Configuration Space

Robert Platt Northeastern University

Problem we want to solve

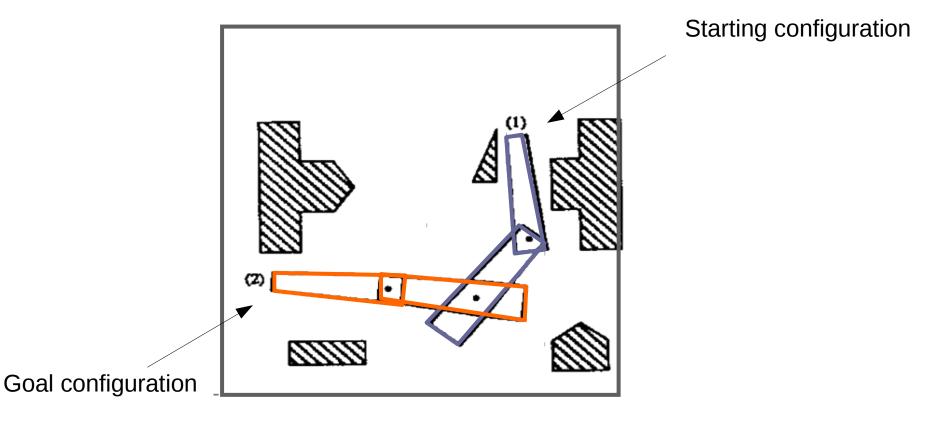
<u>Given</u>:

- description of the robot arm (the manipulator)

- description of the obstacle environment

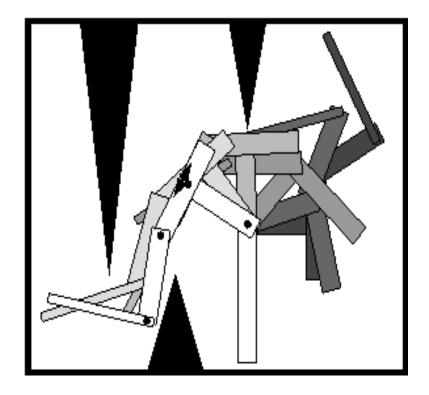
<u>Find</u>:

– path from start to goal that does not result in a collision



Problem we want to solve

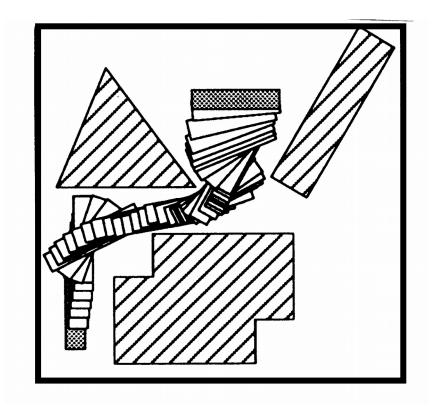
This problem statement is actually very general – manipulators



Problem we want to solve

This problem statement is actually very general

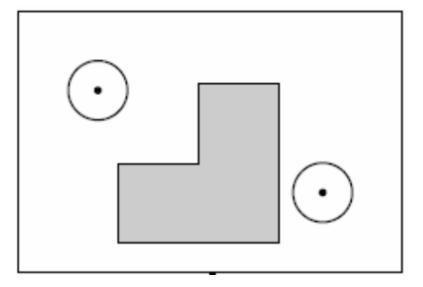
- manipulators
- mobile robots



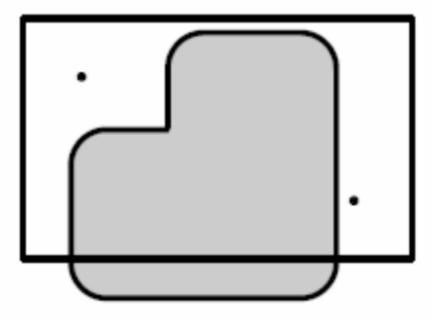
Convert the original planning problem into a planning problem for a single point.

Convert the original planning problem into a planning problem for a single point.

