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Robot localization example

Robot is actually located here, but it doesn't know it.

.

| I
Prob TS
0 1 v Gray level denotes

estimated probability that
robot is in that square

Goal: localize the robot based on sequential observations
— robot is given a map of the world; robot could be in any square
— initially, robot doesn't know which square it's in
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Robot localization example

Robot perceives that there are walls above
and below, but no walls either left or right

.

Prob B 000
v Gray level denotes

0 1 estimated probability that
robot is in that square

On each time step, the robot moves, and then observes the directions in

which there are walls.

— observes a four-bit binary number
— observations are noisy: there is a small chance that each bit will be flipped.
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Robot localization example

Prob B 00
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Robot localization example

Prob TS
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Robot localization example

Prob TS
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Robot localization example

Prob .

Question: how do we update this probability distribution from time t to t+17?
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Hidden Markov Models (HMMSs)

State, X , is assumed to be unobserved

However, you get to make one observation, £, on each
timestep.



Hidden Markov Models (HMMSs)
P g . P(X |X ) How the system changes from
rocess dynamics. t|At—1) — one time step to the next
What gets observed as a
function of what state the
system is in

Observation dynamics: P(Et|Xt) -



Hidden Markov Models (HMMSs)

How the system changes from
one time step to the next

What gets observed as a
, function of what state the
"""""""""""""""" system is in

Let's assume (for now) that these probability distributions are given to us.



Hidden Markov Models (HMMSs)
Process dynamics: P(Xt|Xt_1) = P(Xt|Xt_1, “ e ,Xl)
Observation dynamics: P(Et|Xt) — P(Et’Xt, Xt—l; . oo ,Xl)



Hidden Markov Models (HMMSs)

Markov assumptions



HMM example

@ @ @ |

. | Rui | PR.IR)
+r +r 0.7
+r -r 0.3
-r +r 0.3
-r -r 0.7
R, | U | P(UJR)
+r | +u 0.9
+r -u 0.1
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-r -u 0.8
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Bayes Filtering

-

N/

How do we go from this distribution to this distribution?




Bayes Filtering

-




Bayes Filtering

Process update Observation update



Process update

miil




Process update

)

P(Xt+1\Xt,61:t)P(Xt\€1:t)

\ Marginalize over

next states



Process update

(o )

B/(Xt—l—l) — P(Xt—|—1|Xt>€1:t)B(Xt)

X ‘\
Marginalize over

next states




Process update

Before process update

Image: Thrun, Probabilistic Robotics, 2006



Process update

After process update

ZP(XtH‘Xta e1:4)B(Xy) = Icr)];]s\/(i)siuiigtr?ﬁ”ke

B'(X¢41)
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Process update

After process update

Each time you execute a process update, belief gets more disbursed
— I.e. Shannon entropy increases
— this makes sense: as you predict state further into the future,
your uncertainty grows.
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Bayes Filtering

Process update Observation update



Observation update



Observation update

P(Xitileri41) = nP(ei41| Xiv1) P(Xit1lers)
& J

"

Probability of seeing observation €1 from state Xt—l—l



Observation update

P(Xitileri41) = nP(ei41| Xiv1) P(Xit1lers)
B(X¢11) = nP(et1]Xe41) B (Xe41)

1
Where 1 = IS a normalization factor

P(ett1)




Observation update

B'(X¢41)

Before observation

update

i

P(ety1|Xit1)

B(Xi11) = nP(ep1|Xq1) B (Xis1)

After observation

update



Weather HMM example

R, | Rus | PR,IR)

+r +r 0.7

+r -r 0.3

-r +r 0.3

B(+r) =0.5 -r -r 0.7
B(-r) =0.5

‘ +r | +u 0.9

v v +r -u 0.1

-r -u 0.8
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Weather HMM example

Rt Rt+1 P(Rt+1 | Rt)
B'(+r) = 0.5 +r +r 0.7
7 B(-r) =0.5 +r -r 0.3
/ -r +r 0.3
B(+r) = 0.5 S L
B(-r) =0.5
‘ +r +u 0.9
\% \ +r -u 0.1
-r -u 0.8
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Weather HMM example

Rt Rt+1 P(Rt+1| Rt)

