Filtering and Robot Localization

Robert Platt Northeastern University

Robot localization example

Robot is actually located here, but it doesn't know it.

Goal: localize the robot based on sequential observations

- robot is given a map of the world; robot could be in any square
- initially, robot doesn't know which square it's in

Robot localization example

Robot perceives that there are walls above and below, but no walls either left or right

Prob

Gray level denotes estimated probability that robot is in that square

On each time step, the robot moves, and then observes the directions in which there are walls.

- observes a four-bit binary number
- observations are noisy: there is a small chance that each bit will be flipped.

Robot localization example

Prob

Robot localization example

Prob

Robot localization example

Prob

Robot localization example

Question: how do we update this probability distribution from time t to $t+1$?

Hidden Markov Models (HMMs)

Called an "emission"
State, X_{t}, is assumed to be unobserved
However, you get to make one observation, E_{t}, on each timestep.

Hidden Markov Models (HMMs)

Process dynamics: $P\left(X_{t} \mid X_{t-1}\right) \longleftarrow \quad \begin{aligned} & \text { How the system changes from } \\ & \text { one time step to the next }\end{aligned}$ Observation dynamics: $P\left(E_{t} \mid X_{t}\right) \quad$ What gets observed as a function of what state the system is in

Hidden Markov Models (HMMs)

Let's assume (for now) that these probability distributions are given to us.

Hidden Markov Models (HMMs)

Process dynamics: $\quad P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}, \ldots, X_{1}\right)$
observation dynamics: $P\left(E_{t} \mid X_{t}\right)=P\left(E_{t} \mid X_{t}, X_{t-1}, \ldots, X_{1}\right)$

Hidden Markov Models (HMMs)

Process dynamics: $\quad P\left(X_{t} \mid X_{t-1}=P\left(X_{t} \mid X_{t-1}, \ldots, X_{1}\right)\right.$ Observation dynamics: $P\left(E_{t} \mid X_{t}\right)=P\left(E_{t} \mid X_{t}, X_{t-1}, \ldots, X_{1}\right)$

Markov assumptions

HMM example

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Images: Berkeley CS188 course notes (downloaded Summer 2015)

Bayes Filtering

How do we go from this distribution to this distribution?

Bayes Filtering

Bayes Filtering

Process update

$$
\begin{gathered}
B\left(X_{t}\right) \\
P\left(X_{t} \mid e_{1: t}\right)
\end{gathered} B^{\prime}\left(X_{t}\right)
$$

Process update

Different states from which $x _\{t+1\}$ can be reached

$$
P\left(X_{t+1} \mid e_{1: t}\right)=\sum_{X_{t}} P\left(X_{t+1} \mid X_{t}, e_{1: t}\right) P\left(X_{t} \mid e_{1: t}\right)
$$

Marginalize over next states

Process update

Process update

Before process update

1

Process update

After process update

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{X_{t}} P\left(X_{t+1} \mid X_{t}, e_{1: t}\right) B\left(X_{t}\right)
$$

This is a little like convolution...

Process update

After process update

Each time you execute a process update, belief gets more disbursed

- i.e. Shannon entropy increases
- this makes sense: as you predict state further into the future, your uncertainty grows.

Bayes Filtering

Observation update

$$
\begin{gathered}
B^{\prime}\left(X_{t}\right) \\
P\left(X_{t+1} \mid e_{1: t}\right) \\
P\left(X_{t+1}\right) \\
P\left(X_{t+1} \mid e_{1: t+1}\right) \\
\left.1: e_{1: t+1}\right)=\eta P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{gathered}
$$

Observation update

$$
\begin{gathered}
B^{\prime}\left(X_{t}\right) \\
P\left(X_{t+1} \mid e_{1: t}\right) \\
P\left(X_{t+1} \mid e_{1: t+1}\right)=\underbrace{\eta P\left(e_{t+1}\right)}_{\text {Probability of seeing observation } e_{t+1} \text { from state } X_{t+1}}
\end{gathered}
$$

Observation update

$$
\begin{array}{c:c}
B^{\prime}\left(X_{t}\right) \\
P\left(X_{t+1} \mid e_{1: t}\right) & \longrightarrow\left(X_{t+1}\right) \\
P\left(X_{t+1} \mid e_{1: t+1}\right)
\end{array}
$$

$$
P\left(X_{t+1} \mid e_{1: t+1}\right)=\eta P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
B\left(X_{t+1}\right)=\eta P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Where $\quad \eta=\frac{1}{P\left(e_{t+1}\right)} \quad$ is a normalization factor

