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QUANTIFYING UNCERTAINTY WITH PROBABILITIES

• Generally we may use probabilities due to

• Ignorance 

• E.g., we don’t know our opponent

• Laziness

• It is too difcult or takes too much efort to model the 
event in detail

• The event is inherently random



HOW DO WE INTERPRET PROBABILITIES

• Frequentist view

• Objective: If I throw a die many times it will come up 3 one sixth of 
the times

• Strength of belief view (Bayesian)

• Subjective: How strongly do I, should I, believe it will come up 3 

• These are not claims of a “probabilistic tendency” in the current 
situation (but might be learned from past experience) 

• Probabilities of propositions change with new evidence: 

• e.g., P (get to airport on time|no reported accidents, 5 a.m.) = 0.15 



  

(Discrete) Random variables

What is a random variable?

Suppose that the variable a denotes the outcome of a role of a single six-sided die:

a is a random variable this is the domain of a

Another example:

Suppose b denotes whether it is raining or clear outside:



Probability distribution

A probability distribution associates each with a probability of occurrence, 
represented by a probability mass function (pmf).

A probability table is one way to encode the distribution:

All probability distributions must satisfy the following:

1.

2.



Two pmfs over a state space of X={1,2,3,4} 

Example pmfs



  

Writing probabilities

For example:

But, sometimes we will abbreviate this as:



Types of random variables

Propositional or Boolean random variables

- e.g., Cavity (do I have a cavity?)

- Cavity = true is a proposition, also written cavity 

Discrete random variables (finite or infinite)

- e.g., Weather is one of ⟨sunny, rain, cloudy, snow  ⟩
- Weather = rain is a proposition

- Values must be exhaustive and mutually exclusive 

Continuous random variables (bounded or unbounded) 

- e.g., Temp < 22.0 



Continuous random variables

Cumulate distribution function (cdf), F(q)=(X<q) with P(a<X≤b)=F(b)-F(a) 

Probability density function (pdf),                        with   

Express distribution as a parameterized function of value:
- e.g.,  P(X = x) = U[18, 26](x) = uniform density between 18 and 26 

Here P is a density; integrates to 1.

 P(X = 20.5) = 0.125 really means

f(x) =
d
dx

F(x) P(a< X £b) =
a

b

òf (x)

limdx® 0 P(20.5 £X £20.5 +dx) / dx=0.125



Joint probability distributions

Given random variables:

The joint distribution is a probability 
assignment to all combinations:

As with single-variate distributions, joint distributions must 
satisfy:

or:

1.

2.

P(X1 =x1 Ù X2 =x2 Ù ¼Ù Xn =xn)Sometimes written as:

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72 
correspond to belief prior to arrival of any (new) evidence 



  

Joint probability distributions

Joint distributions are typically written in table form:

T W P(T,W)

Warm snow 0.1

Warm hail 0.3

Cold snow 0.5

Cold hail 0.1

An event is a set of particular outcomes
– e.g. it’s warm and hailing...



  

Marginalization

Given P(T,W), calculate P(T) or P(W)...

T W P(T,W)

Warm snow 0.1

Warm hail 0.3

Cold snow 0.4

Cold hail 0.2

T P(T)

Warm 0.4

Cold 0.6

W P(W)

snow 0.5

hail 0.5



  

Marginalization

Given P(T,W), calculate P(T) or P(W)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

T P(T)

Warm ?

Cold ?

W P(W)

snow ?

hail ?



  

Conditional Probability

At a regular checkup, assume the unconditional probability that you have a cavity is 0.2

But what if I have a toothache? Does this change the probability of a cavity?

P(cavity | toothache)
Probability of a cavity GIVEN a toothache



  

Conditional Probability

At a regular checkup, assume the unconditional probability that you have a cavity is 0.2

But what if I have a toothache? Does this change the probability of a cavity?

P(cavity | toothache)

Definition of conditional probability: 

Can be rewritten as the Product Rule:

Probability of a cavity GIVEN a toothache



  

The Chain Rule

The product rule can be applied iteratively to obtain the chain rule:

Chain rule



  

Infer Conditional Probabilities

We want to calculate the probability of a cavity given that we have a toothache

Recall that:

toothache ¬ toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

P(cavity | toothache) = P(cavity ⋀ toothache)   =                0.108    +    0.012       = 0.6
                                            P(toothache)                   0.108+0.012+0.016+0.064 

P(¬cavity | toothache) = P(¬cavity ⋀ toothache) =   ???

