Point Cloud Processing

Has anyone seen the toothpaste?

- Given a point cloud:
- how do you detect and localize objects?
- how do you map terrain?

What is a point cloud?

Point cloud: a set of points in 3-D space – just a set of 3-d points

Mesh: each point is a vertex of a triangulated face
– a set of vertices AND connectivity information

Point cloud

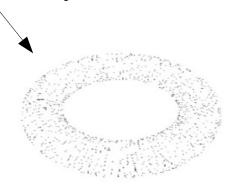
Mesh

What is a point cloud?

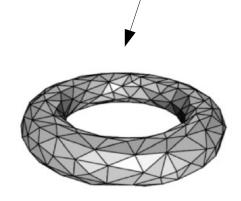
Point cloud: a set of points in 3-D space – just a set of 3-d points

Mesh: each point is a vertex of a triangulated face
– a set of vertices AND connectivity information

Many depth sensors produce point clouds natively



But, a mesh contains a lot more information

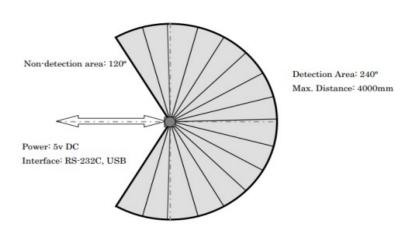


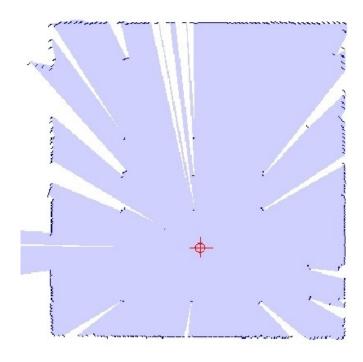
Point cloud

Mesh

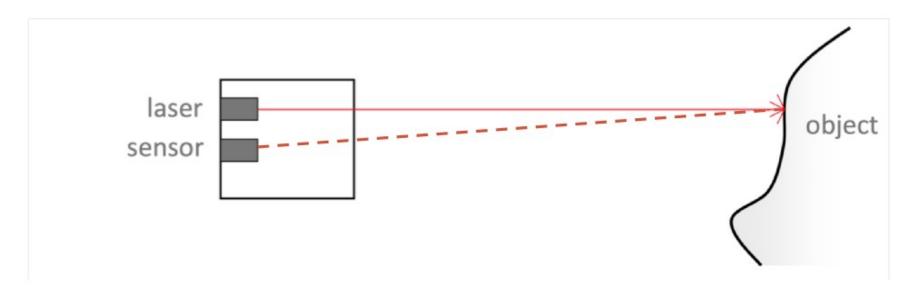
Time of flight sensors

Hokuyo UTM-30LX-EW Scanning Laser Range Finder



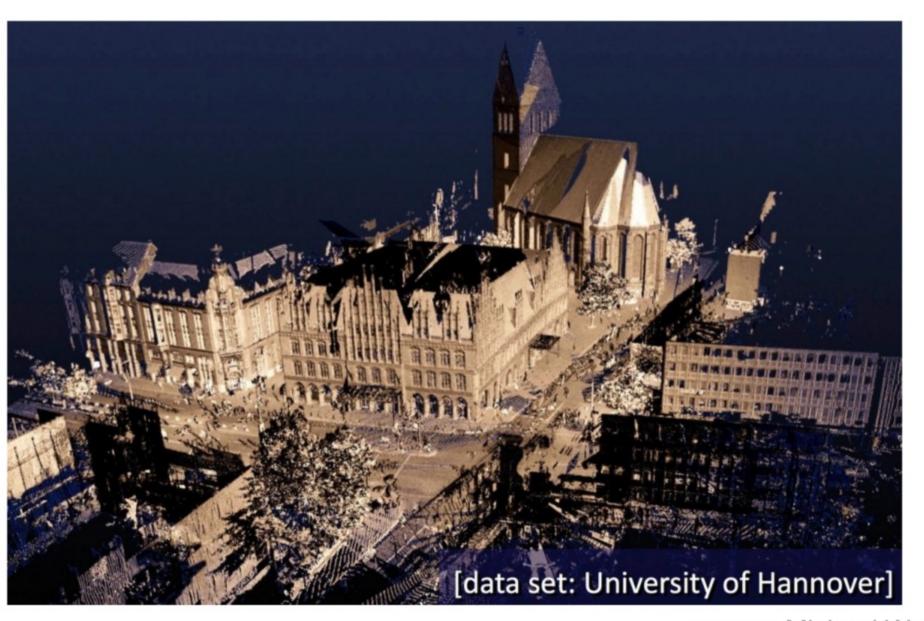


Time of flight sensors



- 1. Emit a short short pulse of laser
- 2. Capture the reflection.
- Measure the time it took to come back.
- 4. Need a very fast clock.
- 5. Main advantage: can be done over long distances.
- Used in terrain scanning.

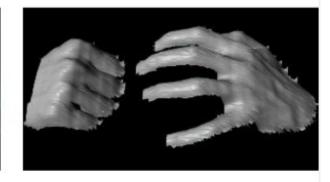
Time of flight sensors



source: Michael Wand

Structured light sensors

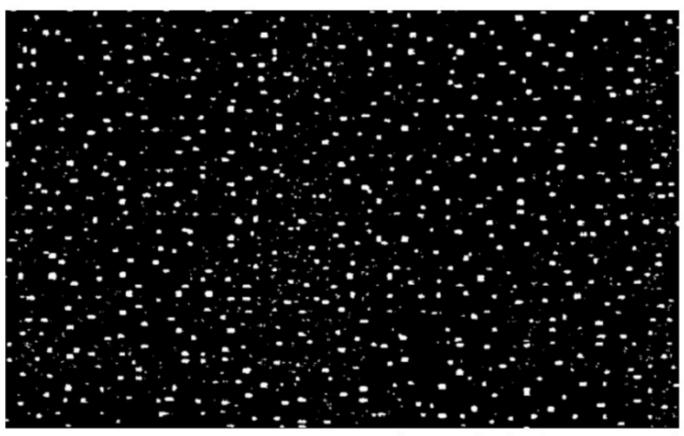
Structured light general principle: project a known pattern onto the scene and infer depth from the deformation of that pattern



Zhang et al, 3DPVT (2002)

Slide: John MacCormick, Dickinson University

The Kinect uses infrared laser light, with a speckle pattern



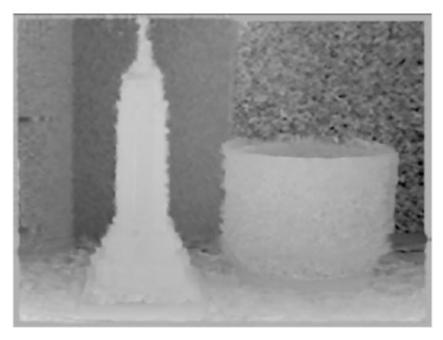
Shpunt et al, PrimeSense patent application US 2008/0106746