B'(+r) = 0.5 o[ +r 0.7

7 B'(-r) =0.5 +r -r 0.3

/ | -r +r 0.3

v
B(+r) = 0.5 B(+r) =0.818 -r -r 0.7
B(-r) =0.5 B(-r) =0.182

o o o g Rt Ut P(Utl Rt)

‘ +r | +u 0.9

Y % +r | -u 0.1

@ @ -r +u 0.2

-r -u 0.8
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Weather HMM example

Rt Rt+1 P(Rt+1 | Rt)
B'(+r) = 0.5 B'(+r) = 0.627 oo 0.7
7 B'(r) =0.5 T B'(-r) =0.373 +r | - 0.3
/ | -r +r 0.3
v
B(+r) = 0.5 B(+r) =0.818 -r -r 0.7
B(-r) =0.5 B(-r) =0.182
‘ +r | +u 0.9
v \% +r -u 0.1
@ @ -r +u 0.2
-r -u 0.8
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Weather HMM example

Rt Rt+1 P(Rt+1| Rt)
B(+1) = 0.5 B(+r) = 0.627 S A
7 B'(-r) =0.5 T B'(-r) =0.373 +ro| o-r 0.3
/ | | | +r 0.3
v \V/
B(+r) =0.5 B(+r) =0.818 B(+r) = 0.883 -r -r 0.7
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
‘ +r +U 0.9
\A v +r -u 0.1
@ @ -r +u 0.2
-r -u 0.8
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Robot localization example
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Robot localization example
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Robot localization example
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Robot localization example

. ww

- .
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Robot localization example

!
v @
Prob e
0 1
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Robot localization example

Prob TS

Slide: Berkeley CS188 course notes (downloaded Summer 2015)



Robot localization example

Prob B 000
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Robot localization example

Prob B 00
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Robot localization example

Prob TS
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Robot localization example

Prob TS
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Applications of HMMs

= Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
» States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:

s Observations are words (tens of thousands)
= States are translation options

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)
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Particle Filter

Standard Bayes filtering requires discretizing state space into grid cells

Can do Bayes filtering w/o discretizing?
— yes: particle filtering or Kalman filtering

Image: Berkeley CS188 course notes (downloaded Summer 2015)



Particle Filter

Sequential Bayes Filtering is great, but it's not great for continuous state spaces.
— you need to discretize the state space (e.g. a grid) in order to use Bayes filtering
— but, doing filtering on a grid is not efficient...

Therefore:
— particle filters

: Two different ways of filtering in continuous state spaces
— Kalman filters
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Particle Filter

Key idea: represent a probability distribution as a finite set of points
— density of points encodes probability mass.

— particle filtering is an adaptation of Bayes filtering to this particle representation
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Monte Carlo Sampling

A

H— - —HH
XL

Suppose you are given an unknown probability distribution, P(:U)

Suppose you can't evaluate the distribution analytically, but you can draw samples from it

What can you do with this information?

Buvrpio) (h@) = [ hla)P(a)

T

k
1 i
E E where X' are samples drawn from P(ZC)
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Importance Sampling

A

H— - —HH
XL

Suppose you are given an unknown probability distribution, P(:U)

Suppose you can't evaluate the distribution analytically, but mmrom it

What can you do with this information? /

Suppose you can't even sample from it?

Suppose that all you can do is evaluate the function at a given point?
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Importance Sampling

Question: how estimate expected values if cannot draw samples from f(x)
— suppose all we can do is evaluate f(x) at a given point...

Image: Thrun CS223b Course Notes (downloaded Summer 2015)



Importance Sampling

Question: how estimate expected values if cannot draw samples from f(x)
— suppose all we can do is evaluate f(x) at a given point...

3 ] 1 Answer: draw samples from a
different distribution and weight them

g \

\HH T O O T N TR T TR
=2

4 3] 2 10 1z
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Importance Sampling

Question: how estimate expected values if cannot draw samples from f(x)
— suppose all we can do is evaluate f(x) at a given point...