Observation update

Before observation update

$$
B^{\prime}\left(X_{t+1}\right)
$$

Weather HMM example

$$
\begin{aligned}
& B(+r)=0.5 \\
& B(-r)=0.5
\end{aligned}
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Weather HMM example

$$
B^{\prime}(+r)=0.5
$$

$$
7 B^{\prime}(-r)=0.5
$$

$$
\begin{aligned}
& B(+r)=0.5 \\
& B(-r)=0.5
\end{aligned}
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Weather HMM example

$$
\begin{array}{ll}
B(+r)=0.5 & B(-r)=0.182 \\
B(-r)=0.5 &
\end{array}
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Weather HMM example

$$
\begin{array}{ll}
B(+r)=0.5 & B(+r)=0.818 \\
B(-r)=0.5 & B(-r)=0.182
\end{array}
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Weather HMM example

$$
\begin{array}{lll}
B(+r)=0.5 & B(+r)=0.818 & B(+r)=0.883 \\
B(-r)=0.5 & B(-r)=0.182 & B(-r)=0.117
\end{array}
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Robot localization example

Bel(s)

Robot localization example

Robot localization example

Robot localization example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

Robot localization example

Prob

Applications of HMMs

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Particle Filter

Why must I be confined to this grid?

Standard Bayes filtering requires discretizing state space into grid cells
Can do Bayes filtering w/o discretizing?

- yes: particle filtering or Kalman filtering

Particle Filter

Sequential Bayes Filtering is great, but it's not great for continuous state spaces. - you need to discretize the state space (e.g. a grid) in order to use Bayes filtering

- but, doing filtering on a grid is not efficient...

Therefore:
$\left.\begin{array}{l}\text { - particle filters } \\ \text { - Kalman filters }\end{array}\right\}$ Two different ways of filtering in continuous state spaces

Particle Filter

Key idea: represent a probability distribution as a finite set of points

- density of points encodes probability mass.
- particle filtering is an adaptation of Bayes filtering to this particle representation

Monte Carlo Sampling

Suppose you are given an unknown probability distribution, $P(x)$
Suppose you can't evaluate the distribution analytically, but you can draw samples from it What can you do with this information?

$$
\begin{aligned}
E_{x \sim P(x)}(f(x)) & =\int_{x} f(x) P(x) \\
& \approx \frac{1}{k} \sum_{i=1}^{k} f\left(x^{i}\right) \quad \text { where } x^{i} \text { are samples drawn from } P(x)
\end{aligned}
$$

Monte Carlo Sampling

Suppose you are given an unknown probability distribution, $P(x)$
Suppose you can't evaluate the distribution analytically, but you can draw samples from it What can you do with this information?

$$
\begin{aligned}
E_{x \sim P(x)}(h(x)) & =\int_{x} h(x) P(x) \quad \begin{array}{c}
\text { FYI: } \\
\text { You can use the same strategy to } \\
\text { estimate other moments as well... }
\end{array} \\
& \approx \frac{1}{k} \sum_{i=1}^{k} h\left(x^{i}\right) \quad \text { where } x^{i} \text { are samples drawn from } P(x)
\end{aligned}
$$

Importance Sampling

Suppose you are given an unknown probability distribution, $P(x)$
Suppose you can't evaluate the distribution analytically, but you can draw samples from it What can you do with this information?

Suppose you can't even sample from it?
Suppose that all you can do is evaluate the function at a given point?

Importance Sampling

Question: how estimate expected values if cannot draw samples from $f(x)$

- suppose all we can do is evaluate $f(x)$ at a given point...

Importance Sampling

Question: how estimate expected values if cannot draw samples from $f(x)$ - suppose all we can do is evaluate $f(x)$ at a given point...

Answer: draw samples from a different distribution and weight them

Importance Sampling

Question: how estimate expected values if cannot draw samples from $f(x)$ - suppose all we can do is evaluate $f(x)$ at a given point...