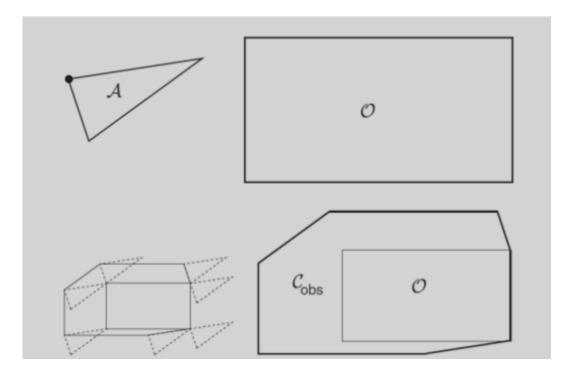
workspace



configuration space

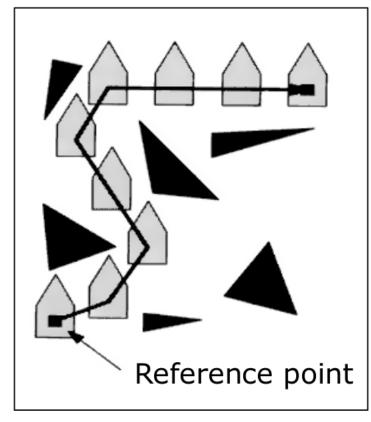


Conversion to c-space: Minkowski Sum

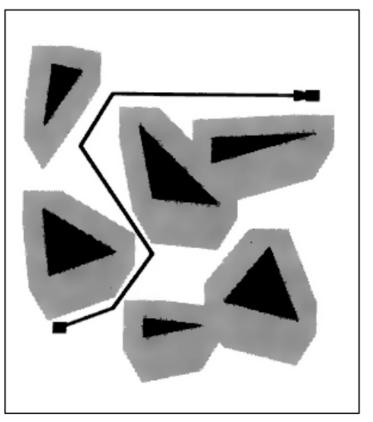


Convert the original planning problem into a planning problem for a single point.