3 ] 1 Answer: draw samples from a
different distribution and weight them

E;,;Nf(;,;)(h(aﬁ)) = Lh(x)%g(@ PrOposaIdist\r‘ibution

h(xz)wz where Zl?i are samples drawn from g(x)

1=1 and w; = f(xz)/g(xz)

&
Sl
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Particle Filter

Prior distribution

1 n
Lpyeoosdy

1 n
Wyy.oooy Wy =

1



Particle Filter

Prior distribution

1 n 1 n
--------------------------- ajt b} 9 :L‘t wt ’ ’ wt —
P(X¢|FE1.¢)
------------ ¢ Process update
—17



Particle Filter

Prior distribution

1 n 1 n
th,...,ﬂft wt7°°'7wt:

Process update

F1 ~ P(Xipalal, en)

Observation update

w§+1 = P(€t+1‘i’i+1)wi

1



Particle Filter

Prior distribution

1 n 1 n
e Ty, y Ly Wy , Wy = 1
B(Xt) | P(X}|E14)
----------- ¢ Process update
_______________________________ Tiiq ~ P(Xy1lzg, er:)
B'(Xt) | P(X¢41]Ery)
--------------- ; Observation update

wy1 = Pler1]Thiq)w;

Resample
Xt—l—l — {}

_. ,I:
WSS - o1 = Xoor U Wi u




Particle Filter

Prior distribution

piE)




Particle Filter

Prior distribution

5
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piE) Measurement update

B




Particle Filter

Resampling
8

Process update

5
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Particle Filter
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Particle Filter

Process update

.t r + 7+ 11 t++& 77111+ 4+ 7 1 1 1 1+ f{ {71 1 1 1 [ 1 1 T | ]
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Particle Filter Example




Particle Filter Example
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Particle Filtering

Pros: Cons:

— works in continuous spaces — parameters to tune
— can represent multi-modal distributions — sample impoverishment



Sample Impoverishment

Pros: Cons:
— works in continuous spaces — parameters to tune
— can represent multi-modal distributions '~ sample impoverishment ,

No particles nearby the true system state



Sample Impoverishment

Prior distribution

n 1 n
t ’wt,...,’wt:l

Process update

P(Xt+1|$i, 61:t)

bservation update

P(et1]Th, 1 )w)




Sample Impoverishment

Prior distribution

n 1 n
t ’wt,...,’wt:l

Process update

P(Xt+1|$i, 61:t)

bservation update

P(et1]Th, 1 )w)




Sample Impoverishment

Prior distribution

n 1 n
t wt7...,wt:1

Process update

P(Xt—|-1|mi7 61:75)

bservation update

P(et1]Th, 1 )w)




Kalman Filtering

14
12
10
=
= B
|
E_
—— true
0t ohserved
2 filtered
SR 1
0 10

=l

a0

Another way to adapt Sequential Bayes Filtering to continuous state

spaces

— relies on representing the probability distribution as a Gaussian

— first developed in the early 1960s (before general Bayes filtering);

used in Apollo program

Image: UBC, Kevin Murphy Matlab toolbox




Y

initial position

v

Y

Kalman Idea

prediction measurement

]
NS

O O

.
»

v

X

Image: Thrun et al., CS233B course notes

update

]
NS

v




Kalman Idea

‘/\

Image: Thrun et al., CS233B course notes

P(ri41|20:041) = P (ze41|%e41) P(241]20:¢)

posterior

Measurement

evidence prior

Image: Thrun et al., CS233B course notes



e Univariate
Gaussian:

e Multivariate
Gaussian:

Gaussians




Playing w/ Gaussians

- Suppose:  P(z) = N(z; u, X)
y=Ax+b
+ Calculate:  P(y) =7
P(y) = N(y; An+ b, ALAT)
Y (Az+b)"(Az+b) =1

-
NP4

~

=

|

¥

>

ﬁ

(1




e Suppose:

In fact

P(z) = N(z; 1, %)
y=Ax+b

r\ r I
P(y>_N{y CAu+b°

(

> »Ar
AY  A¥ AT

)



lllustration

p(y)
— Mean of p(y)

— y=ax+Db
x Meanp

p(x)
x Mean of p(x)

Image: Thrun et al., CS233B course notes




And

Suppose: P(x) = N(z; u, X)
P(y|z) = N(y; Az + b, R)

Then:

Pl T \Y_nN|7T . U ) SAT
y ) y  Au+b’\ AY ATAT + R

P(y) = N(y; Ap + b, AYAT + R)

"l

Marginal distribution



Does this remind us of anything?



