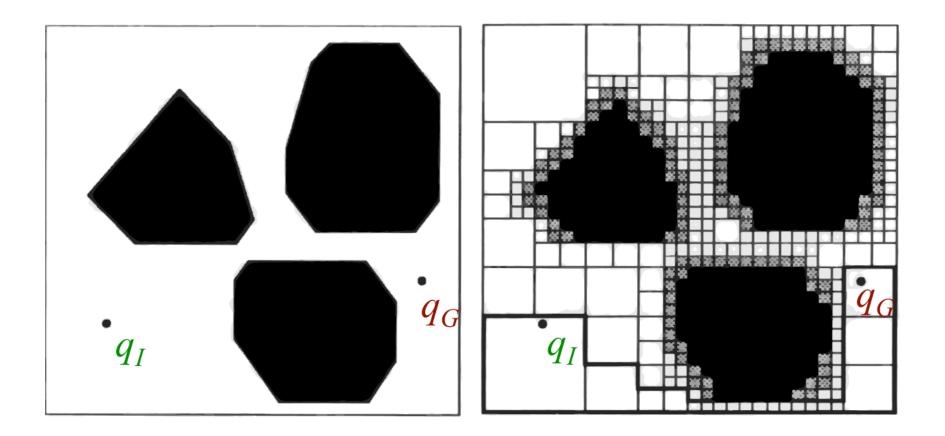
Do you need the vertices at the center of the trapezoids? Why/Why not?

Method #4: Uniform Approximate Cell Decomposition



Uniform cell shape: e.g. wavefront planner

Method #5: Quadtrees



Non-Uniform cell shape: e.g. quadtree decomposition

Method #5: Quadtrees

define G = Decompose(G,resolution):

1. if G null:

- 2. create coarse grid
- 3. collision-check G
- 4. for all occupied cells c in G:
- 5. delete c from G
- 6. subdivide c into four cells (sub)
- 7. add sub into G
- 8. collision-check sub

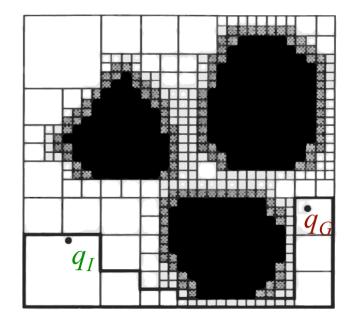
define FindPath(maxresolution):

1. for resolution = coarse to maxresolution:

- 2. G = Decompose(G,resolution)
- 3. if Check-for-path(G) == True:
- 4. Success!

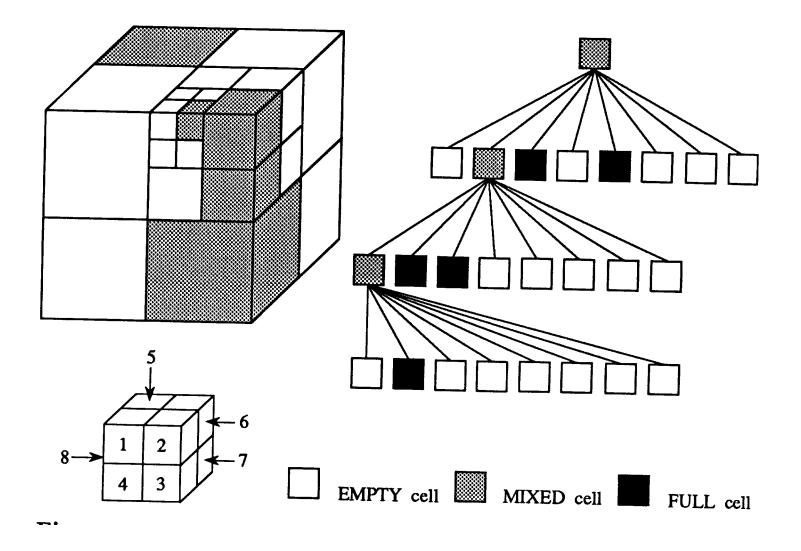
Collision-check: check whether

each cell is completely free or not



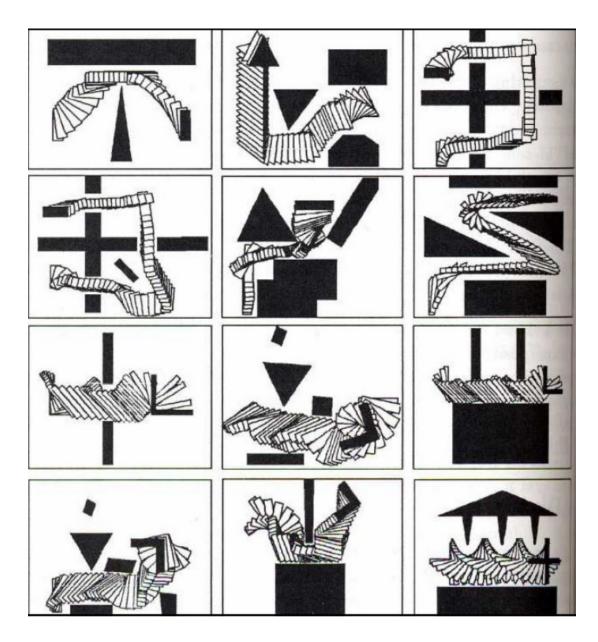
Why do you think this method is called "quadtree"?

