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Where am I?
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Robot localization example
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Robot is actually located here, but it doesn't know it.

Goal: localize the robot based on sequential observations
– robot is given a map of the world; robot could be in any square
– initially, robot doesn't know which square it's in

Gray level denotes 
estimated probability that 
robot is in that square
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Gray level denotes 
estimated probability that 
robot is in that square

On each time step, the robot moves, and then observes the directions in 
which there are walls.
– observes a four-bit binary number
– observations are noisy: there is a small chance that each bit will be flipped.

Robot perceives that there are walls above 
and below, but no walls either left or right



  

Robot localization example

10
Prob

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10
Prob

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10
Prob

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

Robot localization example

10
Prob

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Question: how do we update this probability distribution from time t to t+1?



  

Hidden Markov Models (HMMs)

State,      , is assumed to be unobserved

However, you get to make one observation,      , on each 
timestep.

Called an “emission”



  

Hidden Markov Models (HMMs)

Process dynamics:

Observation dynamics:

How the system changes from 
one time step to the next

What gets observed as a 
function of what state the 
system is in



  

Hidden Markov Models (HMMs)

Process dynamics:

Observation dynamics:

How the system changes from 
one time step to the next

What gets observed as a 
function of what state the 
system is in

Let's assume (for now) that these probability distributions are given to us.



  

Hidden Markov Models (HMMs)

Process dynamics:

Observation dynamics:



  

Hidden Markov Models (HMMs)

Process dynamics:

Observation dynamics:

Markov assumptions



  

HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
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Bayes Filtering

How do we go from this distribution to this distribution?



  

Bayes Filtering



  

Bayes Filtering

Process update Observation update



  

Process update



  

Process update

Different states from which x_{t+1} can be reached

Marginalize over 
next states



  

Process update

Marginalize over 
next states

Different states from which x_{t+1} can be reached



  

Process update

Image: Thrun, Probabilistic Robotics, 2006

Before process update



  

Process update

Image: Thrun, Probabilistic Robotics, 2006

This is a little like 
convolution...

After process update



  

Process update

Image: Thrun, Probabilistic Robotics, 2006

Each time you execute a process update, belief gets more disbursed
– i.e. Shannon entropy increases
– this makes sense: as you predict state further into the future, 

your uncertainty grows.

After process update



  

Bayes Filtering

Process update Observation update



  

Observation update



  

Observation update

Probability of seeing observation              from state



  

Observation update

Where                                is a normalization factor



  

Observation update

After observation 
update

Before observation 
update



  

Weather HMM example

Rt
Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5
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Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3
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Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3
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+r +u 0.9
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Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
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B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373
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Weather HMM example

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117
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Applications of HMMs

 Speech recogniton HMMs:
 Observatons are acoustc signals (contnuous valued)

 States are specifc positons in specifc words (so, tens of thousands)

 Machine translaton HMMs:
 Observatons are words (tens of thousands)

 States are translaton optons

 Robot tracking:
 Observatons are range readings (contnuous)

 States are positons on a map (contnuous)

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



  

Particle Filter
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Why must I be confined to this grid?

Standard Bayes filtering requires discretizing state space into grid cells

Can do Bayes filtering w/o discretizing?
– yes: particle filtering or Kalman filtering



  

Particle Filter

Image: Thrun CS223b Course Notes (downloaded Summer 2015)

Sequential Bayes Filtering is great, but it's not great for continuous state spaces.
– you need to discretize the state space (e.g. a grid) in order to use Bayes filtering

– but, doing filtering on a grid is not efficient...

Therefore: 
– particle filters
– Kalman filters

Two different ways of filtering in continuous state spaces



  

Particle Filter

Image: Thrun CS223b Course Notes (downloaded Summer 2015)

Key idea: represent a probability distribution as a finite set of points

– density of points encodes probability mass.

– particle filtering is an adaptation of Bayes filtering to this particle representation



  

Monte Carlo Sampling
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Suppose you are given an unknown probability distribution, 

Suppose you can't evaluate the distribution analytically, but you can draw samples from it

What can you do with this information?

where        are samples drawn from 



  

Importance Sampling
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Suppose you are given an unknown probability distribution, 

Suppose you can't evaluate the distribution analytically, but you can draw samples from it

What can you do with this information?