$E_{x \sim f(x)}(h(x))=\int_{x} h(x) \frac{f(x)}{g(x)} g(x)$ $\approx \frac{1}{k} \sum_{i=1}^{k} h\left(x^{i}\right) w_{i}$

$$
\text { and } w_{i}=f\left(x^{i}\right) / g\left(x^{i}\right)
$$

Particle Filter

Particle Filter

Particle Filter

Particle Filter

$$
\begin{aligned}
& \text { Prior distribution } \\
& B\left(X_{t}\right) \quad P\left(X_{t} \mid E_{1: t}\right) \\
& x_{t}^{1}, \ldots, x_{t}^{n} \quad w_{t}^{1}, \ldots, w_{t}^{n}=1 \\
& \bar{x}_{t+1}^{i} \sim P\left(X_{t+1} \mid x_{t}^{i}, e_{1: t}\right) \\
& B^{\prime}\left(X_{t}\right) \quad P\left(X_{t+1} \mid E_{1: t}\right) \\
& \text { Observation update } \\
& w_{t+1}^{i}=P\left(e_{t+1} \mid \bar{x}_{t+1}^{i}\right) w_{t}^{i} \\
& B\left(X_{t+1}\right) P\left(X_{t+1} \mid E_{1: t+1}\right) \\
& \text { Resample } \\
& X_{t+1}=\{ \} \\
& \text { - } X_{t+1}=X_{t+1} \cup \bar{x}_{t+1}^{i} \text { w/ prob } w_{t+1}^{i}
\end{aligned}
$$

Particle Filter

Particle Filter

Particle Filter

(

Particle Filter

Particle Filter

Particle Filter Example

Particle Filter Example

Particle Filtering

Pros:

- works in continuous spaces
- can represent multi-modal distributions

Cons:

- parameters to tune
- sample impoverishment

Sample Impoverishment

Pros:

- works in continuous spaces
- can represent multi-modal distributions

Cons:

- parameters to tune "- sāmp̄le impōverishmē̄̄

No particles nearby the true system state

Sample Impoverishment

Prior distribution

$$
x_{t}^{n} \quad w_{t}^{1}, \ldots, w_{t}^{n}=1
$$

If there aren't enough samples, then we might `resample away" the true state...

Process update

$$
P\left(X_{t+1} \mid x_{t}^{i}, e_{1: t}\right)
$$

Ibservation update

$$
P\left(e_{t+1} \mid \bar{x}_{t+1}^{i}\right) w_{t}^{i}
$$

$$
B\left(X_{t+1}\right) \quad P\left(X_{t+1} \mid E_{1: t+1}\right)
$$

Resample

$$
X_{t+1}=\{ \}
$$

Do this n times

Sample Impoverishment

Prior distribution

$$
x_{t}^{n} \quad w_{t}^{1}, \ldots, w_{t}^{n}=1
$$

If there aren't enough samples, then we might "resample away" the true state...

One solution: add an additional k samples drawn completely at random

Process update

$$
P\left(X_{t+1} \mid x_{t}^{i}, e_{1: t}\right)
$$

Ibservation update

$$
P\left(e_{t+1} \mid \bar{x}_{t+1}^{i}\right) w_{t}^{i}
$$

$$
B\left(X_{t+1}\right) P\left(X_{t+1} \mid E_{1: t+1}\right.
$$

Resample

$$
X_{t+1}=\{ \}
$$

Do this n times

Sample Impoverishment

Prior distribution

$$
x_{t}^{n} \quad w_{t}^{1}, \ldots, w_{t}^{n}=1
$$

If there aren't enough samples, then we might "resample away" the true state...

One solution: add an additional k samples drawn completely at random

Process update

$$
P\left(X_{t+1} \mid x_{t}^{i}, e_{1: t}\right)
$$

BUT: there's always a chance that the true state won't be represented well by the particles...

$$
B\left(X_{t+1}\right): P\left(X_{t+1} \mid E_{1: t+1}\right)
$$

Resample

$$
X_{t+1}=\{ \}
$$

Ibservation update

$$
P\left(e_{t+1} \mid \bar{x}_{t+1}^{i}\right) w_{t}^{i}
$$

Kalman Filtering

Another way to adapt Sequential Bayes Filtering to continuous state spaces

- relies on representing the probability distribution as a Gaussian
- first developed in the early 1960s (before general Bayes filtering); used in Apollo program

Kalman Idea

Kalman Idea

Gaussians

- Univariate Gaussian:

$$
P(x)=\eta e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

- Multivariate

$$
P(x)=\eta e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

$$
P(x)=N(x ; \mu, \Sigma)
$$

Playing w/ Gaussians

- Suppose: $\quad P(x)=N(x ; \mu, \Sigma)$

$$
y=A x+b
$$

- Calculate: $\quad P(y)=$?