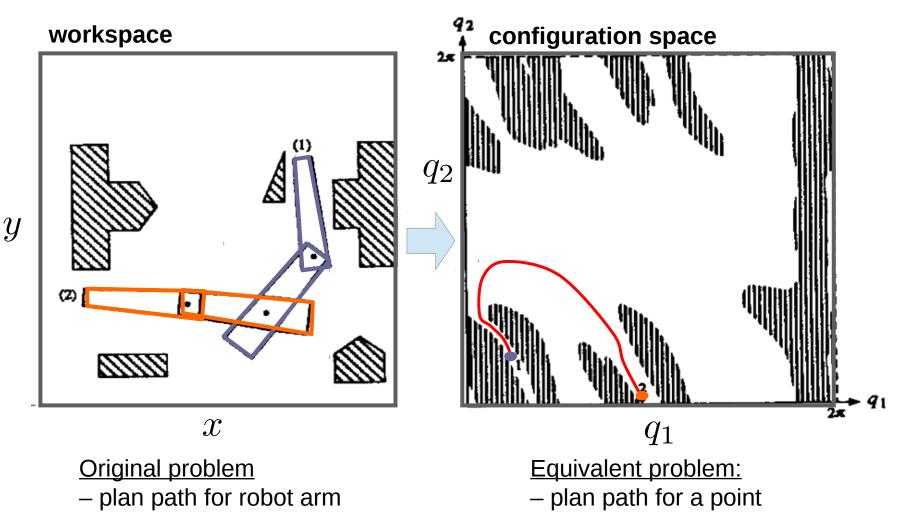
workspace



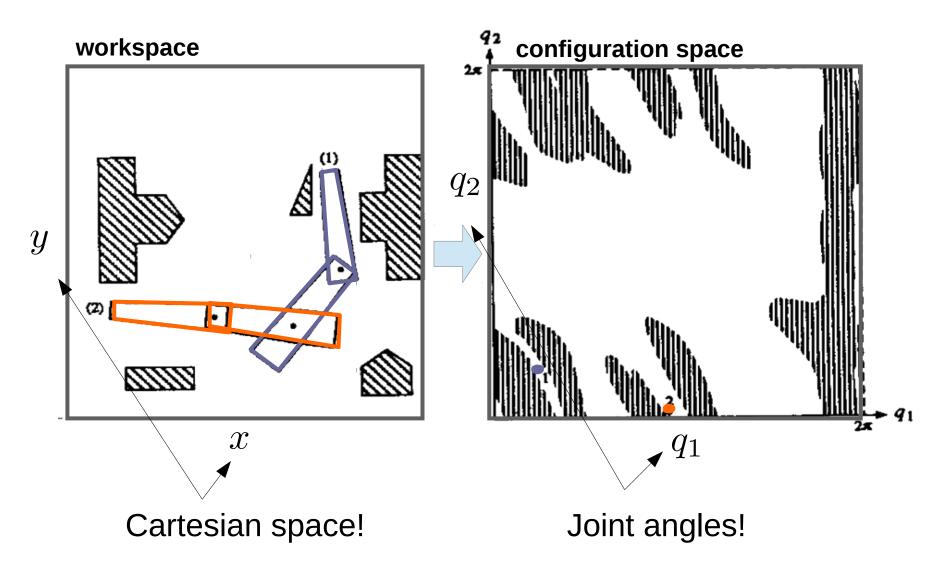
configuration space

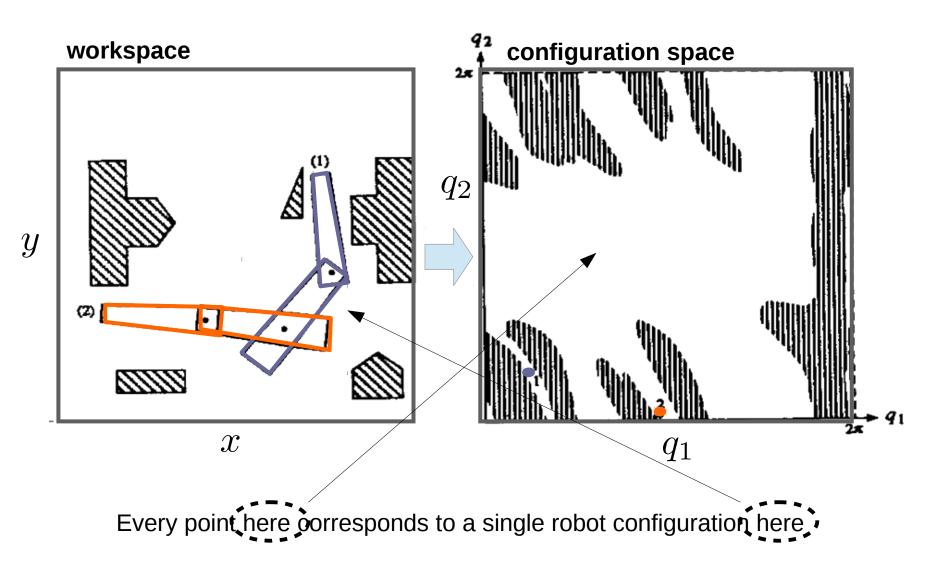


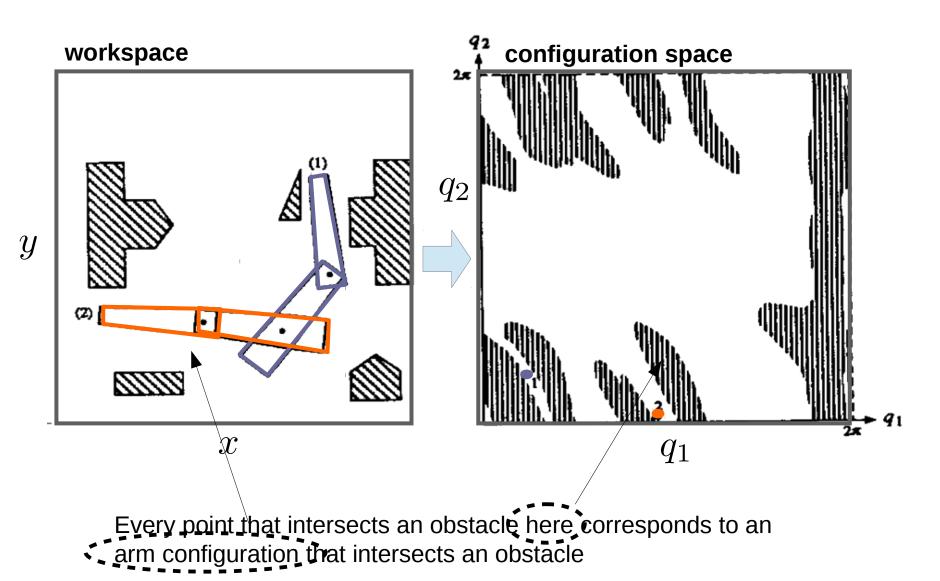
Convert the original planning problem into a planning problem for a single point.