Suppose you can't even sample from it?

Suppose that all you can do is evaluate the function at a given point?



  

Importance Sampling
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Question: how estimate expected values if cannot draw samples from f(x)
– suppose all we can do is evaluate f(x) at a given point...



  

Importance Sampling
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Answer: draw samples from a 
different distribution and weight them

Question: how estimate expected values if cannot draw samples from f(x)
– suppose all we can do is evaluate f(x) at a given point...



  

Importance Sampling
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where        are samples drawn from 

and

Proposal distribution

Answer: draw samples from a 
different distribution and weight them

Question: how estimate expected values if cannot draw samples from f(x)
– suppose all we can do is evaluate f(x) at a given point...



  

Particle Filter

Prior distribution



  

Particle Filter

Prior distribution

Process update



  

Particle Filter

Prior distribution

Process update

Observation update



  

Particle Filter

Prior distribution

Process update

Observation update

Resample

w/ probDo this n times



  

Particle Filter

Prior distribution



  

Particle Filter

Measurement update

Prior distribution



  

Particle Filter

Process update

Resampling



  

Particle Filter

Measurement update



  

Particle Filter

Process update

Measurement update



  

Particle Filter Example



  

Particle Filter Example



Particle Filtering

Pros:

– works in continuous spaces
– can represent multi-modal distributions

Cons:

– parameters to tune
– sample impoverishment



Sample Impoverishment

Pros:

– works in continuous spaces
– can represent multi-modal distributions

Cons:

– parameters to tune
– sample impoverishment

No particles nearby the true system state



  

Sample Impoverishment

Prior distribution

Process update

Observation update

Resample

w/ probDo this n times

If there aren't enough samples, then we 
might ``resample away'' the true state...



  

Sample Impoverishment

Prior distribution

Process update

Observation update

Resample

w/ probDo this n times

If there aren't enough samples, then we 
might ``resample away'' the true state...

One solution: add an additional k samples 
drawn completely at random



  

Sample Impoverishment

Prior distribution

Process update

Observation update

Resample

w/ probDo this n times

If there aren't enough samples, then we 
might ``resample away'' the true state...

One solution: add an additional k samples 
drawn completely at random

BUT: there's always a chance that the true state won't be 
represented well by the particles...



Kalman Filtering

Image: UBC, Kevin Murphy Matlab toolbox

Another way to adapt Sequential Bayes Filtering to continuous state 
spaces

– relies on representing the probability distribution as a Gaussian

– first developed in the early 1960s (before general Bayes filtering); 
used in Apollo program



Kalman Idea

updateinitial position

x

y

x

y

prediction

x

y

measurement

x

y

Image: Thrun et al., CS233B course notes



Kalman Idea

Image: Thrun et al., CS233B course notes

prior

Measurement
evidence

posterior

Image: Thrun et al., CS233B course notes



Gaussians

● Univariate 
Gaussian:

● Multivariate 
Gaussian:



Playing w/ Gaussians

● Suppose:

● Calculate:

x

y

x

y



In fact

● Suppose:

● Then:



Illustration

Image: Thrun et al., CS233B course notes



And

Suppose:

Then:

Marginal distribution



Does this remind us of anything?



Does this remind us of anything?

Process update 
(discrete):

Process update 
(continuous):



Does this remind us of anything?

Process update 
(discrete):

Process update 
(continuous):

priortransition dynamics



Does this remind us of anything?

Process update 
(discrete):

Process update 
(continuous):

priortransition dynamics



Observation update

Observation 
update:

Where:



Observation update

Observation 
update:

Where:



Observation update

Observation 
update:

Where:



Observation update

But we need:



Another Gaussian identity...

Suppose:

Calculate:



Observation update

But we need:



To summarize the Kalman filter

Prior:

Process update:

Measurement 
update:

System:



Suppose there is an action term...