Slide: John MacCormick, Dickinson University

Stage 1: The depth map is constructed by analyzing a speckle pattern of infrared laser light

- The Kinect uses an infrared projector and sensor; it does not use its RGB camera for depth computation
- The technique of analyzing a known pattern is called structured light
- The Kinect combines structured light with two classic computer vision techniques: depth from focus, and depth from stereo

Depth from focus uses the principle that stuff that is more blurry is further away



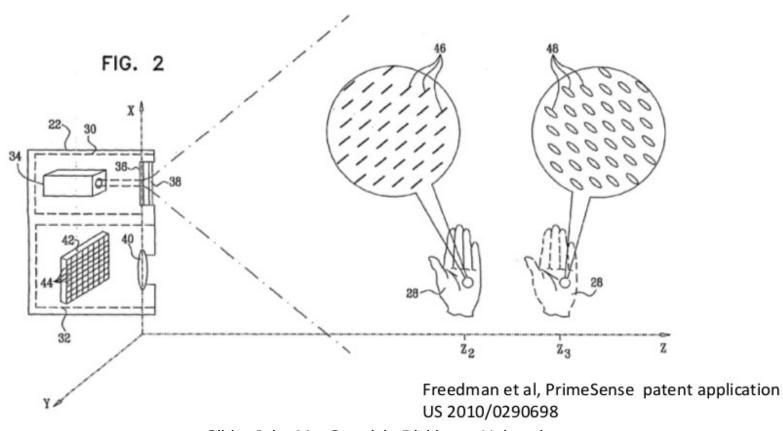
Watanabe and Nayar, IJCV 27(3), 1998

Slide: John MacCormick, Dickinson University

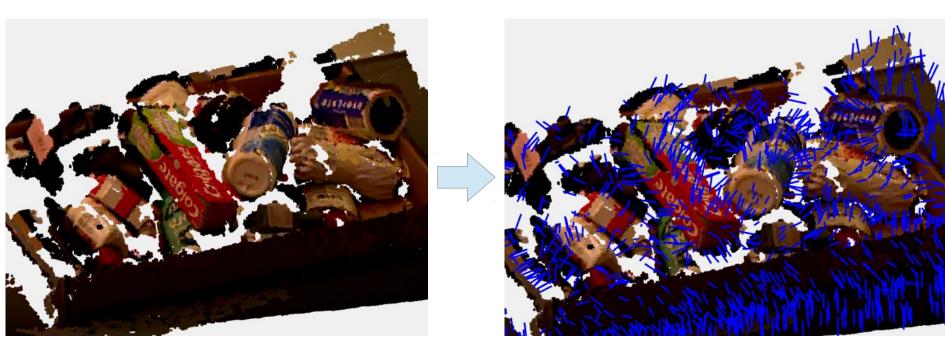
Depth from focus uses the principle that stuff that is more blurry is further away

- The Kinect dramatically improves the accuracy of traditional depth from focus
- The Kinect uses a special ("astigmatic") lens with different focal length in x- and ydirections
- A projected circle then becomes an ellipse whose orientation depends on depth

The astigmatic lens causes a projected circle to become an ellipse whose orientation depends on depth

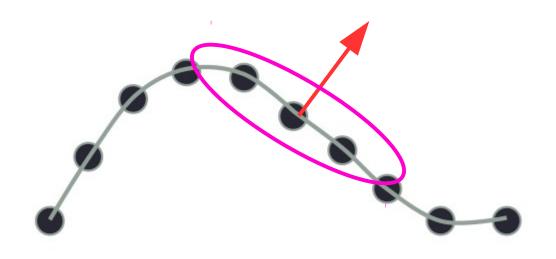


Slide: John MacCormick, Dickinson University



Point cloud

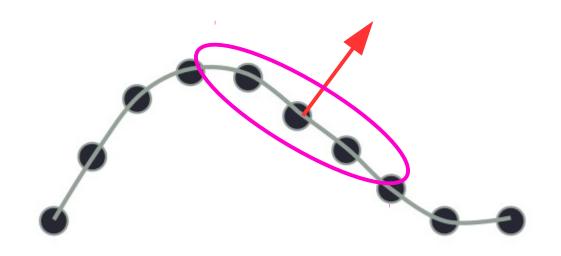
Point cloud w/ surface normals (normals are subsampled)



<u>Question</u>: How do we calculate the surface normal given only points?

Answer:

- 1. Calculate the sample covariance matrix of the points within a local neighborhood of the surface normal
- 2. Take Eigenvalues/Eigenvectors of that covariance matrix

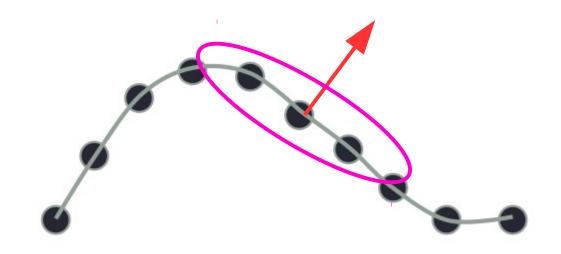


Let C denote the set of points in the point cloud

Suppose we want to calculate the surface normal at $\ x \in C$

Let $B_r(x) \subseteq \mathbb{R}^3$ denote the r-ball about x

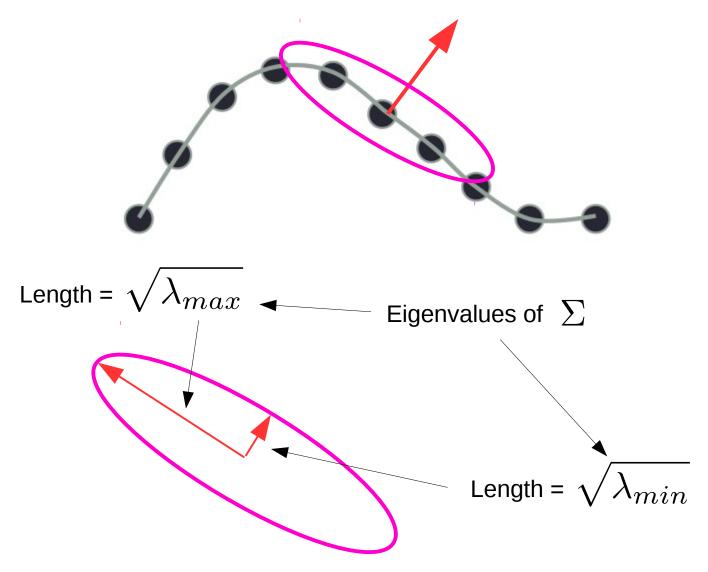
 $N_r(x) = B_r(x) \cap C$ is the set of points in the cloud within r of x