Method #5: Octomaps



Same as quadtrees, but in three dimensions...

Examples of solutions found using octomaps



Exact vs approximate cell decomposition

- Exact decomposition methods can be involved and inefficient for complex problems
- Approximate decomposition uses cells with the same simple predefined shape

Pros:

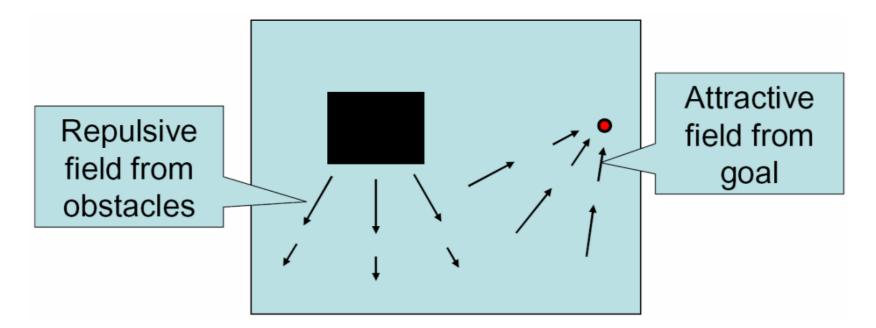
- Iterating the same simple computations
- Numerically more stable
- Simpler to implement
- Can be made complete

- All techniques discussed so far aim at capturing the connectivity of C_{free} into a graph
- Potential Field methods follow a different idea:

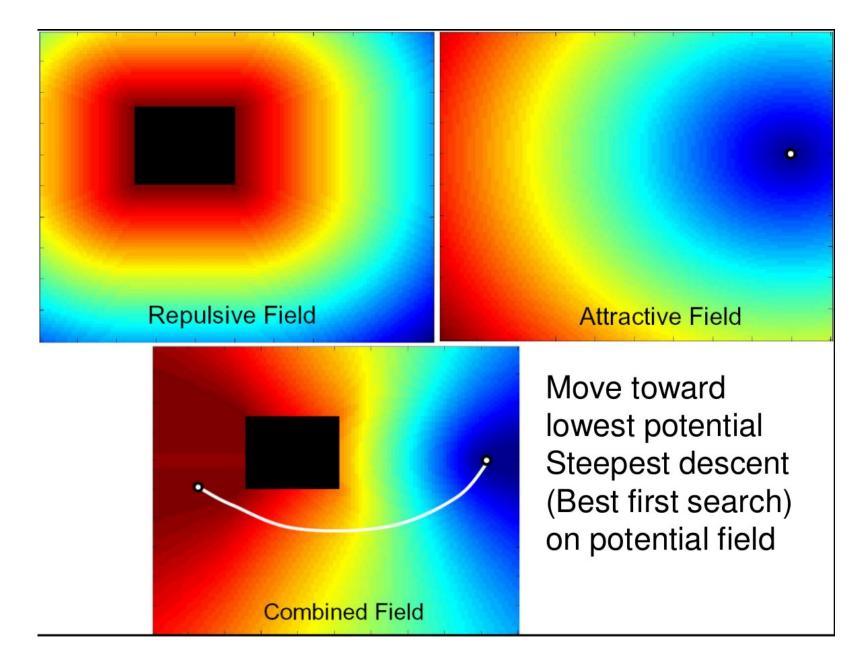
The robot, represented as a point in C, is modeled as a **particle** under the influence of a **artificial potential field** U