Does this remind us of anything?

Process update
(discrete):

Process update

(continuous): P($t+1‘750:t) :/ P(ZEt_|_1‘Sl7t)P(37t‘ZO:t)



Does this remind us of anything?

Process update
(discrete): P a?t+1‘zot ZP l’t+1‘33t (ﬂft‘zozt)

Process update
(continuous):

/ \

N (2441 |Azy, Q) N (e, 2t)

transition dynamics prior



Does this remind us of anything?

Process update
(discrete): a?t+1‘zot E P l’t+1‘33t -CUt‘ZO:t)

Process update
(continuous):

/ \

N (2441 |Azy, Q) N (e, 2t)

transition dynamics prior

P(evsfzon) = | Moot Avy QN (o, 21

P(xi11|20:t) = N(@eg1|Ape, A AT + Q)



Observation update

Observation

update: / /

N(zt41|Cxep1, R)  N(z¢|py, X3)

Where: /,L; = A,ut
¥ =A% AT +Q



Observation update

Observation

update: / /

Where:
=AY AT +Q

P(Zt—l—la Lt41 ‘ZO:t) — 77N(Zt+1\033t, R)N(Qfﬁ M;a Z;&)



Observation update

Observation
update: / /

Where:
=AY AT +Q

. / 3/ A0
P(zt41, Tt41]204) = N o ( : : ”

Zt+1 . C,u;’ CE; CE;AT+R



Observation update

But we need: P (x4 1]20.44¢) =7



Another Gaussian identity...

A (O
Suppose:N{:; ; Z’(CT B)}

Calculate:P(y‘gg) —
P(ylz) = N(ylb+ CTA™ (z — a), B~ CTA'C)



Observation update

x / 5 ex
P(zit1, 2epa]20:0) _N{ z:i : ijﬁt ( Cy CSAT + R )]
But we need: P (x4 1]20.441) ="

P($t+1\20:t+1) — N($t+1; Ht+1, Et+1)

perr = py + 0T (R4 CZCT ) ™ (2041 — Oy
Y1 =3 - SCH(R+Oxot) Ty



To summarize the Kalman filter

System:  P(z¢41|ze) = N(2¢41|Axe, Q)
P(zi41]|2141) = N(2141|C 2441, R)

Prior: [l
2

/
Process update: 4y = Aﬂt

Measurement
update:



Suppose there is an action term...

System: P(.CUt_|_1 .’L’t) — N(I}H—l |Aajt + U, Q)

Prior:

2t

Process update:/J; = Ap +uy
Y= AN AT +Q

Measurement
update:



To summarize the Kalman filter

Prior:

2t

Process update:/u:g — AMt
= AN AT +Q

Measurement
update:
f

This factor is often
called the “Kalman

gain” g




Things to note about the Kalman filter

Process update: ,u; = Aut

Measurement
update:

— covariance update is independent of observation
— Kalman is only optimal for linear-Gaussian systems
— the distribution “stays” Gaussian through this update

— the error term can be thought of as the different between the
observation and the prediction



Kalman in 1D

System: P(zialzy) = N(@ey1 0 T + ug, q)
P(zp41|t41) = N(ze41| 22041, 7) _bj\

Image: Thrun et al.,
CS233B course
notes

Process update: [y = Ut + Uy

~2 2
Oy = 0y T (
207 _
Measurement Pt41 = Mt 152 (Zt+1 — ;Lt)
update: "+ 407
Opay = 52 — 4(57)?
ot 45,52
posterior
Measurement
evidence

prior

Image: Thrun et al., CS233B course notes



initial position
O >
X

X,

Kalman Idea

prediction measurement

Image: Thrun et al., CS233B course notes

|

update

v



Example: estimate velocity

prediction

)

/.

O
./ past measurements

Image: Thrun et al., CS233B course notes



Example: filling a tank

[ <«—  Level of
L = tank
f <—  Fillrate

li41 =l + fdt

1 dt
Process: Tt41 = 0 1 Tt + q

Observati 2341 — ( 1 0 )xt—l—l r
on:




Example: estimate velocity

Ti41 = Az + wy

/ LTt41
Yt+1
Tiq1
\ Y1

2e11 = Cxpaq + 71

)=

Lt41
Yt+1

oo O
o O = O

( Lt41

Yt+1
Li+1
Yt+1

+ T¢q1




But, my system is NON-LINEAR!