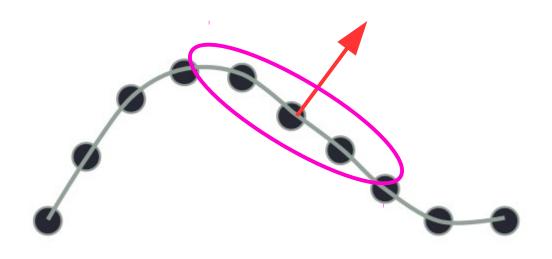
Calculate the sample covariance matrix of the points in $N_r(x)$

$$\Sigma = \sum_{p \in N_r(x)} (p - \bar{p})(p - \bar{p})^T$$

$$\bar{p} = \frac{1}{|N_r(x)|} \sum_{p \in N_r(x)} p$$



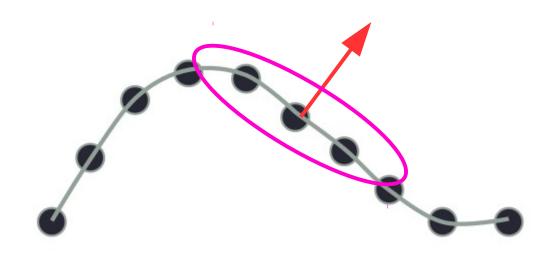
Principle axes of ellipse point in directions of corresponding eigenvectors



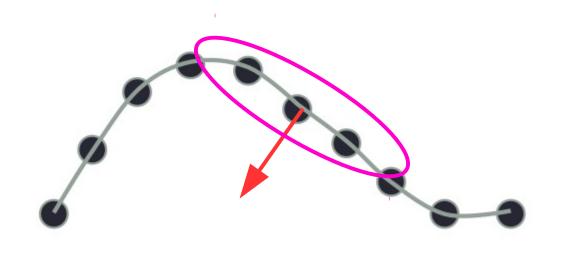
So: surface normal is in the direction of the Eigenvector corresponding to the smallest Eigenvalue of \sum

Calculating surface normals: Summary

- 1. calculate points within r-ball about x: $N_r(x) = B_r(x) \cap C$
- 2. calculate covariance matrix: $\Sigma = \sum_{p \in N_r(x)} (p \bar{p})(p \bar{p})^T$
- 3. calculate Eigenvectors: v_1, v_2, v_3 and Eigenvalues: $\lambda_1, \lambda_2, \lambda_3$ (\lambda_3 is smallest)
- 4. v_3 is parallel or antiparallel to surface normal

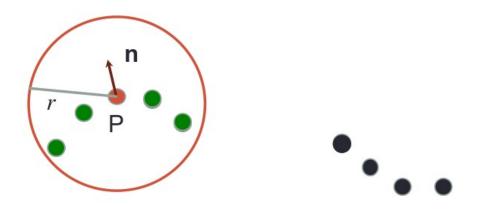


Important note: the points alone do not tell us the *sign* of the surface normal



Important note: the points alone do not tell us the *sign* of the surface normal

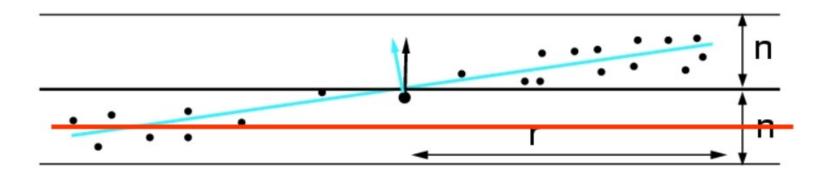
How large a point neighborhood to use when calculating \sum ?



Because points can be uneven, don't use k-nearest neighbor.

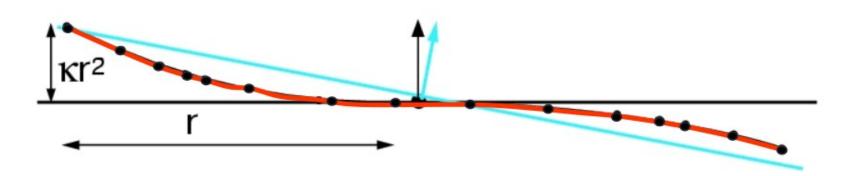
- it's important to select a radius r and stick w/ it.
- which what value of r to use?

Collusive noise



Because of noise in the data, small *r* may lead to underfitting.

Curvature effect



Due to curvature, large *r* can lead to estimation bias.

Outlier removal

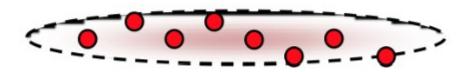


Similar approach as in normal estimation:

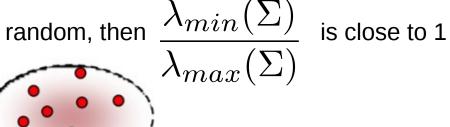
- 1. calculate local covariance matrix
- 2. estimate Eigenvectors/Eigenvalues
- 3. use that information somehow...

Outlier removal

If points lie on a line, then $\frac{\lambda_{min}(\Sigma)}{\lambda_{max}(\Sigma)}$ is small



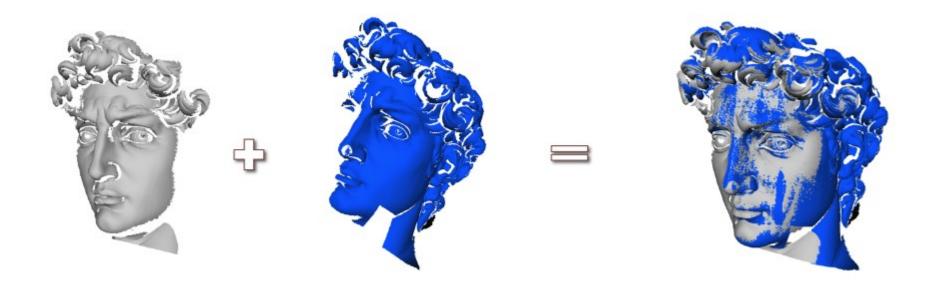
If points are uniformly random, then



Outlier removal: delete all points for which

$$rac{\lambda_{min}(\Sigma)}{\lambda_{max}(\Sigma)}$$
 is above a threshold

Point cloud registration: ICP



Find an affine transformation that aligns two partially overlapping point clouds

ICP Problem Statement

Given: two corresponding point sets:

$$X = \{x_1, ..., x_n\}$$

 $P = \{p_1, ..., p_n\}$

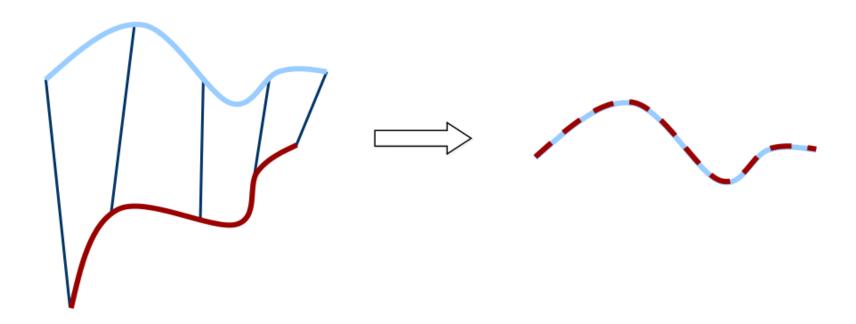
Wanted: translation t and rotation R that minimizes the sum of the squared error:

$$E(R,t) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||x_i - Rp_i - t||^2$$

Where x_i and p_i are corresponding points.

