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NonLinear Model Predictive Control

Given:

System: XLt — Azy + Buy

T—1

Cost function: J(X’ U) — $%QTSUT + Z ZIJ;{QCIBt + U?Rut
t=1
where: A= (5131, S 7xT)
U = (ul, ‘ o ,uT_l)

Initial state: T1

Calculate: v that minimizes J(X,U)




NonLinear Model Predictive Control

Given:

System: Lt+1 — —+ But
T—1

Cost function: J(X’ U) — $%QTSUT + Z ZIJ;{QCIBt + U?Rut
t=1

X = (x1,...,27)

U = (ul,...,uT_l)

where;

Initial state: T1

Calculate: v that minimizes J(X,U)




NonLinear Model Predictive Control

Given:

system:  Tyi1 = f(T¢,Us)

T—1
Cost function: J(X,U) = Qj%:QTQET — Z ZIZ;{QQBt + u;;rRut
t=1
where: X = (1, 27)
U = (ul, ‘ o ,uT_l)

Initial state: T1

Calculate: v that minimizes J(X,U)




NonLinear Model Predictive Control

T-1
Minimize: J(X’ U) — ZU%QTQCT —+ Z w?@xt -+ utTRut
t=1
Subjectto: Tty — f(xt,ut)
xr1 = start state
xT = goal state

But, this is a nonlinear constraint
— so how do we solve it now?



LTV (linear time varying) problem

Given: a nonlinear system: x;11 = f(x¢, uy)
A quadratic cost fn
A nominal trajectory: x{, U, ..., Tp_1,Up_1, LT

Find: a controller ©u; = —K;x; that works nearby
nominal trajectory



ldea: time varying linear system

Linear Time Invariant (LTI):
Tty = Axy + Buy
T—1
T T T
J(X,U) = z7:Qrxr + Z ry Qxy + uy Ruy
t=1

Notice time time dependence
Linear Time Variant (LTV): . —each time step is linearized differently

//_1i \

Ti41 = At% + By

J(X,U) = :cTQT:I:T + Z fot:Et =+ utTRtut

t=1



Linear Time Varying LOR (LTV)

Similar first order taylor series expansion as before:

Ti41 ~ {(%;WZ‘F %(xtaut)(mt —xy) + au@jtvut)(ut — uy)
Y \.

,

= xiy 1 + Ai(wr — x7) + Bi(ug — uy)

QJ

f

J
Y Y



Linear Time Varying LOR (LTV)

Similar first order taylor series expansion as before:
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= xiy 1 + Ai(wr — x7) + Bi(ug — uy)

QJ

/

vy, ug )@ — @) + 5 (@, u) (ue — ug)

Tep1 = f(rf,uy) +
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Solution: solve LQR for this TV system: ¢4 = Az + Biuy

_ * _
Ly = T — Ty ut:ut—uf

. . : — % =
Resulting controller is linearized about nominal trajectory: Uy = —Kta?t



Linear Time Varying LOR (LTV)

Similar first order t-

Tir1 ~ f(xg

H
,

- >k
— Ly q

Key points:

— point linearized about changes on
each time step

— nominal trajectory does not even
need to be feasible!

—you DO NEED to know what time
step you're at throughout

Solution: solve LOQR

— k

Lt = g

ug )

O Uy

Up — Uy )

fL_Lt:Ut—U;k

: . . . : — % =
Resulting controller is linearized about nominal trajectory: Uy = —Kta?t



Question

Think about cart-pole

We have shown that you can use linearize LQR about an arbitrary
trajectory.

Can you just linearize about the current operating point on each
time step?



Back to nonlinear control problem...

T—1
Minimize: J(X’ U) — ZU%QTZUT -+ Z x?@xt + u;‘prut
t=1
Subjectto: Lty 1 = f(ZCt, Ut)
xr1 = start state
xT = goal state

LTV LOR only works if you have a nominal trajectory

How do you get the nominal trajectory???



lterative LQR

Key observation:

If: you start with a bad nominal trajectory, run LTV LOQR
linearized about it, and then integrate forward the resulting
locally optimal policy...

Then: the resulting trajectory will be better (lower cost) than the
nominal trajectory you started with



lterative LQR

Initialize the algorithm by picking either (a) A control policy 7(®) or (b) A
sequence of states :E((J(}),:Egu), . mg) and control inputs ug ),ugj), o (U) . With
initialization (a), start in Step (1). With initialization (b), start in Step (2).

