
How do you plan in high dimensional state spaces?

Probabilistic roadmaps (PRMs)



Problem we want to solve

Starting configuration

Goal configuration

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision



Problem we want to solve

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision

Assumptions:
– the position of the robot can always be measured perfectly
– the motion of the robot can always be controlled perfectly
– the robot can move in any directly instantaneously

For example: think about a 
robot workcell in a factory...
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Probabilistic roadmaps (PRMs)

PRMs are specifically designed for high-dimensional configuration spaces
– such as the c-space of a robot arm

Problem: robot arm configuration spaces are typically high dimensional

– for example, imagine using the wavefront planner to solve a problem w/ 
a 10-joint arm

– several variants of the path planning problem have been proven to be 
PSPACE-hard.
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Probabilistic roadmaps (PRMs)

PRMs are specifically designed for high-dimensional configuration spaces
– such as the c-space of a robot arm

General idea:

– create a randomized algorithm that will find a solution quickly in many 
cases

– eventually, the algorithm will be guaranteed to find a solution if one 
exists with probability one
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Probabilistic roadmaps (PRMs)

PRMs are specifically designed for high-dimensional configuration spaces
– such as the c-space of a robot arm

General idea:

– create a randomized algorithm that will find a solution quickly in many 
cases

– but, eventually, the algorithm will be guaranteed to find a solution if one 
exists with probability one

With probability one --> “Almost surely”
– the probably of an event NOT happening approaches zero as the 
algorithm continues to run

Example: an infinite sequence of coin flips contains at least one tail 
almost surely.
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Probabilistic roadmaps (PRMs)

PRMs are specifically designed for high-dimensional configuration spaces
– such as the c-space of a robot arm

General idea:

– create a randomized algorithm that will find a solution quickly in many 
cases

– but, eventually, the algorithm will be guaranteed to find a solution if one 
exists with probability one

“Almost surely”
– the probably of an event NOT happening approaches zero as the 
algorithm continues to run

Example: an infinite sequence of coin flips contains at least one tail 
almost surely.

Infinite monkey theorem:

A monkey typing keys randomly on a keyboard will produce 
any given text (the works of William Shakespeare) almost 
surely
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Probabilistic Roadmap (PRM): multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone
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Probabilistic Roadmap (PRM): single query
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Multiple-Query PRMMultiple-Query PRM
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Classic multiple-query PRM 
• Probabilistic Roadmaps for Path Planning in High-

Dimensional Configuration Spaces, L. Kavraki et al., 1996.
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Assumptions
• Static obstacles

• Many queries to be processed in the same 
environment

• Examples
– Navigation in static virtual environments

– Robot manipulator arm in a workcell
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Overview
• Precomputation: roadmap construction

– Uniform sampling

– Resampling (expansion)

• Query processing
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Uniform sampling
Input:  geometry of the robot & obstacles
Output: roadmap G = (V, E)

1: V   and E  .

2:  repeat
3:   q  a configuration sampled uniformly at random from C.

4:    if CLEAR(q)then
5:   Add q to V.
6:      Nq  a set of nodes in V that are close to q.

6:      for each q’ Nq, in order of increasing d(q,q’)

7:        if LINK(q’,q)then
8:          Add an edge between q and q’ to E.
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Some terminology
• The graph G is called a probabilistic 

roadmap. 
• The nodes in G are called milestones.
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Query processing
• Connect qinit and qgoal to the roadmap

• Start at qinit and qgoal, perform a random 
walk, and try to connect with one of the 
milestones nearby

• Try multiple times
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Error
• If a path is returned, the answer is always 

correct.
• If no path is found, the answer may or may 

not be correct. We hope it is correct with 
high probability. 
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Theorem (Kavraki et al 1998):

If a path planning problem is feasible, then there exist constants n_0 and 
a>0, such that:

where n>n_0 is the number of samples

Probabilistic completeness of PRM
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Why does it work? Intuition
• A small number of milestones almost 

“cover” the entire configuration space. 
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Difficulty
• Many small connected components



 21

Resampling (expansion)
• Failure rate 

• Weight

• Resampling probability 

r (q )=
no .  failed LINK
no .  LINK

w (q )=
r (q )

∑p
r ( p )

Pr ( q )=w(q )
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Resampling (expansion)
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Resampling (expansion)

Once a node is selected to be expanded:

1. Pick a random motion direction in c-space and move in this direction 
until an obstacle is hit.

2. When a collision occurs, choose a new random direction and proceed for 
some distance.

3. Add the resulting nodes and edges to the tree. Re-run tree connection 
step.
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So far, we have only discussed uniform sampling...

Problem: uniform sampling is not a great way to find 
paths through narrow passageways.

start

goal

C-obst

C-obst

C-obst

C-obst

PRM Roadmap

Gaussian sampler
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Gaussian sampler

Gaussian sampler:

– Sample points uniformly at random (as before)
– For each sampled point, sample a second point 
from a Gaussian distribution centered at the first 
sampled point
– Discard the first sample if both samples are either 
free or in collision
– Keep the fist sample if the two samples are NOT 
both free or both in collision (that is, keep the 
sample if the free/collision status of the second 
sample is different from the first).
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Gaussian sampler

Probability of sampling a point under the Gaussian sampler 
as a function of distance from a c-space obstacle

Example of samples drawn 
from Gaussian sampler



NUS CS 5247 David Hsu

Single-Query PRMSingle-Query PRM
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Lazy PRM
• Path Planning Using Lazy PRM, R. Bohlin & L. Kavraki, 

2000.
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Precomputation: roadmap construction

• Nodes
– Randomly chosen configurations, which may 

or may not be collision-free
– No call to CLEAR

• Edges
– an edge between two nodes if the 

corresponding configurations are close 
according to a suitable metric

– no call to LINK
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Query processing: overview
1. Find a shortest path in the roadmap

2. Check whether the nodes and edges in 
the path are collision.

3. If yes, then done. Otherwise, remove the 
nodes or edges in violation. Go to (1). 

We either find a collision-free path, or exhaust all paths in 
the roadmap and declare failure.
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Query processing: details
• Find the shortest path in the roadmap

– A* algorithm
– Dijkstra’s algorithm (uniform cost search)

• Check whether nodes and edges are 
collisions free
– CLEAR(q)
– LINK(q0, q1)
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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Smoothing the path
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