                           P(toothache) 



  

Infer Conditional Probabilities

P(snow|warm) = Probability that it will snow given that it is warm

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow ?

hail ?



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow ?

hail ?



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail ?



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail ?



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W|T=cold)

snow ?

hail ?



  

Infer Conditional Probabilities

Given P(T,W), calculate P(T|w) or P(W|t)...

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W|T=cold)

snow 0.4

hail 0.6



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

Can we avoid explicitly computing this denominator?

Any ideas?



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.2

Cold snow 0.2

Cold hail 0.3

W P(W|T=warm)

snow 0.6

hail 0.4

W P(W,T=warm)

snow 0.3

hail 0.2

W P(W|T=warm)

snow 0.6

hail 0.4
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:



  

Normalization

T P(T,W=hail)

warm ?

cold ?
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm ?

cold ?

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1

T P(T,W=hail)

warm 0.4

cold 0.1
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm ?

cold ?



  

Normalization

T W P(T,W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.2

Cold hail 0.1

T P(T,W=hail)

warm 0.4

cold 0.1
2. Scale them up so 
that entries sum to 1

1. Copy entries

Two steps:

T P(T|W=hail)

warm 0.8

cold 0.2

The only purpose of this denominator is to make the 
distribution sum to one.
– we achieve the same thing by scaling.



  

A Problem...

So far we have done inference using the full joint distribution

But, this doesn’t scale well with complex domains…

– e.g. 30 boolean variables requires us to specify 2^30 probabilities!

Possible solution: exploit independence!

Way too many!



INDEPENDENCE

• Expand our dentistry joint distribution by adding a fourth 
variable, weather

• P(Toothache, Catch, Cavity, Weather)

• Now have a table of 32 entries

• (Assuming Weather = {cloudy, rain, sunny, snow} )

• But consider the relation these variables have:

• P(toothache, catch, cavity, cloudy)

• Does cloudy infuence dentistry?



INDEPENDENCE

• By the product rule: 

• P(toothache, catch, cavity, cloudy) = P(cloudy|toothache, catch, 
cavity) x P(toothache, catch, cavity)

• Reasonable to assume dental facts and the weather don’t infuence each 
other, so:

• P(cloudy | toothache, catch, cavity) = P(cloudy) 

• Therefore: P(toothache, catch, cavity, cloudy) = P(cloudy) x P(toothache, 
catch, cavity)

• Reducing the 32 entry table to an 8 element table and 4 element table

• Calculation of joint is a product of the entries in these tables



INDEPENDENCE

• A and B are independent if P(X, Y) = P(X)P(Y)

• P(Toothache, Catch,Cavity,Weather) = P(Toothache, 
Catch, Cavity)P(Weather) 

• In other words the joint distribution factors into a product 
of two smaller, simpler distributions

• Equivalently

• P(X|Y) = P(X) or P(Y|X) = P(Y)

• If two events are independent, knowing one has occurred 
does not give us any new information about the other



INDEPENDENT?

• Formally independence is 

• P(X|Y) = P(X) or 

• P(Y|X) = P(Y) or 

• P(X, Y) = P(X)P(Y)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



INDEPENDENCE
• Formally independence is (equivalently)

• In terms of  conditional distributions

• P(X|Y) = P(X) or P(Y|X) = P(Y) 

• In terms of joint distributions

• P(X, Y) = P(X)P(Y)

• Independence can greatly reduce the probabilities that need 
to be specifed



INDEPENDENCE

• However full independence is 
rare 

• Just as separate subgraphs 
were rare in CSPs

• In empirical data especially, 
it’s rare not to see some 
interaction (real or not)

• Sunspot activity and GDP, 

• Sunspot activity and stock 
market

• Sunspot activity and …

• We need to consider a more 
limited form of independence



CONDITIONAL INDEPENDENCE
We will consider a more limited form of independence
Conditional Independence: 

P(X,Y|Z) = P(X|Z)P(Y|Z)

P(Toothache, Cavity, Catch) has 8 − 1 = 7 independent entries 

If I have a cavity, the probability that the probe catches in it doesn’t depend 
on whether I have a toothache: 

P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity: 
P(catch|toothache, ¬cavity) = P(catch|¬cavity) 

