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Kinematic Redundancy

• A manipulator may have more DOFs than 
are necessary to control a desired variable

• What do you do w/ the extra DOFs?

• However, even if the manipulator has 
“enough” DOFs, it may still be unable to 
control some variables in some 
configurations…



Jacobian Range Space

Before we think about redundancy, let’s look at the 
range space of the Jacobian transform:

The velocity Jacobian maps joint velocities onto end 
effector velocities:

Space of joint velocities

• This is the domain of 
J:

Space of end effector 
velocities

• This is the range 
space of J:  vJR

 vJD

 qqJv v 

  VQqJv :



In some configurations, the range space of the 
Jacobian may not span the entire space of the 
variable to be controlled:

  VQqJv :

  qJvVv vR ,

spans       if  qJvR V   qJvVv vR ,

Example: a and b span this two dimensional space:

a

b

Jacobian Range Space



This is the case in the manipulator to the right:

• In this configuration, the Jacobian does not span 
the y direction (or the z direction)

  qJyVy vR ,

x
y

z

Jacobian Range Space



Let’s calculate the velocity Jacobian:

q=(
π
2

0
π
)

x
y

z

J v (q )=[−l1 s1−l2 s12−l3s123 −l2 s12−l3 s123 −l3s123

l1c1+l2c12+l3c123 l2 c12+l3c123 l3 c123

0 0 0 ]
Joint configuration of manipulator:

J v (q )=[−l1−l2+l3 −l2+l3 l3

0 0 0
0 0 0 ]

 qqJy v There is no joint velocity,    , that will produce a y velocity,q

Therefore, you’re in a singularity.

Jacobian Range Space



Jacobian Singularities

x
y

z

In singular configurations:

•           does not span the space of Cartesian 
velocities

•           loses rank

)(qJ v

)(qJ v

Test for kinematic singularity:

• If                                is zero, then manipulator is in 
a singular configuration

 TqJqJ )()(det

det [J (q )J (q )T ]=det [−l1− l2+l3 −l2+l3 l3

0 0 0 ][−l1−l2+l3 0
−l2+l3 0

l3 0 ]=det [something 0
0 0 ]

0

Example:



Jacobian Singularities: Example
The four singularities of the three-link planar arm:



Think-pair-share

What are the singularities for this arm?

– which dimensions of the range space go to 
zero in which configurations?
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Jacobian Singularities and Cartesian Control

x
y

z

Cartesian control involves calculating the inverse or 
pseudoinverse:

  1# 
 TT JJJJ

However, in singular configurations, the 
pseudoinverse (or inverse) does not exist 
because                is undefined.  1TJJ

As you approach a singular configuration, joint 
velocities in the singular direction calculated by 
the pseudoinverse get very large:

  big
1# 



s
TT

s xJJJxJq 

In Jacobian transpose control, joint velocities in the 
singular direction (i.e. the gradient) go to zero:

0 s
T xJq  Where      is a singular direction.sx



Questions

x
y

z

In Jacobian pseudoinverse control, what is the 
maximum velocity of a joint as a function of the 
singular values of J?

What is the maximum joint velocity in Jacobian 
transpose control?



Jacobian Singularities and Cartesian Control
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y
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One way to get the “best of both worlds” is to use the 
“dampled least squares inverse” – aka the 
singularity robust (SR) inverse:

  12* 
 IkJJJJ TT

• Because of the additional term inside the inversion, 
the SR inverse does not blow up.

• In regions near a singularity, the SR inverse trades 
off exact trajectory following for minimal joint 
velocities.

BTW, another way to handle singularities is simply to 
avoid them – this method is preferred by many

• More on this in a bit…



Question

x
y

z

One way to get the “best of both worlds” is to use the 
“dampled least squares inverse” – aka the 
singularity robust (SR) inverse:

  12* 
 IkJJJJ TT

• Because of the additional term inside the inversion, 
the SR inverse does not blow up.

• In regions near a singularity, the SR inverse trades 
off exact trajectory following for minimal joint 
velocities.

Prove that this formulation adds an amount k^2 to each eigenvalue of JJ^T



Yes – imagine the possible instantaneous motions are described by 
an ellipsoid in Cartesian space.

Can we characterize how close we are to a singularity?

Manipulability Ellipsoid

Can’t move much this way

Can move a lot this way



The manipulability ellipsoid is an ellipse in 
Cartesian space corresponding to the twists 
that unit joint velocities can generate:

Manipulability Ellipsoid

1qqT 

  1## xJxJ
T 

A unit sphere in joint velocity space

     1
11




xJJJJJJx TT
T

TTT 

    1
1




xJJJJJJx TTTTT 

ẋT (JJT )−1
ẋ=1

Project the sphere into 
Cartesian space

The space of feasible 
Cartesian velocities

Forms an ellipsoid
– manipulability ellipsoid



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?