$$
P(y)=N\left(y ; A x+b, A \Sigma A^{T}\right)
$$

In fact

- Suppose: $\quad P(x)=N(x ; \mu, \Sigma)$

$$
y=A x+b
$$

- Then:

$$
P\binom{x}{y}=N\left[\begin{array}{lcc}
x & & \mu \\
y & : & A \mu+b
\end{array},\left(\begin{array}{cc}
\Sigma & \Sigma A^{T} \\
A \Sigma & A \Sigma A^{T}
\end{array}\right)\right]
$$

Illustration

Image: Thrun et al., CS233B course notes

And

Suppose: $\quad P(x)=N(x ; \mu, \Sigma)$

$$
P(y \mid x)=N(y ; A x+b, R)
$$

Then:

$$
P\binom{x}{y}=N\left[\begin{array}{cc}
x & \\
y & : \\
A \mu+b
\end{array},\left(\begin{array}{cc}
\Sigma & \Sigma A^{T} \\
A \Sigma & A \Sigma A^{T}+R
\end{array}\right)\right]
$$

$$
P(y)=N\left(y ; A \mu+b, A \Sigma A^{T}+R\right)
$$

Marginal distribution

Does this remind us of anything?

Does this remind us of anything?

Process update (discrete): $P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Process update
(continuous): $P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$

Does this remind us of anything?

Process update (discrete): $P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
Process update (continuous): $P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$
$N\left(x_{t+1} \mid A x_{t}, Q\right)$
transition dynamics

$$
N\left(x_{t} \mid \mu_{t}, \Sigma_{t}\right)
$$

prior

Does this remind us of anything?

Process update (discrete):

$$
P\left(x_{t+1} \mid z_{0: t}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)
$$

Process update (continuous): $P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid z_{0: t}\right)$

$$
N\left(x_{t+1} \mid A x_{t}, Q\right) \quad N\left(x_{t} \mid \mu_{t}, \Sigma_{t}\right)
$$

transition dynamics prior

$$
\begin{aligned}
& P\left(x_{t+1} \mid z_{0: t}\right)=\int_{x_{t}} N\left(x_{t+1} \mid A x_{t}, Q\right) N\left(x_{t} ; \mu_{t}, \Sigma_{t}\right) \\
& P\left(x_{t+1} \mid z_{0: t}\right)=N\left(x_{t+1} \mid A \mu_{t}, A \Sigma_{t} A^{T}+Q\right)
\end{aligned}
$$

Observation update

Observation

$$
\begin{array}{r}
P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right) \\
N\left(z_{t+1} \mid C x_{t+1}, R\right) \quad N\left(x_{t} \mid \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right) \\
\text { Where: } \mu_{t}^{\prime}=A \mu_{t} \\
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
\end{array}
$$ update:

Observation update

Observation

$$
\begin{aligned}
& \begin{array}{r}
\text { bservation } \\
\text { update: }
\end{array} P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right) \\
& N\left(z_{t+1} \mid C x_{t+1}, R\right) \quad N\left(x_{t} \mid \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right) \\
& \text { Where: } \mu_{t}^{\prime}=A \mu_{t} \\
& \Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q \\
& P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=\eta N\left(z_{t+1} \mid C x_{t}, R\right) N\left(x_{t} ; \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right)
\end{aligned}
$$ update:

Observation update

$$
\begin{aligned}
& \begin{array}{l}
\text { Observation } \begin{array}{r}
\text { update: }
\end{array} P\left(x_{t+1} \mid z_{0: t+1}\right)=\eta P\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid z_{0: t}\right) \\
N\left(z_{t+1} \mid C x_{t+1}, R\right) \quad N\left(x_{t} \mid \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right) \\
\text { Where: } \mu_{t}^{\prime}=A \mu_{t} \\
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q \\
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=\eta N\left(z_{t+1} \mid C x_{t}, R\right) N\left(x_{t} ; \mu_{t}^{\prime}, \Sigma_{t}^{\prime}\right)
\end{array} \\
& \left.P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & : & \mu_{t}^{\prime},\left(\begin{array}{cc}
\Sigma_{t}^{\prime} & \Sigma_{t}^{\prime} C^{T} \\
z_{t+1} & C \Sigma_{t}^{\prime}
\end{array}\right. \\
C \Sigma_{t}^{\prime} A^{T}+R
\end{array}\right)\right]
\end{aligned}
$$

Observation update

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & & \mu_{t}^{\prime} \\
z_{t+1} & & C \mu_{t}^{\prime}
\end{array},\left(\begin{array}{cc}
\Sigma_{t}^{\prime} & \Sigma_{t}^{\prime} C^{T} \\
C \Sigma_{t}^{\prime} & C \Sigma_{t}^{\prime} A^{T}+R
\end{array}\right)\right]
$$

But we need: $P\left(x_{t+1} \mid z_{0: t+t}\right)=?$

Another Gaussian identity...