Catch is conditionally independent of Toothache given Cavity: 
P(Catch|Toothache, Cavity) = P(Catch|Cavity) 

Equivalent statements: 
P(Toothache|Catch, Cavity)=P(Toothache|Cavity)
P(Toothache, Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity) 



CONDITIONAL INDEPENDENCE

• Write out full joint distribution using chain rule: 

• P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) 
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity) 

• 2 + 2 + 1 = 5 independent numbers 

• In most cases, the use of conditional independence reduces 
the size of the representation of the joint distribution from 
exponential in n to linear in n 

• Conditional independence is our most basic and robust form 
of knowledge about uncertain environments



  

Bayes Rule

Thomas Bayes (1701 – 1761):
– English statistician, philosopher and Presbyterian minister 
– formulated a specific case of the formula above
– his work later published/generalized by Richard Price



  

Bayes Rule

It's easy to derive from the product rule:

Solve for this



  

Using Bayes Rule



  

Using Bayes Rule

It's often easier to estimate thisBut harder to estimate this



  

Bayes Rule Example

meningitis

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

Suppose you have a stiff neck...

stiff neck

What are the chances that you have meningitis?



  

Bayes Rule Example

meningitis

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis 
if you have a stiff neck:

Suppose you have a stiff neck...

stiff neck

What are the chances that you have meningitis?

We need a little more information...



  

Bayes Rule Example

Prior probability of meningitis

Prior probability of stiff neck



  

Bayes Rule Example

T W P(T|W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.7

Cold hail 0.6

Given:

W P(W)

snow 0.8

hail 0.2

Calculate P(W|warm):



  

Bayes Rule Example

T W P(T|W)

Warm snow 0.3

Warm hail 0.4

Cold snow 0.7

Cold hail 0.6

Given:

W P(W)

snow 0.8

hail 0.2

Calculate P(W|warm):

normalize

=0.25

=0.75



SO FAR: IMPORTANT FORMULAS

• Defnition of conditional probability: 

• P(a | b) =  P(a ∧ b)
                                 P(b)

• P(X| Y) =  P(X, Y)
                               P(Y)

• Product Rule:

• P(a ∧ b) = P(a|b) P(b) or P(a ∧ b) = P(b|a) P(a) 

• P(Xn ,…,X1) = P(Xn|Xn-1 ,…,X1) P(Xn-1 ,…,X1) 

• Chain Rule:

• P(Xn ,…,X1) = P(Xn|Xn-1 ,…,X1) P(Xn-1|Xn-2 ,…,X1) … 
P(X1)

• Bayes Rule

• P(Y|X) = P(X|Y) P(Y)      

                        P(X) 

• P(Y|X, e) = P(X|Y, e) P(Y | e)      

                        P(X | e) 

• Basic axioms
• P(a) ≥  0
• ∑ a∈X P(a) = 1
• P(¬a) = 1 –P(a)
• (holds for joint distributions as 

well)

• Inclusion-exclusion principle
• P(a V b) = P(a) + P(b) – P(a∧b)

• Marginal probability 
• P(Y) = ∑ z∈Z P(Y,z) 

• X and Y are independent IF
• P(X, Y) = P(X)P(Y)
• P(X|Y) = P(X) or P(Y|X) = P(Y) or 

• X,  Y are conditional independent 
given Z IF

• P(X,Y|Z) = P(X|Z) P(Y|Z)

• P(X|Y,Z) = P(X|Z)

• P(Y|X,Z) = P(Y|Z)



• Going to the airport: AX means leaving X minutes before the 
fight

• Suppose I believe the following: 

• P(A25 gets me there on time|...) = 0.04 

• P(A90 gets me there on time|...) = 0.70 

• P(A120 gets me there on time|...) = 0.95 

• P (A1440 gets me there on time|...) = 0.9999 

• Which action to choose? 

MAKING DECISIONS UNDER 
UNCERTAINTY



• Suppose I believe the following: 

• P(A25 gets me there on time|...) = 0.04 

• P(A90 gets me there on time|...) = 0.70 

• P(A120 gets me there on time|...) = 0.95 

• P (A1440 gets me there on time|...) = 0.9999 

• Which action to choose? 

• Depends on my preferences for missing fight vs. airport cuisine, 
etc. 