Ty1 = f(@ ug) What should | do?
7& A.CUt + But



But, my system is NON-LINEAR!

Lt+1 = f(xt’ ut) « What should | do?

Well, there are some options...



But, my system is NON-LINEAR!

Lt+1 = f(xt’ ut) « What should | do?

Well, there are some options...

 But none of them are great.



But, my system is NON-LINEAR!

Lt+1 = f(xt’ ut) « What should | do?

Well, there are some options...
But none of them are great.

Here's one: the Extended Kalman Filter



Extended Kalman filter

Take a Taylor expansion:

LTi4+1 = f(xta Ut)
~ f(pe, ut) + Ag(2r — pg)
af

Where: At = a—x(ut,ut)

zt+1 = h(wy)
~ h(pe) + Ce(xe — 1)
oh

Where: C} = a—x(,ut)



Extended Kalman filter

Take a Taylor expansion:

Li41 = f(xta Ut)

0
Where: At = a—i(ut,ut)
ze11 = h(xy)
Oh
Where: Ct — 8_33‘(Mt)

Then use the same equations...



To summarize the EKF

Prior:

2t

Process update: i, = f (g, ut)
Z; — AtZtA? Q

Measurement i1 = py + S,CT(R+ CS,CT) Nz — R(u}))
update:



-4

Extended Kalman filter

plv
= Gianssian of piti

X Wean of piv

0 020406 08

Y=gkl

PlH]

0

= Function aix)

2 Heanp

Q) a)
©
0 0.5 1

piHl
2 Meanp
x

N NnE 1

Image: Thrun et al

., CS233B course notes



Extended Kalman filter

6 6
P = Function arx)
= Gals5ian -:-f:-[!.'] = Tador sppron.
4 —— EFK Gaussian 4 I (}5 ;1[:3;1?.
2 z 2(3
i
0 0
_2 _2 L
4l -4 X -
0 0204 06 08 0 0.5 1
61 pIx]
A Heanp
2 L
0 b 4
M NE 1

Image: Thrun et al., CS233B course notes



EKF Mobile Robot Localization

=
o
1

Suppose we have a mobile robot
wandering around in a 2-d world ...

- T N = -
T T T T T T T T T

noise

-10 -0 0 o1 10
X

Process dynamics: & (k+1) = f(a:(k), O (k), ‘U(k))

SN

state Odometry
measurement

L
o]

Process noise is assumed to be Gaussian: v = (v, vy) ~ N(O, V)



Process dynamics:

EKF Mobile Robot Localization

_|_
_I_

(8,4 (k

(5&<k>

noise

PN

)

v,)sin(0(k)

0 (k) + 6, + vﬁ/

Odometry measurement

+v,)cos(0(k) + &5 +vy)’
_I_

Oy

_vg)

J



EKF Mobile Robot Localization

6 I ".II'||
II|

2

// \\ e

o Y o

|I ! '.,\\
4 \\\‘ e —

Estimated path based

55§ - on odometry ; - —

But, wheels slip — odometry is not always correct...

How do we localize? Extended Kalman Filter!



EKF Process Update

Dynamics:

Linearized dynamics:
& (k+1) = &(k) + F, (k) — &(k)) + F,v(k)

Where:
; 10 —6,(—sin(0k) + &)
F, = of =0 1 5d<k)COS(9(k)-I- 69)
9l 1o o 1
5 cos(0(k) + 65) —6,(k)sin(6(k) + &)
F = or - _ sin(0(k) + 65) 6,4 (k)cos(0(k) + 6;)
0v|,_, 0 I

-15

1
-10



EKF uncertainty estimate

Process update:

/

EKF Process Update

Dynamics:

Linearized dynamics:

& (k+1) = &(k) + F, (k) — &(k)) + F,v(k)

Where:
5 cos(0(k) + 65) —6,(k)sin(6(k) + &)
F = or - _ sin(0(k) + 65) 6,4 (k)cos(0(k) + 6;)
D= 0 1

& (k+1k) = f (2 (k), 6(k), 0)

With no observations,
uncertainty grows

P(k+1k) = E_(k)P (k) E (k)" + F, (k)VF, (k) overtime...
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[=3]

i
T

Observations

Landmarks )
(i.e. features of the env't)

/ |

Observations:  z = h(x,, z;, w)

Observations:

— range and bearing of a landmark

N} /" 3‘|pm

z =

B8

w, o
[w ]wN(O,W), W_[O

VO = 2+ (6 — x,)
tan_l(yi _ yv)/(xi — xv) - 91!