Suppose: $N\left[\begin{array}{lll}x & : & a \\ y & : & b\end{array},\left(\begin{array}{cc}A & C \\ C^{T} & B\end{array}\right)\right]$
Calculate: $P(y \mid x)=$?

$$
P(y \mid x)=N\left(y \mid b+C^{T} A^{-1}(x-a), B-C^{T} A^{-1} C\right)
$$

Observation update

$$
P\left(z_{t+1}, x_{t+1} \mid z_{0: t}\right)=N\left[\begin{array}{ccc}
x_{t+1} & : \quad \mu_{t}^{\prime} \\
z_{t+1} & C \mu_{t}^{\prime}
\end{array},\left(\begin{array}{cc}
\Sigma & \Sigma C^{T} \\
C \Sigma & C \Sigma A^{T}+R
\end{array}\right)\right]
$$

But we need: $P\left(x_{t+1} \mid z_{0: t+1}\right)=$?

$$
P\left(x_{t+1} \mid z_{0: t+1}\right)=N\left(x_{t+1} ; \mu_{t+1}, \Sigma_{t+1}\right)
$$

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

To summarize the Kalman filter

System:

$$
\begin{aligned}
& P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}, Q\right) \\
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid C x_{t+1}, R\right)
\end{aligned}
$$

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\mu_{t}^{\prime}=A \mu_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update:

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

Suppose there is an action term...

System: $\quad P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1} \mid A x_{t}+u_{t}, Q\right)$

$$
P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid C x_{t+1}, R\right)
$$

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\mu_{t}^{\prime}=A \mu_{t}+u_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement update:

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

To summarize the Kalman filter

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\mu_{t}^{\prime}=A \mu_{t}$

$$
\Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q
$$

Measurement

$$
\mu_{t+1}=\mu_{t}^{\prime}+\left(\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right)\right.
$$

update:

$$
4
$$

This factor is often called the "Kalman gain"

$$
\Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
$$

Things to note about the Kalman filter

Process update: $\quad \mu_{t}^{\prime}=A \mu_{t} \quad \Sigma_{t}^{\prime}=A \Sigma_{t} A^{T}+Q$

Measurement

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-C \mu_{t}^{\prime}\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$ update:

- covariance update is independent of observation
- Kalman is only optimal for linear-Gaussian systems
- the distribution "stays" Gaussian through this update
- the error term can be thought of as the different between the observation and the prediction

Kalman in 1D

$$
\begin{array}{ll}
\text { System: } & P\left(x_{t+1} \mid x_{t}\right)=N\left(x_{t+1}: x_{t}+u_{t}, q\right) \\
& P\left(z_{t+1} \mid x_{t+1}\right)=N\left(z_{t+1} \mid 2 x_{t+1}, r\right)
\end{array}
$$

Process update: $\bar{\mu}_{t}=\mu_{t}+u_{t}$

$$
\bar{\sigma}_{t}^{2}=\sigma_{t}^{2}+q
$$

Measurement update:

$$
\begin{aligned}
\mu_{t+1} & =\bar{\mu}_{t}+\frac{2 \bar{\sigma}_{t}^{2}}{r+4 \bar{\sigma}_{t}^{2}}\left(z_{t+1}-\bar{\mu}_{t}\right) \\
\sigma_{t+1} & =\bar{\sigma}_{t}^{2}-\frac{4\left(\bar{\sigma}_{t}^{2}\right)^{2}}{r+4 \bar{\sigma}_{t}^{2}}
\end{aligned}
$$

Kalman Idea

Example: estimate velocity

Example: filling a tank

$$
\begin{aligned}
& x=\binom{l}{f} \longleftarrow \begin{array}{c}
\text { Level of } \\
\text { tank } \\
\text { Fill rate }
\end{array} \\
& l_{t+1}=l_{t}+f d t
\end{aligned}
$$