ICP: key idea

 If the correct correspondences are known, the correct relative rotation/translation can be calculated in closed form.



This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg

Step 1: center the two point clouds

$$\mu_x = \frac{1}{N_x} \sum_{i=1}^{N_x} x_i$$
 and $\mu_p = \frac{1}{N_p} \sum_{i=1}^{N_p} p_i$

are the centers of mass of the two point sets.

Idea:

- Subtract the corresponding center of mass from every point in the two point sets before calculating the transformation.
- The resulting point sets are:

$$X' = \{x_i - \mu_x\} = \{x_i'\}$$
and
$$P' = \{p_i - \mu_p\} = \{p_i'\}$$

5

Step 2: use SVD to get min t and R

Let
$$W = \sum_{i=1}^{N_p} x_i' p_i'^T$$

denote the singular value decomposition (SVD) of W by:

$$W = U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} V^T$$

where $U,V\in\mathbb{R}^{3 imes3}$ are unitary, and $\sigma_1\geq\sigma_2\geq\sigma_3$ are the singular values of W.

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg

Step 2: use SVD to get min t and R

Theorem (without proof):

If rank(W) = 3, the optimal solution of E(R,t) is unique and is given by:

$$R = UV^T$$
$$t = \mu_x - R\mu_p$$

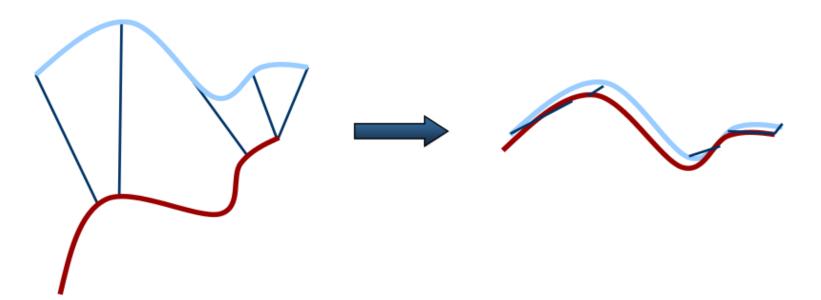
The minimal value of error function at (R,t) is:

$$E(R,t) = \sum_{i=1}^{N_p} (||x_i'||^2 + ||y_i'||^2) - 2(\sigma_1 + \sigma_2 + \sigma_3)$$

This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg

ICP data association problem

 If correct correspondences are not known, it is generally impossible to determine the optimal relative rotation/translation in one step



8

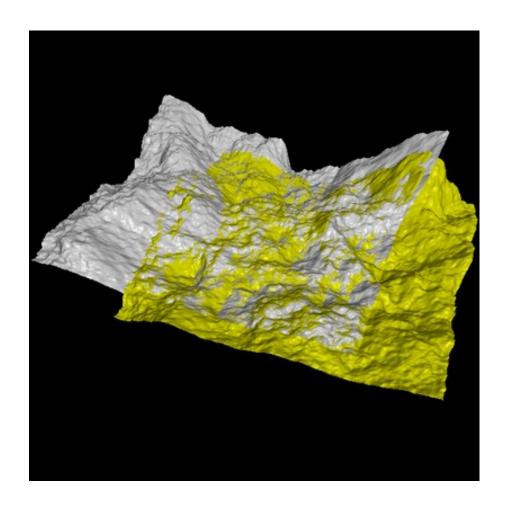
ICP Algorithm

<u>Input</u>: two point sets, *X* and *P*

Output: translation t and rotation R that best aligns pt sets

- 1. Start with a "good" alignment
- 2. Repeat until t and R are small:
- 3. for every point in *X*, find its closest neighbor in *P*
- 4. find min t and R for that correspondence assignment
- 5. translate and rotate P by t and R
- 6. Figure out net translation and rotation, *t* and *R*
- Converges if the point sets are initially well aligned
- Besl and McKay, 1992

ICP example



This slide from: Burgard, Stachniss, Bennewitz, Arras, U. Freiburg

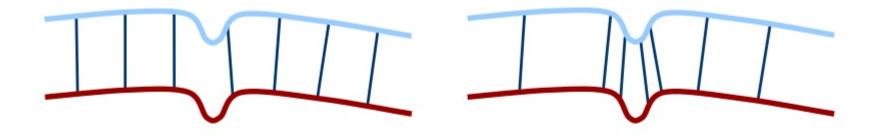
ICP Variants

- Point subsets (from one or both point sets)
- 2. Weighting the correspondences
- 3. Data association
- 4. Rejecting certain (outlier) point pairs

Selecting points to align

- Use all points
- Uniform sub-sampling
- Random sampling
- Feature based Sampling
- Normal-space sampling
 - Ensure that samples have normals distributed as uniformly as possible

Normal-space sampling



uniform sampling

normal-space sampling

Comparison: normal space sampling vs random

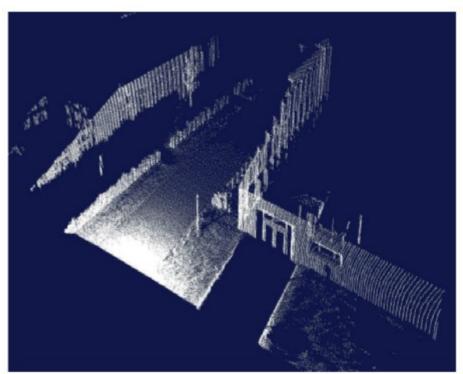
 Normal-space sampling better for mostlysmooth areas with sparse features [Rusinkiewicz et al.]