• Utility theory is used to represent and infer preferences

• Decision theory = utility theory + probability theory 

MAKING DECISIONS UNDER 
UNCERTAINTY



• Rational decision making requires reasoning 
about one’s uncertainty and objectives 

• Previous section focused on uncertainty 

• This section will discuss how to make rational 
decisions based on a probabilistic model and 
utility function 

• Focus will be on single step decisions, later 
we will consider sequential decision problems 

MAKING DECISIONS UNDER 
UNCERTAINTY



• An agent chooses among prizes (A, B, etc.) 
and lotteries, i.e., situations with uncertain 
prizes 

• Lottery L=[p,A; (1−p),B] 

• Notation: 

• A  ≻ B         A preferred to B

• A  ∼ B         indiference between A and B 

• A ≿ B        B not preferred to A

PREFERENCES



• Idea: preferences of a rational agent (not a human!) must obey constraints

• Rational preferences ⇒ behavior describable as maximization of expected 
utility 

• The Axioms of Rationality:

RATIONAL PREFERENCES



• Violating the constraints leads to self-
evident irrationality 

• For example: an agent with intransitive 
preferences can be induced to give away all 
its money 

• If B  ≻ C, then an agent who has C would pay 
(say) 1 cent to get B 

• If A  ≻ B, then an agent who has B would pay 
(say) 1 cent to get A 

• If C  ≻ A, then an agent who has A would pay 
(say) 1 cent to get C 

RATIONAL PREFERENCES



• The expected value of a function of a random 
variable is the average, weighted by the 
probability distribution over outcomes

• Example: How long to get to the airport?

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:

35 
min

x x x+ +

REMINDER: EXPECTATION



• Theorem (Ramsey, 1931; von Neumann and 
Morgenstern, 1944): Given preferences satisfying the 
constraints there exists a real-valued function U such 
that 

• U(A)≥U(B)  ⇔ A≿B 

• U(A) > U(B)  A  B⇔ ≻

• U(A) = U(B)  A  B⇔ ∼

•  

• MEU principle: Choose the action that maximizes 
expected utility 

MAXIMIZING EXPECTED UTILITY (MEU)

U([ p1,s1;¼; pn,sn]) = pi
i
å U(si )



• Note: an agent can be entirely rational 
(consistent with MEU) without ever representing 
or manipulating utilities and probabilities 

• E.g., a lookup table for perfect tic-tac-toe 

• Although a utility function must exist, it is not 
unique 

• If U (S)=aU(S)+b′  and a and b are constants with 
a>0, then preferences of U′ are the same as U 

• E.g., temperatures in Celcius, Fahrenheit, 
Kelvin

PREFERENCES LEAD TO UTILITIES



• Agent has made some (imperfect) observation o of the 
state of the world 

• If the agent executes action a, the probability the state 
of the world becomes s′ is given by P(s  ′ | o, a) 

• Preferences on outcomes is encoded using utility 
function U(s) 

• Expected utility: 

• Principal of maximum expected utility says that a 
rational agent should choose the action that maximizes 
expected utility a∗ =argmaxa EU(a|o) 

MAXIMIZING EXPECTED UTILITY



• When building a decision-making or decision-support system, it is 
often helpful to infer the utility function from a human

• Utilities map states to real numbers. Which numbers? 

• Standard approach to assessment of human utilities: compare a 
given state A to a standard lottery Lp that has 

• “best possible prize” u⊤ with probability p 

• “worst possible catastrophe” u⊥ with probability (1 − p) 

• Adjust lottery probability p until A  L∼ p

• Alternatively, set best possible utility to 1 and worst possible to 0

UTILITIES: PREFERENCE 
ELICITATION



• Money does not behave as a utility function

• Given a lottery L with expected monetary value EMV(L), 
usually U(L) < U(EMV(L)), i.e., people are risk-averse

• Utility curve: for what probability p am I indiferent 
between a prize x and a lottery [p,$M; (1−p),$0] for large M?

• Typical empirical data, extrapolated with risk-prone 
behavior (utility of money is proportional to the logarithm 
of the amount): 

MONEY



• Probability is a rigorous formalism for uncertain 
knowledge

• Joint probability distribution specifes probability of 
every atomic event 

• Queries can be answered by summing over atomic 
events

• For nontrivial domains, we must fnd a way to reduce 
the joint size 

• Independence and conditional independence provide 
the tools 

• Next time: sequential decision making!

SUMMARY
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