Process: $\quad x_{t+1}=\left(\begin{array}{cc}1 & d t \\ 0 & 1\end{array}\right) x_{t}+q$ $\begin{gathered}\text { Observati } \\ \text { on: }\end{gathered} \quad z_{t+1}=\left(\begin{array}{ll}1 & 0\end{array}\right) x_{t+1}+r$

Example: estimate velocity

$$
\begin{gathered}
x_{t+1}=A x_{t}+w_{t} \\
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & d t & 0 \\
0 & 1 & 0 & d t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{t} \\
y_{t} \\
\dot{x}_{t} \\
\dot{y}_{t}
\end{array}\right)+\mathrm{w}_{t} \\
z_{t+1}=C x_{t+1}+r_{t+1} \\
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
\dot{x}_{t+1} \\
\dot{y}_{t+1}
\end{array}\right)+\mathrm{r}_{t+1}
\end{gathered}
$$

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

- What should I do?

Well, there are some options...

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

- What should I do?

Well, there are some options...

- But none of them are great.

But, my system is NON-LINEAR!

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right) \\
& \neq A x_{t}+B u_{t}
\end{aligned}
$$

- What should I do?

Well, there are some options...
But none of them are great.
Here's one: the Extended Kalman Filter

Extended Kalman filter

Take a Taylor expansion:

$$
\begin{aligned}
& x_{t+1}=f\left(x_{t}, u_{t}\right) \\
& \approx f\left(\mu_{t}, u_{t}\right)+A_{t}\left(x_{t}-\mu_{t}\right) \\
& \quad \text { Where: } \quad A_{t}=\frac{\partial f}{\partial x}\left(\mu_{t}, u_{t}\right) \\
& z_{t+1}= h\left(x_{t}\right) \\
& \approx h\left(\mu_{t}\right)+C_{t}\left(x_{t}-\mu_{t}\right) \\
& \quad \text { Where: } \quad C_{t}=\frac{\partial h}{\partial x}\left(\mu_{t}\right)
\end{aligned}
$$

Extended Kalman filter

Take a Taylor expansion:

$$
\begin{aligned}
& x_{t+1}=f\left(x_{t}, u_{t}\right) \\
& \approx f\left(\mu_{t}, u_{t}\right)+A_{t}\left(x_{t}-\mu_{t}\right) \\
& \quad \text { Where: } \quad A_{t}=\frac{\partial f}{\partial x}\left(\mu_{t}, u_{t}\right) \\
& z_{t+1}= h\left(x_{t}\right) \\
& \approx h\left(\mu_{t}\right)+C_{t}\left(x_{t}-\mu_{t}\right) \\
& \quad \text { Where: } \quad C_{t}=\frac{\partial h}{\partial x}\left(\mu_{t}\right)
\end{aligned}
$$

Then use the same equations...

To summarize the EKF

Prior: μ_{t}

$$
\Sigma_{t}
$$

Process update: $\quad \mu_{t}^{\prime}=f\left(\mu_{t}, u_{t}\right)$

$$
\Sigma_{t}^{\prime}=A_{t} \Sigma_{t} A_{t}^{T}+Q
$$

Measurement update:

$$
\begin{aligned}
& \mu_{t+1}=\mu_{t}^{\prime}+\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1}\left(z_{t+1}-h\left(\mu_{t}^{\prime}\right)\right) \\
& \Sigma_{t+1}=\Sigma_{t}^{\prime}-\Sigma_{t}^{\prime} C^{T}\left(R+C \Sigma_{t}^{\prime} C^{T}\right)^{-1} C \Sigma_{t}^{\prime}
\end{aligned}
$$

Extended Kalman filter

Image: Thrun et al., CS233B course notes

Extended Kalman filter

Image: Thrun et al., CS233B course notes

Process update

$\mathrm{T}=1$

$\mathrm{T}=2$

$\mathrm{T}=5$

Each time you execute a process update, belief gets more disbursed

- i.e. Shannon entropy increases
- this makes sense: as you predict state further into the future, your uncertainty grows.

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{X_{t}} P\left(X_{t+1} \mid X_{t}, e_{1: t}\right) B\left(X_{t}\right)
$$

This is a little like convolution...

Images: Berkeley CS188 course notes (downloaded Summer 2015)

Kalman Filter

Observation update

Before observation

After observation

Process update increases uncertainty
Observation update decreases uncertainty

- observations give you more information