Random sampling

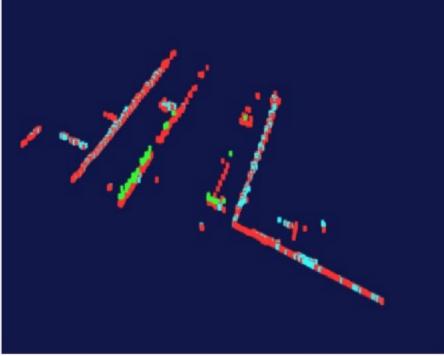
Normal-space sampling

Feature based sampling

- try to find "important" points
- decrease the number of correspondences
- higher efficiency and higher accuracy
- requires preprocessing



3D Scan (~200.000 Points)



Extracted Features (~5.000 Points)

ICP: data association

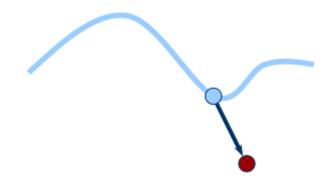
- 1. Point subsets (from one or both point sets)
- 2. Weighting the correspondences
- 3. Data association
- 4. Rejecting certain (outlier) point pairs

ICP: data association

- has greatest effect on convergence and speed
- Closest point
- Normal shooting
- Closest compatible point
- Projection
- Using kd-trees or oc-trees

Closest point matching

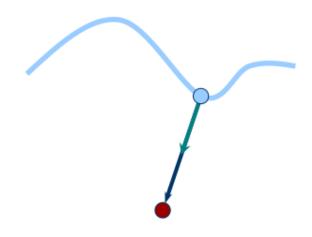
Find closest point in other the point set



Closest-point matching generally stable, but slow and requires preprocessing

Normal shooting

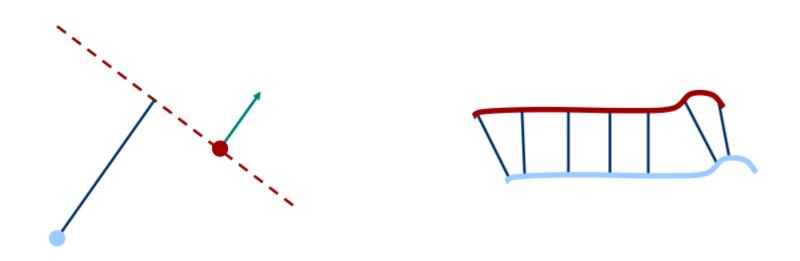
Project along normal, intersect other point set



Slightly better than closest point for smooth structures, worse for noisy or complex structures

Point-to-plane distances

 Using point-to-plane distance instead of point-to-point lets flat regions slide along each other [Chen & Medioni 91]



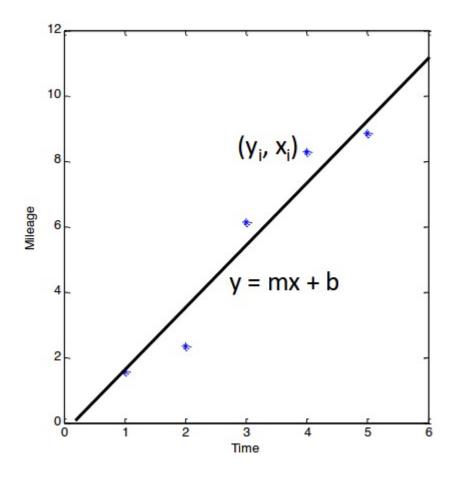
Closest compatible point

- Improves the previous two variants by considering the compatibility of the points
- Compatibility can be based on normals, colors, etc.
- In the limit, degenerates to feature matching

ICP: summary

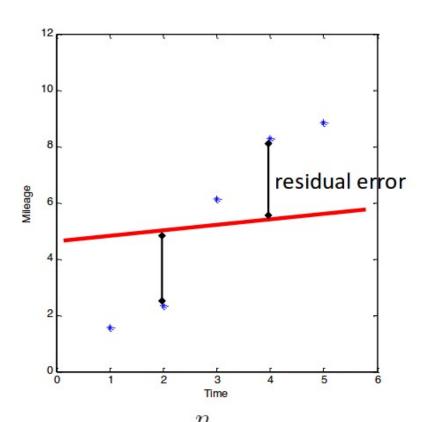
- ICP is a powerful algorithm for calculating the displacement between scans.
- The major problem is to determine the correct data associations.
- Given the correct data associations, the transformation can be computed efficiently using SVD.

Another approach to alignment: RANSAC



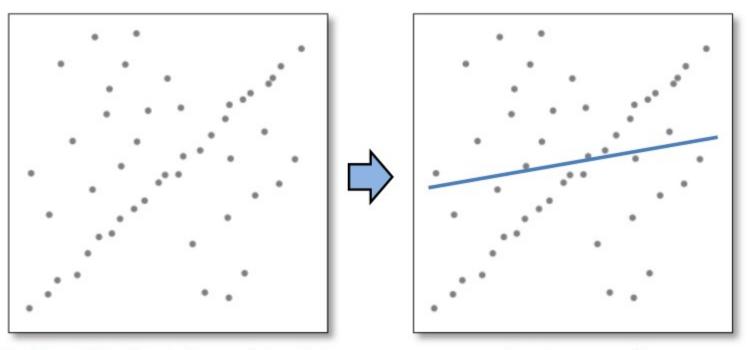
This slide from: Kavita Bala, Cornell U.

RANSAC



$$Cost(m, b) = \sum_{i=1}^{n} |y_i - (mx_i + b)|^2$$

How does regression work here?



Problem: Fit a line to these datapoints

Least squares fit

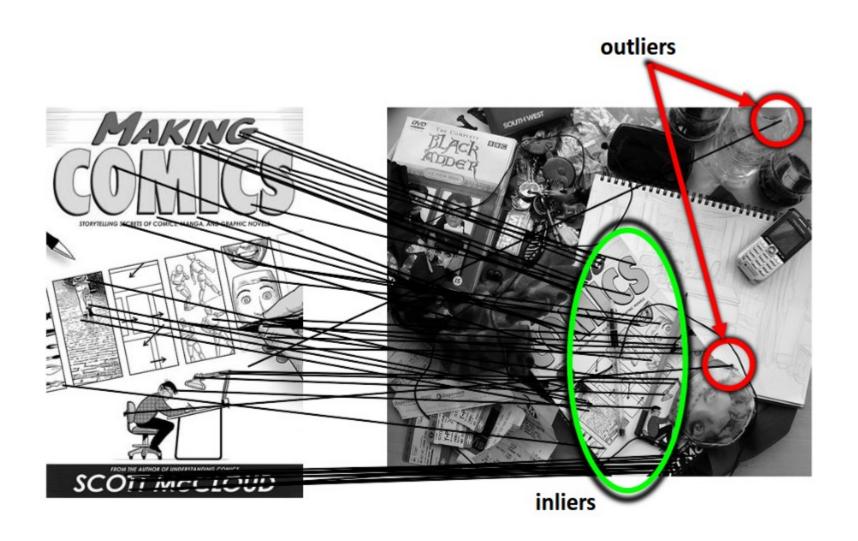
Image alignment problem

Given images A and B

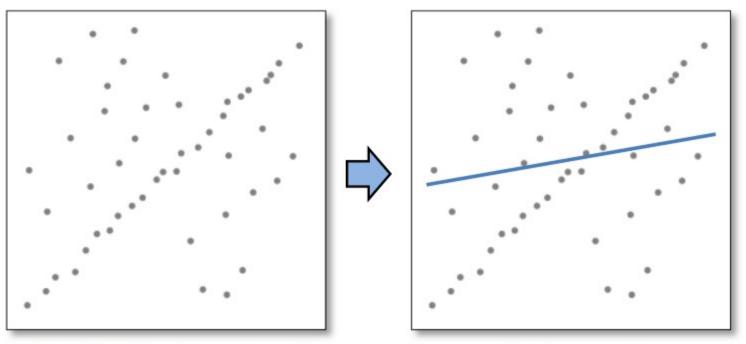
- 1. Compute image features for A and B
- Match features between A and B
- Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers



RANSAC



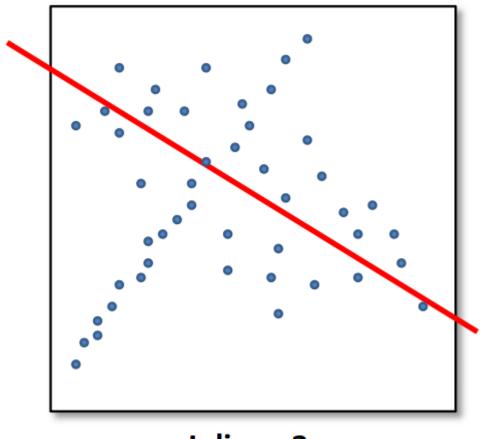
Problem: Fit a line to these datapoints

Least squares fit

RANSAC key idea

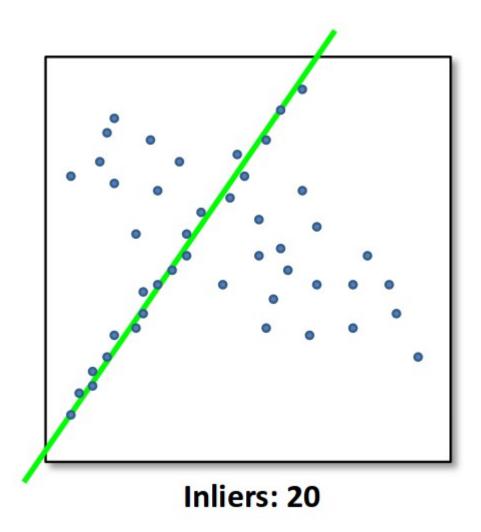
- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers



Inliers: 3

Counting inliers



This slide from: Kavita Bala, Cornell U.

How do we find the best line?

Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

RANSAC Line fitting example

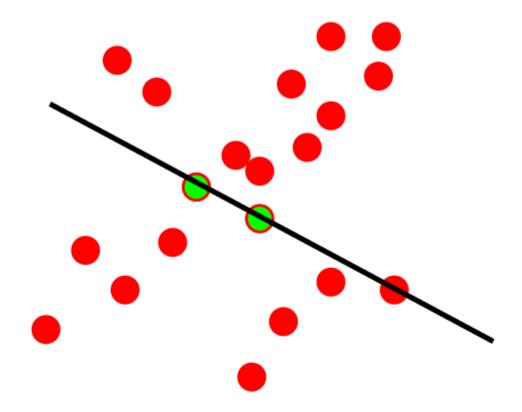
Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example



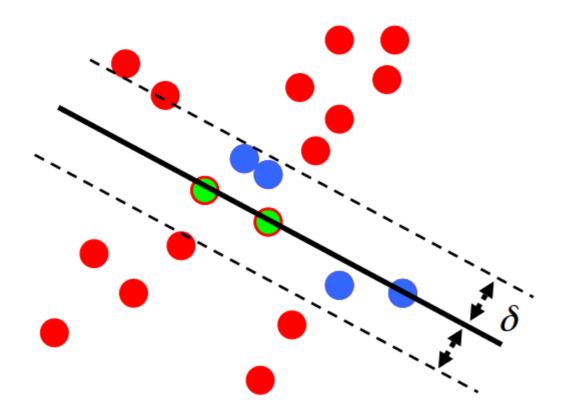
Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

$$N_I = 6$$

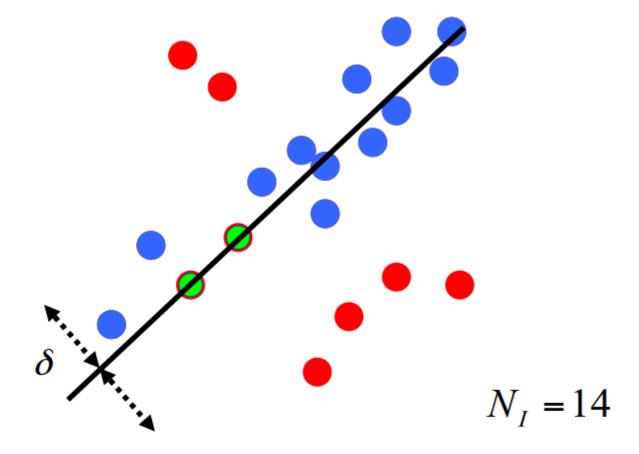


Algorithm:

- Sample (randomly) the number of points required to fit the model (#=2)
- Solve for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

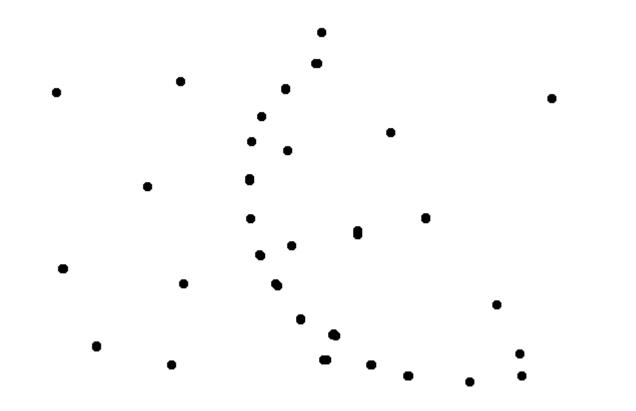
RANSAC

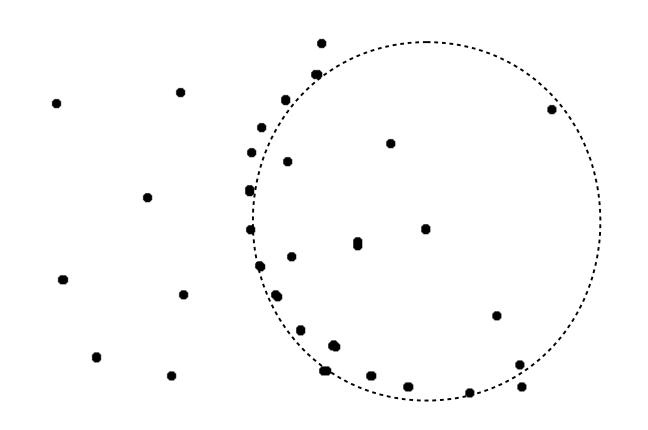


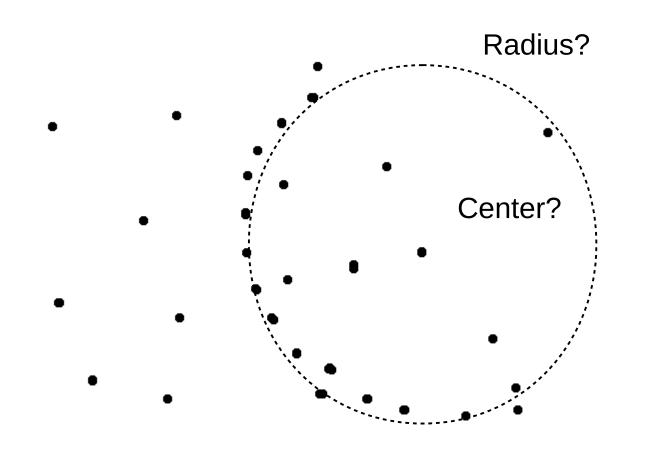
Algorithm:

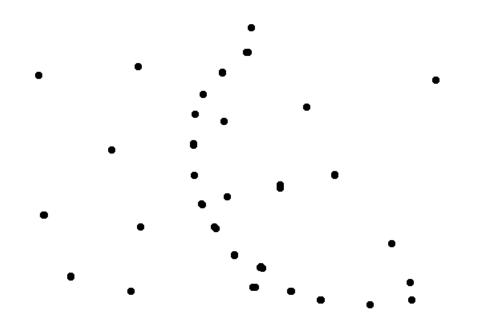
- Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

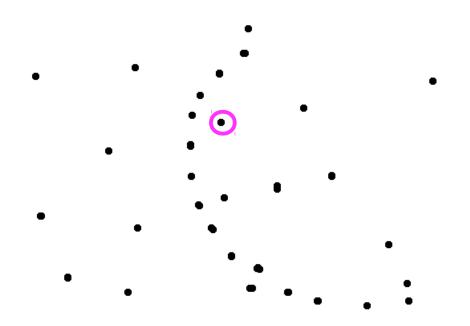






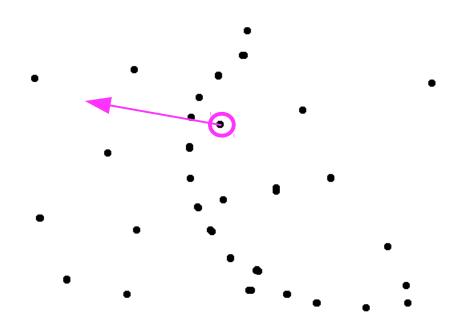


How generate candidate spheres?



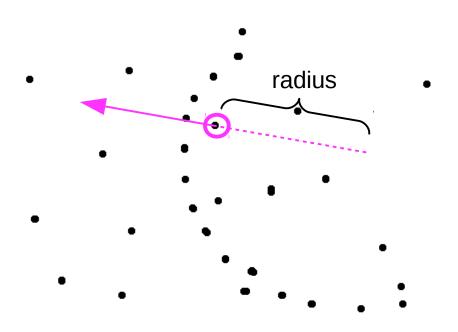
How generate candidate spheres?

1. sample a point



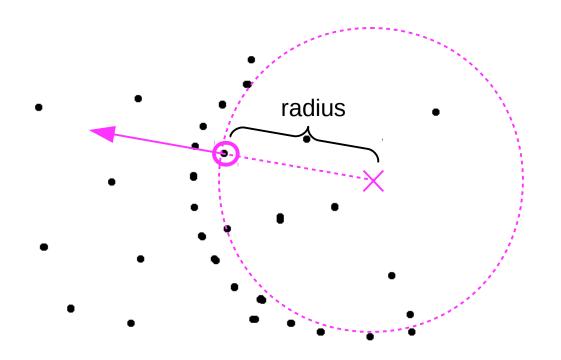
How generate candidate spheres?

- 1. sample a point
- 2. estimate surface normal



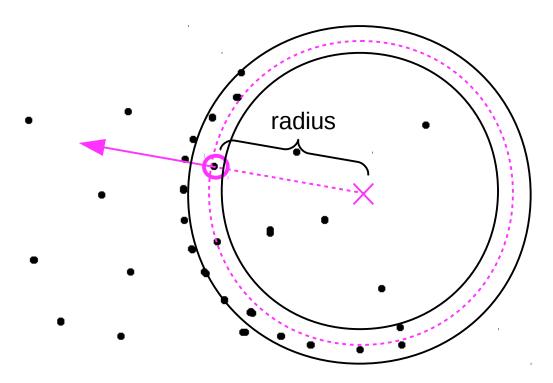
How generate candidate spheres?

- 1. sample a point
- 2. estimate surface normal
- 3. sample radius



How generate candidate spheres?

- 1. sample a point
- 2. estimate surface normal
- 3. sample radius
- 4. estimate center to be radius distance from sampled point along surface normal



How generate candidate spheres?

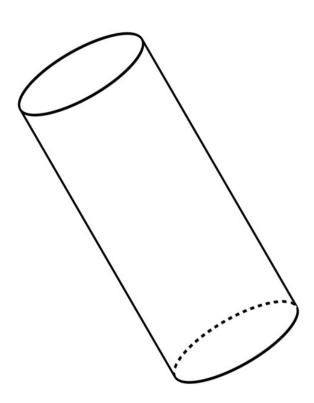
- 1. sample a point
- 2. estimate surface normal
- 3. sample radius
- 4. estimate center to be radius distance from sampled point along surface normal

How score spheres?

1. count num pts within epsilon of candidate sphere surface

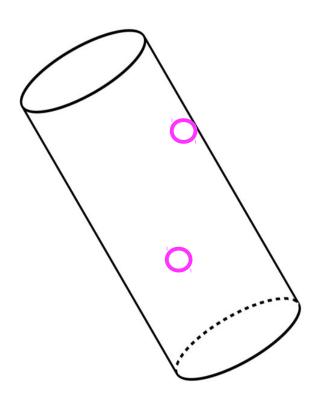
Using RANSAC to Fit a Cylinder

How generate candidate cylinders?



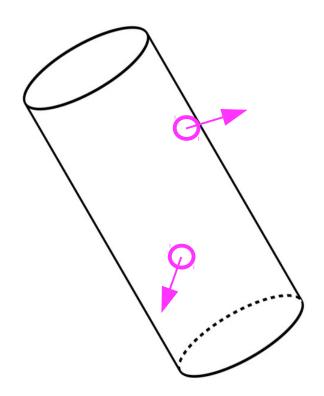
How generate candidate cylinders?

