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Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems, 
e.g. robot planning using A*

But only in deterministic domains...
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Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems, 
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

We are going to introduce a new framework for encoding problems 
w/ stochastic dynamics: the Markov Decision Process (MDP)



  

Markov Decision Process (MDP): grid world example

+1

-1

Rewards:
– agent gets these rewards in these cells
– goal of agent is to maximize reward

Actions: left, right, up, down
– take one action per time step
– actions are stochastic: only go in intended 
direction 80% of the time

States:
– each cell is a state



  

Markov Decision Process (MDP)

Deterministic
– same action always has same outcome

Stochastic
– same action could have different outcomes
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Markov Decision Process (MDP)
Same action could have different outcomes:

0.1
0.8

0.1

0.1
0.8

0.1

s' T(s,a,s')

s_2 0.1

s_3 0.8

s_4 0.1

Transition function at s_1:



  

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Technically, an MDP is a 4-tuple
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Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Probability of going from s to s' 
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?



  

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Probability of going from s to s' 
when executing action a

Objective: calculate a strategy for acting so as to maximize 
the future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple



  

What is a policy?

A policy tells the agent what action to execute as a function of state:

Deterministic policy:

– agent always executes the same action from a given state

Stochastic policy:

– agent selects an action to execute by drawing from a
probability distribution encoded by the policy ...



Plan might not be optimal

U(r,r)=15

U(r,b)=15

U(b,r)=20

U(b,b)=20 

The optimal policy can achieve U=30 

Policies versus Plans

Policies are more general than plans

Plan:
– specifies a sequence of actions to execute
– cannot react to unexpected outcome

Policy:
– tells you what action to take from any state



  

Another example of an MDP

 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



  

Markov?

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Transition dynamics:

Conditional independence



Objective: maximize expected future reward

Expected future reward starting at time t



  

Examples of optimal policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?



Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Two viable alternatives:

1. maximize expected future reward over the next T timesteps (finite horizon):

2. maximize expected discounted future rewards:

Discount factor (usually around 0.9):



  

Choosing a reward function

A few possibilities:
– all reward on goal
– negative reward everywhere 

except terminal states
– gradually increasing reward 

as you approach the goal

In general:
– reward can be whatever you 

want

+1

-1



  

Discounting example

 Given:

 Actions: East, West, and Exit (only available in exit states 
a, e)

 Transitions: deterministic

 Quiz 1: For  = 1, what is the optimal policy?

 Quiz 2: For  = 0.1, what is the optimal policy?

 Quiz 3: For which  are West and East equally good when in 
state d?



  

Value functions

Expected discounted reward if agent acts optimally 
starting in state s (value function).

Game plan:

1. calculate the optimal value function

2. calculate optimal policy from optimal value function



  

Grid world optimal value function

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Grid world optimal action-value function

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Value iteration

How do we calculate the optimal value function?

Answer: Value Iteration!

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break



  

Value iteration example

Noise = 0.2
Discount = 0.9
Living reward = 0
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Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

Let's look at this eqn more closely...



  

Value iteration

Value of getting to s' by taking a from s:

reward obtained on this time step

discounted value of being at s'



  

Value iteration

Value of getting to s' 
by taking a from s

Expected value of 
taking action a

Why do we maximize?



  

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

How do we know that this converges?

How do we know that this converges to the optimal value function?



  

Value iteration

At convergence, this property must hold (why?) This is called the
Bellman Equation

What does this equation tell us about optimality of V?

– we denote the optimal value function as:



  

Gauss-Siedel Value Iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

Regular value iteration maintains two
V arrays: old V and new V

Gauss-Siedel maintains only one V matrix.
– each update is immediately applied
– can lead to faster convergence



  

Computing a policy from the value function
Notice these little arrows

The arrows denote a policy
– how do we calculate it?



  

Computing a policy from the value function

In general, a policy is a distribution over actions:

Here, we restrict consideration to deterministic policies:

Given an optimal value function, V*, we calculate the optimal policy:

Optimal policy Optimal value function



Problem 1: It’s slow – O(S2A) per iteration

Problem 2: The “max” at each state rarely 
changes

Problem 3: The policy often converges long 
before the values

Problems with value iteration



  

Policy iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!
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Policy iteration

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy Iteration
Input: MDP=(S,A,T,r), 
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   
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Policy iteration

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy Iteration
Input: MDP=(S,A,T,r), 
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

Notice this

OR: can solve for value function as the sol'n to a system of linear equations
– can't do this for value iteration because of the maxes



  

Policy iteration: example

Always Go Right Always Go Forward



Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed 
policy (not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using one-step 
look-ahead with resulting converged (but not optimal!) 
utilities as future values

Repeat steps until policy converges

This is policy iteration

It’s still optimal!

Can converge (much) faster under some conditions

Policy iteration



Policy iteration often converges in few iterations, but each is expensive 

Idea: use a few steps of value iteration (but with π fixed) starting from the 
value function produced the last time to produce an approximate value 
determination step. 

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and 
Howard policy updates can be performed locally in any order 

Reinforcement learning algorithms operate by performing such updates 
based on the observed transitions made in an initially unknown 
environment 

Modified policy iteration



Solving for a full policy offline is expensive!

What can we do?

Online methods



Online methods compute optimal action from current state 

Expand tree up to some horizon 

States reachable from the current state is typically small compared 

to full state space 

Heuristics and branch-and-bound techniques allow search space 

to be pruned 

Monte Carlo methods provide approximate solutions 

Online methods



Provides optimal action from current state s up to depth d 

Recall 

Time complexity is O((|S| x |A|)d) 

Forward search

V(s)  maxaA(s) R(s,a)   T
s

 (s,a, s )V( s )








Requires a lower bound Ṳ(s) and upper bound Ū(s)

Worse case complexity? 

Branch and bound search



Estimate value of a policy by sampling from a simulator

Monte Carlo evaluation



Requires a generative model (s’,r)   ∼ G(s,a) 

Complexity? Guarantees?

Sparse sampling



Requires a generative model (s’,r)   ∼ G(s,a) 

Complexity = O((n ×|A|)d), Guarantees = probabilistic

Sparse sampling



UCT (Upper Confident bounds for Trees)

Monte Carlo tree search



Search (within the tree, T)

Execute action that maximizes

Update the value Q(s,a) and counts N(s) and N(s,a)

c is a exploration constant  

Expansion (outside of the tree, T)

Create a new node for the state

Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:

UCT continued



Continue UCT until some termination 
condition (usually a fixed number of 
samples)

Complexity? 

Guarantees? 

UCT continued



Uses UCT with neural net to approximate opponent 

choices and state values

AlphaGo
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