Length of side i is 
sqrt of eigenvalue of JJ^T
– i.e. reciprocal of sqrt of (JJ^T)^-1



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?

Length of side i is 
sqrt of eigenvalue of JJ^T
– i.e. reciprocal of sqrt of (JJ^T)^-1

Fun fact: Eigenvalue of JJ^T equals the singular value for J:

Therefore:                     of matrix J.



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?

Length of side i is 
sqrt of eigenvalue of JJ^T
– i.e. reciprocal of sqrt of (JJ^T)^-1

Fun fact: Eigenvalue of JJ^T equals the singular value for J:

Therefore:                     of matrix J.

Manipulability measure: proportional to volume of manipulability ellipsoid



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?

Length of side i is 
sqrt of eigenvalue of JJ^T
– i.e. reciprocal of sqrt of (JJ^T)^-1

Fun fact: Eigenvalue of JJ^T equals the singular value for J:

Therefore:                     of matrix J.

Manipulability measure: proportional to volume of manipulability ellipsoid

Why is this proportional to volume?



Manipulability Ellipsoid

1v
2v

ẋT (JJT )−1
ẋ=1What are the dimensions 

of manipulability ellipsoid?

Length of side i is 
sqrt of eigenvalue of JJ^T
– i.e. reciprocal of sqrt of (JJ^T)^-1

Fun fact: Eigenvalue of JJ^T equals the singular value for J:

Therefore:                     of matrix J.

Condition number: eccentricity of manipulability ellipsoid

Condition number close to 
one indicates an isotropic ellipsoid



Manipulability Ellipsoid

Isotropic manipulability 
ellipsoid

NOT isotropic 
manipulability ellipsoid

In what configuration of the planar two-link arm is this the manipulability 
ellipsoid isotropic?



1 T

You can also calculate a manipulability ellipsoid 
for force:

  1FJFJ TTT

FT JJ T F=1

Force Manipulability Ellipsoid

FJ T

A unit sphere in the space of joint torques

The space of feasible Cartesian wrenches



Velocity and force manipulability are orthogonal!

Velocity ellipsoid

Force ellipsoid

This is known as force/velocity duality

• You can apply the largest forces in the same 
directions that your max velocity is smallest

• Your max velocity is greatest in the directions where 
you can only apply the smallest forces



Think-pair-share

Velocity ellipsoid

Force ellipsoid

Prove that the force and velocity ellipsoids are orthogonal

1FJJF TT

  1
1




xJJx TT Velocity ellipsoid:

Force ellipsoid:



Manipulability Ellipsoid: Example

Solve for the principle axes of the manipulability 
ellipsoid for the planar two link manipulator with unit 
length links at

J (q )=[− l1s1−l2s12 −l2s12

l1c1+l2c12 l2c12
]

q=(0π
4
)

J (q )=[ − 1

√2
− 1

√2

1+ 1

√2

1

√2
]

√ λ1 v1=(-0 . 3029
-0. 1568 )

J (q ) J (q )T=[ 1−λ −1+ 1

√2

−1+ 1

√2
2+√2−λ ]

Principle axes:

√ λ2 v2=(-0 . 9530
1 .8411 )

11v

22 v



Kinematic redundancy
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A general-purpose robot arm frequently has 
more DOFs than are strictly necessary to 
perform a given function

• in order to independently control the position 
of a planar manipulator end effector, only 
two DOFs are strictly necessary

• If the manipulator has three DOFs, then 
it is redundant w.r.t. the task of 
controlling two dimensional position.

• In order to independently control end 
effector position in 3-space, you need at 
least 3 DOFs

• In order to independently control end 
effector position and orientation, at least 6 
DOFs are needed (they have to be 
configured right, too…)
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Kinematic redundancy
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J=[ j11 j12 j13

j21 j22 j23
]

The local redundancy of an arm can be 
understood in terms of the local Jacobian

• The manipulator controls a number of 
Cartesian DOFs equal to the number of 
independent rows in the Jacobian

Since there are two independent 
rows, you can control two 
Cartesian DOFs independently 
(m=2)

You use three joints to control two 
Cartesian DOFs (n=3)

Since the number of independent Cartesian directions is less than the 
number of joints, (m<n), this manipulator is redundant w.r.t. the task of 
controlling those Cartesian directions.