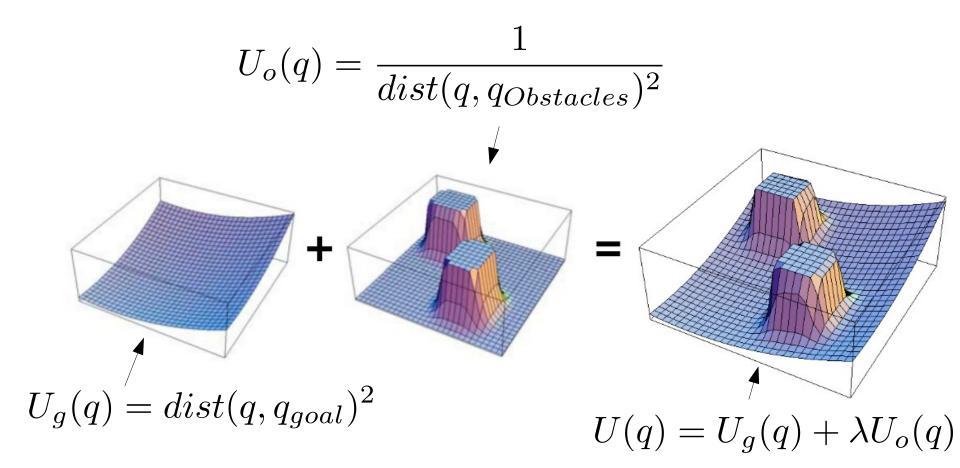
U superimposes

- Repulsive forces from obstacles
- Attractive force from goal



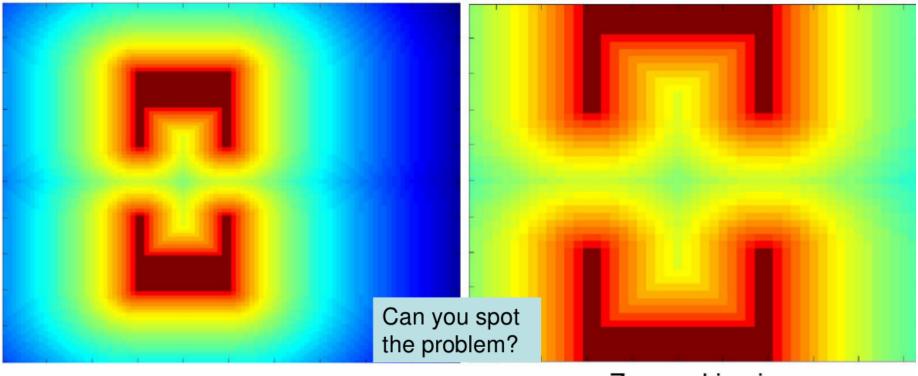
- Stay away from obstacles: Imagine that the obstacles are made of a material that generate a repulsive field
- Move closer to the goal: Imagine that the goal location is a particle that generates an *attractive* field





After computing U, follow the negative gradient: $\delta q = -\nabla U(q)$

Potential Function Limitations

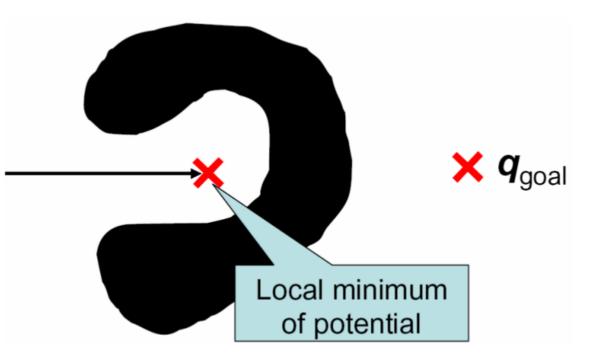


Potential field

Zoomed in view

- Completeness?
- Problems in higher dimensions

Potential Function Limitations



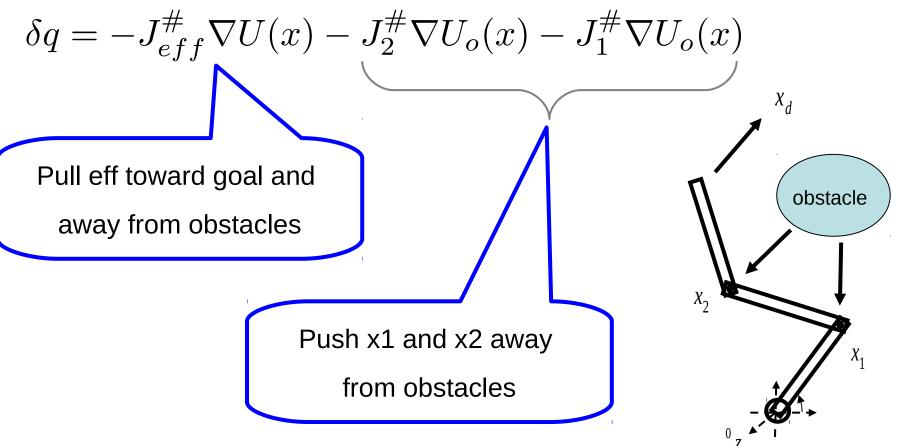
• Potential fields in general exhibit local minima

Applications to manipulators

Compute potential function in Cartesian space: $\delta x = -\nabla U(x)$

Project into joint space: $\delta q = -J_{eff}^{\#} \nabla U(x)$

Compute goal velocities at different points on the arm:



Applications to manipulators

Can you draw a bug-trap-like scenario where this approach won't work?