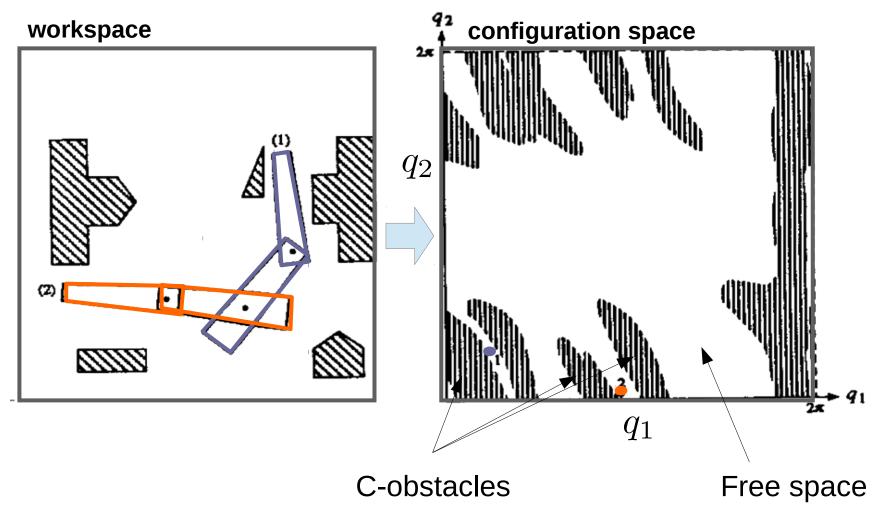


Notice the axes!



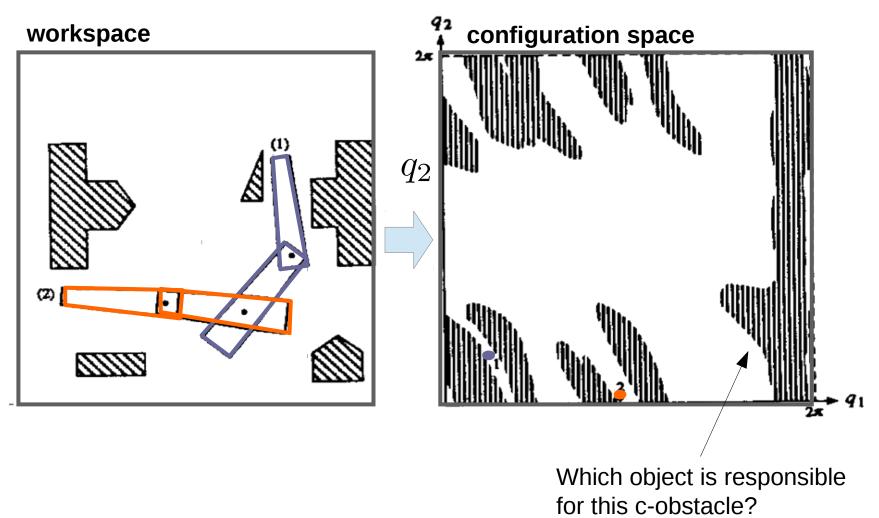






 \boldsymbol{y}

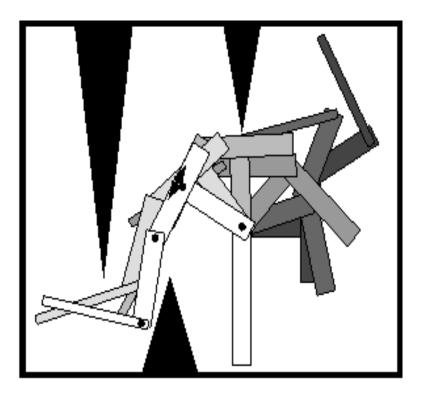
Question



Configuration space

The dimension of a configuration space is the minimum number of parameters needed to specify the configuration of the robot completely.

also called the number of "degrees of freedom" (DOFs)

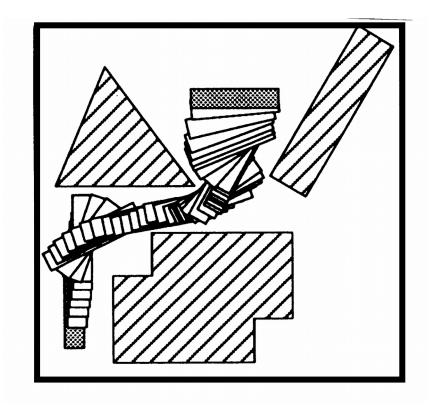


Dimension = 3

Question

The dimension of a configuration space is the minimum number of parameters needed to specify the configuration of the robot completely.