Prior:

Process update:

Measurement 
update:

System:



To summarize the Kalman filter

Prior:

Process update:

Measurement 
update:

This factor is often 
called the “Kalman 
gain”



Things to note about the Kalman filter

Process update:

Measurement 
update:

– covariance update is independent of observation

– Kalman is only optimal for linear-Gaussian systems

– the distribution “stays” Gaussian through this update

– the error term can be thought of as the different between the 
observation and the prediction



Kalman in 1D

Image: Thrun et al., 
CS233B course 
notes

prior
Measurement

evidence

posterior

Image: Thrun et al., CS233B course notes

Process update:

Measurement 
update:

System:



Kalman Idea

Image: Thrun et al., CS233B course notes

initial position prediction measurement

ẋ

x

ẋ

x

ẋ

x

update

ẋ

x



Example: estimate velocity

Image: Thrun et al., CS233B course notes

past measurements

prediction



Example: filling a tank

Level of 
tank

Fill rate

Process:

Observati
on:



Example: estimate velocity



But, my system is NON-LINEAR!

What should I do?



But, my system is NON-LINEAR!

● What should I do?

Well, there are some options...

●



But, my system is NON-LINEAR!

● What should I do?

Well, there are some options...

● But none of them are great.

●



But, my system is NON-LINEAR!

● What should I do?

Well, there are some options...

But none of them are great.

Here's one: the Extended Kalman Filter



Extended Kalman filter

Take a Taylor expansion:

Where:

Where:



Extended Kalman filter

Take a Taylor expansion:

Where:

Where:

Then use the same equations...



To summarize the EKF

Prior:

Process update:

Measurement 
update:



Extended Kalman filter

Image: Thrun et al., CS233B course notes



Extended Kalman filter

Image: Thrun et al., CS233B course notes



EKF Mobile Robot Localization

Suppose we have a mobile robot 
wandering around in a 2-d world ...

Process noise is assumed to be Gaussian:

noise

Odometry 
measurement

state

Process dynamics:



Process dynamics:

noise

Odometry measurement

EKF Mobile Robot Localization



But, wheels slip – odometry is not always correct...

How do we localize? Extended Kalman Filter!

Actual path of robot

Estimated path based 
on odometry

EKF Mobile Robot Localization



EKF uncertainty estimate

Dynamics:

Linearized dynamics:

Where:

EKF Process Update



With no observations, 
uncertainty grows 
over time...

EKF uncertainty estimate

Dynamics:

Linearized dynamics:

Where:

EKF Process Update

Process update:



Landmarks
(i.e. features of the env't)

Observations:

range

bearing

Observations:
– range and bearing of a landmark

Observations



Observations:

where:

Observations

Landmarks
(i.e. features of the env't)



EKF Mobile Robot Localization

Process Update:

Observation Update:



  

Mapping using the EKF

How do we use the EKF to estimate landmark positions?

State:

Positions of each of the M landmarks (base frame)



  

Mapping using the EKF

Process update (no new detections):

est position of new landmark

covariance of new landmark

Process update (new detections):

where:



  

Mapping using the EKF

Observation update:



  

SLAM using the EKF

Estimate both robot position and landmark positions:

Landmark positions

robot position
Landmark covariance

Vehicle covariance

Vehicle/landmark 
covariance



  

SLAM using the EKF

Process update:

Vehicle portion of update Map portion of update

No new 
landmarks

New 
landmarks

Same observation update, but using:



  

SLAM using the EKF

Image: Thrun

Landmark covariance 
drops significantly as 
soon as “loop closure” 
occurs.



  

SLAM using the EKF



  

Mapping using the EKF



  

Process update

T = 1 T = 2 T = 5

Images: Berkeley CS188 course notes (downloaded Summer 2015)

Each time you execute a process update, belief gets more disbursed
– i.e. Shannon entropy increases
– this makes sense: as you predict state further into the future, 

your uncertainty grows.

This is a little like 
convolution...



  

Observation update

Before observaton After observaton

Images: Berkeley CS188 course notes (downloaded Summer 2015)

Process update increases uncertainty

Observation update decreases uncertainty
– observations give you more information
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