1. sample two pts



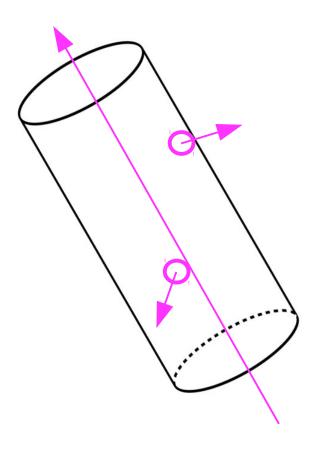
How generate candidate cylinders?

- 1. sample two pts
- 2. estimate surface normal at both pts



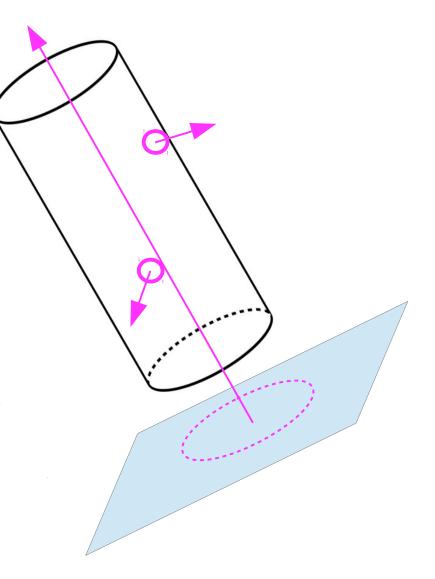
How generate candidate cylinders?

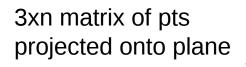
- 1. sample two pts
- 2. estimate surface normal at both pts
- 3. get sample axis by taking cross product between two normals



How generate candidate cylinders?

- 1. sample two pts
- 2. estimate surface normal at both pts
- 3. get sample axis by taking cross product between two normals
- 4. project points onto plane orthogonal to axis
- 5. fit a circle using a method similar to what we did for the sphere.





How generate candidate cylinders?

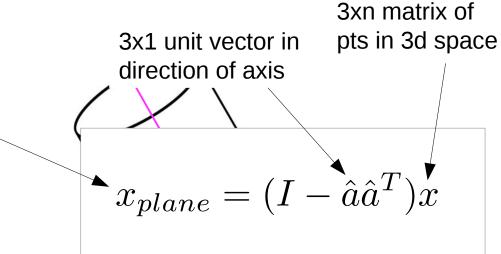
1. sample two pts

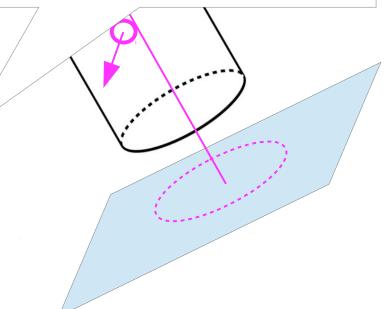
2. estimate surface normal at both pts

3. get sample axis by taking cross product between two normals

4. project points onto plane orthogonal to axis

5. fit a circle using a method similar to what we did for the sphere.





RANSAC: the parameters

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

RANSAC: how many rounds?

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^k . Therefore, the likelihood that S such trials will all fail is

$$1 - P = (1 - p^k)^S (6.29)$$

and the required minimum number of trials is

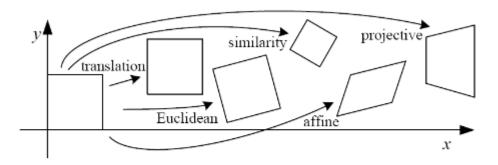
$$S = \frac{\log(1-P)}{\log(1-p^k)}. (6.30)$$

	proportion of inliers p								
k	95%	90%	80%	75%	70%	60%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

P = 0.99

RANSAC: how many parameters to sample?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I & I & I \end{bmatrix}_{2 imes 3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$ig[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC Summary

Pros

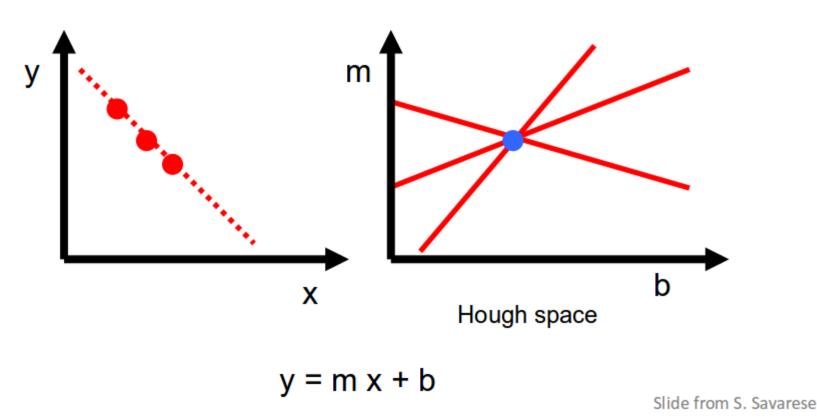
- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Hough transform

Given a set of points, find the curve or line that explains the data points best



Hough transform

1. Create a grid of parameter values

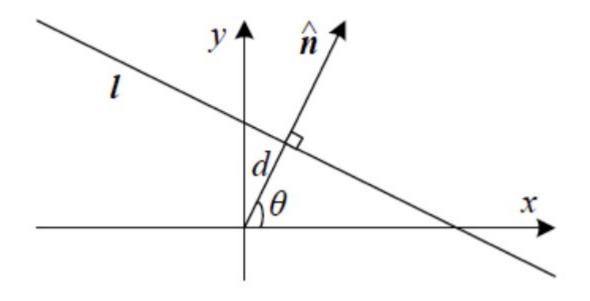
2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

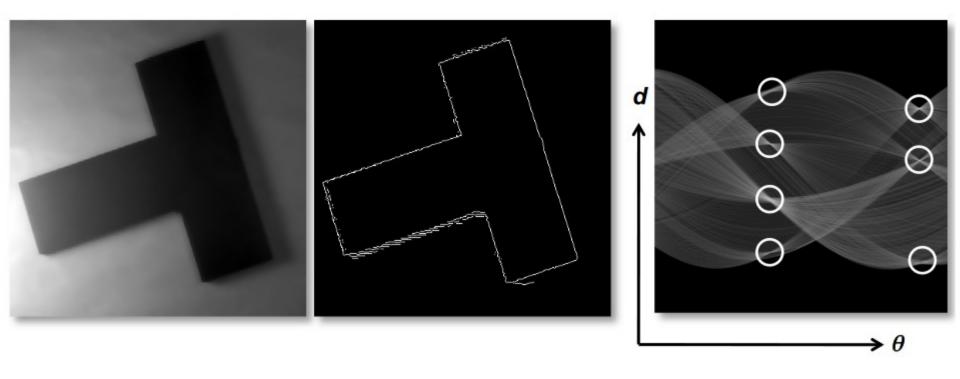
Hough transform m X Χ b

This slide from: Kavita Bala, Cornell U.

Hough transform



Hough transorm



This slide from: Kavita Bala, Cornell U.