also called the number of "degrees of freedom" (DOFs)

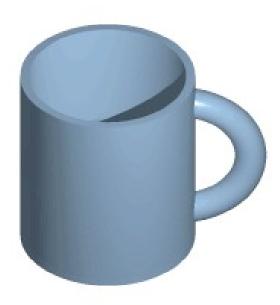


Dimension = ?

Topology of configuration space

What is topology?

 the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

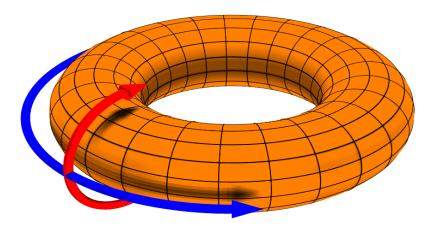


The topology of this mug is a torus

Topology of configuration space

What is topology?

 the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

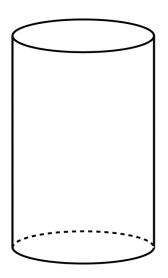


Torus: $C = S^1 \times S^1$

Topology of configuration space

What is topology?

 the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

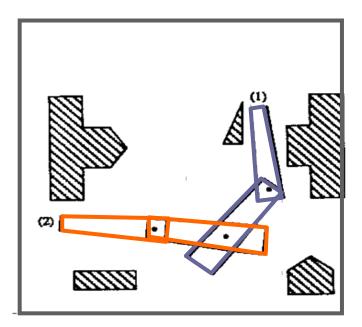


Cylinder:
$$C=R^2 imes S^1$$

Question

What is topology?

 the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

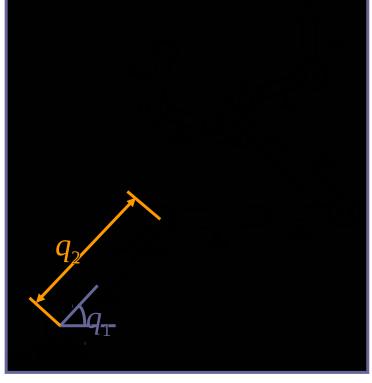


Configuration space: C = ?

Question

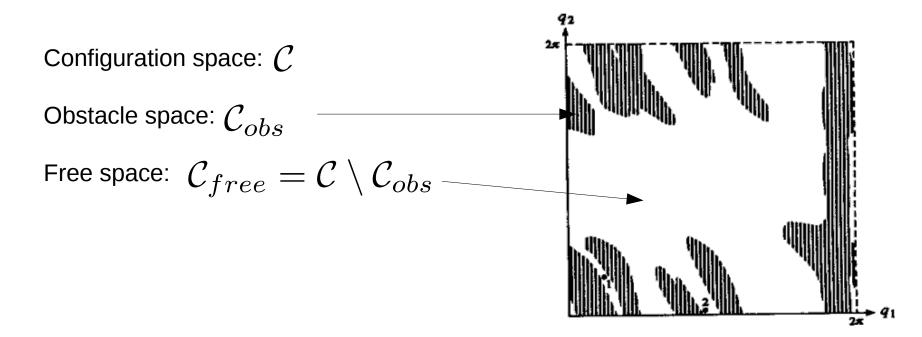
What is topology?

 the properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing



Configuration space: C = ?

Formalization of the path planning problem



Path: $\sigma : [0, 1] \to \mathcal{C}$ where σ must be continuous Collision-free path: $\sigma(\tau) \in \mathcal{C}_{free}, \tau \in [0, 1]$

Question

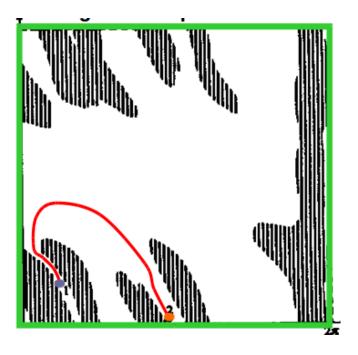
Define a path, $\sigma:[0,1]\to \mathcal{C},$ that describes the unit circle in two dimensions