5

2
r

\PJ‘
ﬁ’é 7-'50
—2pm
/ r'
[Wr] - range
- bearing




Landmarks
(i.e. features of the env't)

/

Observations

Observations:

z=h(z,, z;, w)

z(k) = h+ H, (x(k) — Z(k
where:
x; — x, (k)
H — oh _ r
i 6‘:1:v —0 xf_xv<k>
T'2
oh 1 0
H =" —
=5 =lo 1
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EKF Mobile Robot Localization

Process Update:

Observation Update:

&(k+1k+1) = B(k+1k) + K (k+1)v(k+1)
P(k+1j+1) = P{k1j)F, (k)" — K (k1) H (k1) P (k-+1]k)
p{kt) = (k1) - (K + 1K), x,0)

S(k+1) = H, (k+1)P (k1)) H, (k+1)" + H,, (k+1)W (k1) H,,, (k1)

K{(k+1) = P{k-+1k) H, (k+1)" S{k+1)™"



Mapping using the EKF

-10 L ! L J
-10 -5 0 5 10

How do we use the EKF to estimate landmark positions?

A T
State: € = (X5 V1> X55 Vor " Xpps V)

\

Positions of each of the M landmarks (base frame)



Mapping using the EKF

Process update (no new detections):
& (k+1lk) = & (kk)
P{k+1k) = P(klk)

Process update (new detections):

2 (k) ]
g(, (kk), z(k))

*

x(kk) =

ﬁ klk 0 T
P (klk) [ <0> W]Yz
where:
Y _8_y_ Inxn 0n><2
2 9z |G, 0,, 5 G, est position of new landmark
dg [0 0 0] covariance of new landmark
G = —=
* 9z, (0 00

G — dg _(cos(d, +6,) —r,sin(0, +6,)
2 9z \sin(@, +6,) r,cos(6, +6,)



Mapping using the EKF

Observation update:




SLAM using the EKF

Estimate both robot position and landmark positions:

L= (xv-" yviev
\

J

» Xis Yi> %25 Vo' Xprs Vo)

_/

/4

robot position

V

Landmark positions

Vehicle/landmark
covariance

Vehicle covariance

<

N M
ﬁ | tw Pvm
— AT A
vm Pmm

f

Landmark covariance



SLAM using the EKF

Process update:

— — _
b\
Vehicle portion of update Map portion of update
} No new
landmarks
\
ey ) =

Same observation update, but using: H, =(H, ---0---H, ---0)

V



SLAM using the EKF

Landmark covariance

[il} [l*} . e
drops significantly as
soon as “loop closure”
occurs.
e % |$| % II_J_
|
(c) ()

Image: Thrun



SLAM using the EKF

H

Y _@: Inxn 0n><2]

‘ 0z Gx 02><n—3 Gz

G — dg (1 0 —r,sin(0, +6,)
* 9x, |0 1 rcos(f,+0,)



Mapping using the EKF



Process update

u

EEEETE
EE
m

<0.01 <0.01<0.01 <0.01(<0.01
mu
M

Each time you execute a process update, belief gets more disbursed
— I.e. Shannon entropy increases
— this makes sense: as you predict state further into the future,
your uncertainty grows.

This is a_IittIe like
B/(Xt—|—1) _ Z P(Xt+1’Xta elzt)B(Xt) < convolution...
Xt

Images: Berkeley CS188 course notes (downloaded Summer 2015)



Observation update

Hu
u

Before observation After observation

Process update increases uncertainty

Observation update decreases uncertainty
— observations give you more information

Images: Berkeley CS188 course notes (downloaded Summer 2015)
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