Iterate the following:

(1) Execute the current policy 7(¥) and record the resulting state-input tra-
(@) @) (&) (i) (i) . (i)

jectory Ty, ug Ty Uy . Ty Uy

(2) Compute the LQ approximation of the optimal control problem around
the obtained state-input trajectory by computing a first-order Taylor ex-
pansion of the dynamics model, and a second-order Taylor expansion of
the cost function.

(3) Use the LQR back-ups to solve for the optimal control policy 7(+1) for
the LQ approximation obtained in Step (2).

(4) Set i =7+ 1 and go to Step (1).



lterative LQR

Initialize the algorithm by picking either (a) A control policy 7(®) or (b) A

sequence of states :1:((J ),a:g ), : xfg) and control inputs u(() ),ug]), i, (U) . With

initialization (a), start in Step (1). With initialization (b), start in Step (2).
Iterate the following:

(1) Execute the current policy 7(*) and record the resulting state-input tra-

jectory :v[()),u[()),:r:(f),u(f), : xg),ug)

(2) Compute the LQ approximation of the optimal control problem around
the obtained state-input trajectory by computing a first-order Taylor ex-
pansion of the dynamics model, and a second-order Taylor expansion of
the cost function.

(3) Use the LQR back-ups to solve for the optimal control policy 7(+1) for
the LQ approximation obtained in Step (2).

(4) Set i =7+ 1 and go to Step (1).



lterative LQR

Standard LTV is of the form 2,41 = A2 + By, g(z,v) = 2" Qz + v Ru.

Linearizing around (a:r]+ ), E )) in iteration ¢ of the iterative LQR algorithm

gives us (up to first order!):

+ Y @D )@ — 2D + Y@ u )y — u)

T = [, ul?) +

r; xy L uy ) (up —u
a t t au t t t t
Subtracting the same term on both sides gives the format we want:
af N Of .
we—aidy = [ ) a2 (@ ) e g ) ()

Hence we get the standard format if using:

2 = [w—2 17
v o= (u—u)
4, = [ #@w”) £ w?) -2
| ] 0 1
Bt = 55(;’{:?), u:‘EZ))
0

A similar derivation is needed to find Q and R.



lterative LQR

Standard LTV is ¢ _ _ T Ro.
L Why is this not zero? .
Linearizing aroun ) orithm
gives us (up to first When can we Sklp these teI’mS7
ress = 1 ) + & )@=l + 5 ) - uf?)
Subtracting the same term /(/)11 both sides gives the format we want:
A of
vy = 1@, uf) -2l 2 @ u) )+ (@9, uf?) ()
Hence we get the standard format if using:
Zt = [.It - ;BE?:) l]T
v = (u— Ug ))
A, = ar(*’rt aurZ)) f(aTt aut )_Ifgﬂl
' i 0 1
Bt — - (')'u, (:BEZ)’HEE))
0

A similar derivation is needed to find Q and R.



lterative LQR

Why is this not zero?
When can we skip these terms?

3T Rw.

Linearizing aroun orithm

Standard LTV is ¢
gives us (up to first J

Subtracting the same t(;rm on both sides giv
A . .
D =1, u®) -2+ , How does this fix problem?
L @ @y @), 9f (
Tep1—Tpiq = floy ' uy ')~ t+1+8$( t a’bﬂt \

Hence we get the standard format if using:

Zt — [:I:t — .’.L‘g?) l]T /
(i)
- - A
v (Ut 'u,f(z)) o T ~
Af — (’_)r('Tt ?uf ) f(a*f 9“;‘ )_J’.t-i-l
' 0 1
Bt = du (ZL'EE),’UL::L ))
0

A similar derivation is needed to find Q and R.



lterative LQR

= Need not converge as formulated!

Reason: the optimal policy for the LQ approximation might end up not
staying close to the sequence of points around which the LQ
approximation was computed by Taylor expansion.

Solution: in each iteration, adjust the cost function so this is the case,
i.e., use the cost function

(1= a)g(@e,ue) + alllze — 2”3 + lur — u”[I3)

Assuming g is bounded, for a close enough to one, the 2" term will
dominate and ensure the linearizations are good approximations
around the solution trajectory found by LQR.



lterative LQR

s fis non-linear, hence this is a non-convex optimization
problem. Can get stuck in local optima! Good initialization
matters.

= g could be non-convex: Then the LQ approximation fails to
have positive-definite cost matrices.

= Practical fix: if Q, or R, are not positive definite = increase penalty for
deviating from current state and input (x{),, ul),) until resulting Q. and R,
are positive definite.



lterative LQR

ILQR works well in the MPC context
— stabilization to the trajectory will handle most small deviations from nominal

— can iterate the process to handle larger deviations
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