Formalization of the path planning problem

<u>Given:</u>

- configuration space $\, {\cal C} \,$
- free space $\ \mathcal{C}_{free}$
- start state $x_{init} \in \mathcal{C}_{free}$

– goal region
$$\, X_{goal} \subset \mathcal{C}_{free} \,$$



<u>Find:</u>

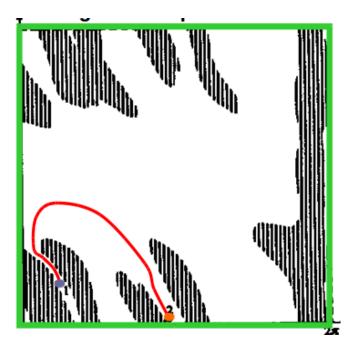
– a collision-free path σ , such that $\,\sigma(0)=x_{init}\,$ and $\,\sigma(1)\in X_{goal}\,$

Question

Given:

- configuration space $\, {\cal C} \,$
- free space $\ \mathcal{C}_{free}$
- start state $x_{init} \in \mathcal{C}_{free}$

– goal region
$$\, X_{goal} \subset \mathcal{C}_{free} \,$$



<u>Find:</u>

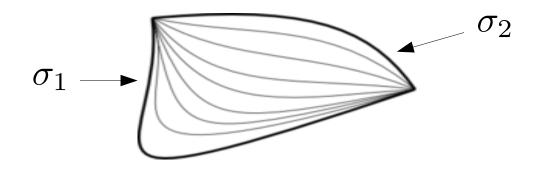
– a collision-free path σ , such that $\,\sigma(0)=x_{init}\,$ and $\,\sigma(1)\in X_{goal}\,$

How might we parameterize σ ?

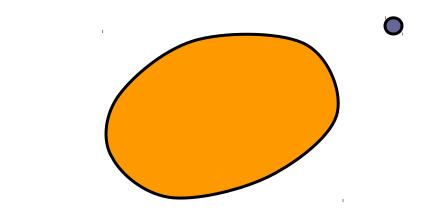
Two paths are homotopic if it is possible to continuously deform one into the other

Formal definition:

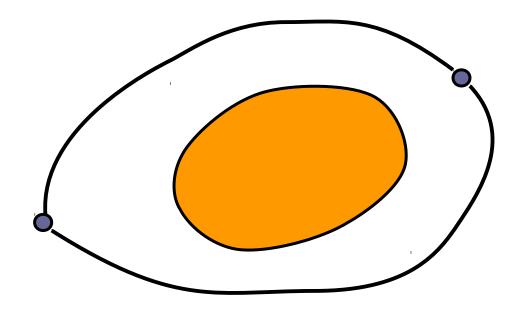
Let Σ_{free} denote the space of collision free paths. Two paths, σ_1 and σ_2 are homotopic if there exists a continuous function, $\Psi : [0, 1] \to \Sigma_{free}$, such that $\Psi(0) = \sigma_1$ and $\Psi(1) = \sigma_2$



Find distinct homotopic paths connecting these two points



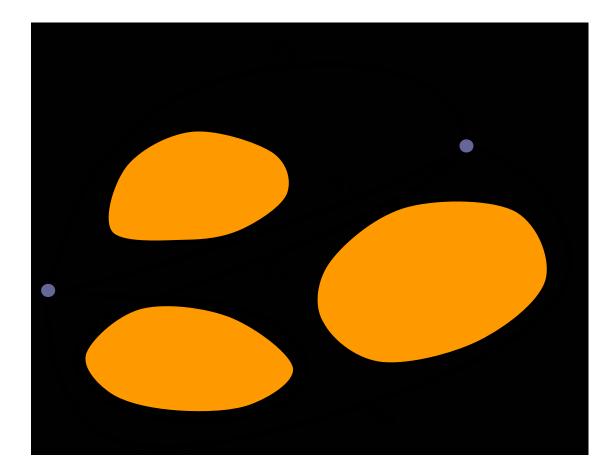
Find distinct homotopic paths connecting these two points



Find distinct homotopic paths connecting these two points



Find distinct homotopic paths connecting these two points



Connectedness of c-space

C is connected if every two configurations can be connected by a path.

C is simply-connected if any two paths connecting the same endpoints are homotopic.

Otherwise C is multiply-connected.