Kinematic redundancy
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What does this redundant space look like?

• At first glance, you might think that it’s 
linear because the Jacobian is linear

• But, the Jacobian is only locally linear

The dimension of the redundant space is the 
number of joints – the number of independent 
Cartesian DOFs: n-m.

• For the three link planar arm, the redundant 
space is a set of one dimensional curves 
traced through the three dimensional joint 
space.

• Each curve corresponds to the set of joint 
configurations that place the end effector in 
the same position. Redundant manifolds in 

joint space



Kinematic redundancy
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Joint velocities in redundant directions 
causes no motion at the end effector

• These are internal motions of the 
manipulator.

Redundant manifolds in 
joint space

qqJ )(0 
Redundant joint velocities satisfy this 

equation:

the null space of )(qJ

   qqJQqqJN  )(0:)( 

Compare to the range space of            :)(qJ

   qqJxQqXxqJR  )(,:)( 



Null space and Range space

 )(qJN
 )(qJR

 1 nSOQ mRX 

Range space

Null space

• Motions in the null space 
are internal motions

Joint space Cartesian space

   qqJQqqJN  )(0:)( 

   qqJxQqXxqJR  )(,:)( 

qqJx  )(

You can’t generate 
these motions



Null space and Range space

 )(qJN
 )(qJR

qqJx  )(

Degree of manipulability:

      rmanipulato of DOF total)(dim)(dim  qJRqJN

  )(dim qJR

Degree of redundancy:   )(dim qJN



 )(qJN
 )(qJR

qqJx  )(

As the manipulator moves to new configurations, the degree of 
manipulability may temporarily decrease – these are the 
singular configurations.

• There is a corresponding increase in degree of redundancy.

Null space and Range space



 )(qJN
 )(qJR

qqJx  )(

Null space and Range space

   TqJNqJR )()( 
   TqJRqJN )()( 

FqJ T)(Remember the Jacobian’s application to statics:



 )(qJN
 )(qJR

qqJx  )(

Null space and Range space in the Force Domain

 TqJR )(
 TqJN )(

FqJ T)(

 )(qJR )(qJN

 TqJN )( TqJR )(



Null space and Range space in the Force Domain

 TqJR )(
 TqJN )(

FqJ T)(

 )(qJR )(qJN

   TqJNqJR )()( 
   TqJRqJN )()( 

• A Cartesian force cannot generate joint torques in the joint 
velocity null space.

• …



Motions in the redundant space do not affect the 
position of the end effector.

• Since they don’t change end effector 
position, is there something we would like to 
do in this space?

• Optimize kinematic manipulability?

• Stay away from obstacles?

• Something else?
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Doing Things in the Redundant Joint Space



Assume that you are given a joint velocity,     , 
you would like to achieve while also 
achieving a desired end effector twist, 

• Required objective:

• Desired objective: 
x0
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Doing Things in the Redundant Joint Space

   00)( qqqqqf T  

dx

Use lagrange multiplier method: )()( zgzf zz  

Minimize          subject to                 :0)( zg)(zf

0q

dx

0q

xqJqg  )(
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Doing Things in the Redundant Joint Space

 Tqqf 0 

Jg 

)()( zgzf zz  

  Jqq TT  0

0qJq T   

  xqJJ T   0

   0

1
qJxJJ T  




    00

1
qqJxJJJq TT  



  0
## qJJIxJq  
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Doing Things in the Redundant Joint Space

  0
## qJJIxJq  

Homogeneous part of the solution

Null space projection matrix:

• This matrix projects an arbitrary vector into the null 
space of J

• This makes it easy to do things in the redundant 
space – just calculate what you would like to do and 
project it into the null space.

JJI #
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Things You Might do in the Null Space

Avoid kinematic singularities:

1. Calculate the gradient of the 
manipulability measure:

2. Project into null space:

 TJJq det0 

  0
## qJJIxJq  

Avoid joint limits:

1. Calculate a gradient of the 
squared distance from a joint 
limit:

2. Project into null space:   0
## qJJIxJq  

• where       is the joint configuration at the center of the joints

• and       is the current joint position

 qqq m 0

mq

q



Things You Might do in the Null Space

Avoid kinematic obstacles:

1. Consider a set of control points 
(nodes) on the manipulator:

2. Move all nodes away from the 
object:

3. Project desired motion into 
joint space:

4. Project into null space:   0
## qJJIxJq  

obstacleii xxx  z0

1x

2x

 321 ,, xxx





nodesi

i
T

i xJq0

obstacle

dx
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