Probability and Decision Theory

Robert Platt Northeastern University

Some images and slides are used from:

- 1. AIMA
- 2. Chris Amato
- 3. Stacy Marsella

QUANTIFYING UNCERTAINTY WITH PROBABILITIES

- Generally we may use probabilities due to
- Ignorance
 - E.g., we don't know our opponent
- Laziness
 - It is too difficult or takes too much effort to model the event in detail
- The event is inherently random

HOW DO WE INTERPRET PROBABILITIES

- Frequentist view
 - Objective: If I throw a die many times it will come up 3 one sixth of the times
- Strength of belief view (Bayesian)
 - Subjective: How strongly do I, should I, believe it will come up 3
 - These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience)
 - Probabilities of propositions change with new evidence:
 - e.g., P (get to airport on time no reported accidents, 5 a.m.) = 0.15

(Discrete) Random variables

What is a random variable?

Suppose that the variable *a* denotes the outcome of a role of a single six-sided die:

Another example:

Suppose *b* denotes whether it is raining or clear outside:

$$b \in \{rain, clear\} = B$$

Probability distribution

A probability distribution associates each with a probability of occurrence, represented by a *probability mass function (pmf*).

A probability table is one way to encode the distribution:

$$a \in \{1, 2, 3, 4, 5, 6\} = A$$
 $b \in \{rain, clear\} = B$

All probability distributions must satisfy the following:

1.
$$\forall a \in A, a \ge 0$$

2. $\sum_{a \in A} a = 1$

Example pmfs

Two pmfs over a state space of $X = \{1, 2, 3, 4\}$

Writing probabilities

a	P(a)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

b	P(b)
rain	1/4
clear	3/4

For example:
$$p(a=2)=1/6$$
 $p(b=clear)=3/4$

But, sometimes we will abbreviate this as: $\ p(2)=1/6$

$$p(clear) = 3/4$$

Types of random variables

Propositional or Boolean random variables

- e.g., *Cavity* (do I have a cavity?)
- *Cavity* = *true* is a proposition, also written *cavity*

Discrete random variables (finite or infinite)

- e.g., Weather is one of (sunny, rain, cloudy, snow)
- Weather = rain is a proposition
- Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

- e.g., Temp < 22.0

Continuous random variables

Cumulate distribution function (cdf), F(q)=(X < q) with $P(a < X \le b)=F(b)-F(a)$ Probability density function (pdf), $f(x) = \frac{d}{dx}F(x)$ with $P(a < X \le b) = \int_{a}^{b} f(x)$

Express distribution as a parameterized function of value:

- e.g., P(X = x) = U[18, 26](x) = uniform density between 18 and 26

Here *P* is a density; integrates to 1.

P(X = 20.5) = 0.125 really means $\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx) / dx = 0.125$

Joint probability distributions

Given random variables: X_1, X_2, \ldots, X_n

The *joint distribution* is a probability assignment to all combinations: $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$ or: $P(x_1, x_2, \dots, x_n)$ Sometimes written as: $P(X_1 = X_1 \land X_2 = X_2 \land \dots \land X_n = X_n)$

As with single-variate distributions, joint distributions must satisfy:

1.
$$P(x_1, x_2, \dots, x_n) \ge 0$$

2. $\sum_{x_1, \dots, x_n} P(x_1, x_2, \dots, x_n) = 1$

Prior or unconditional probabilities of propositions e.g., P (*Cavity* = *true*) = 0.1 and P (*Weather* = *sunny*) = 0.72 correspond to belief prior to arrival of any (new) evidence

Joint probability distributions

Joint distributions are typically written in table form:

Т	W	P(T,W)
Warm	snow	0.1
Warm	hail	0.3
Cold	snow	0.5
Cold	hail	0.1

An <u>event</u> is a set of particular outcomes – e.g. it's warm and hailing...

Marginalization

Marginalization

Conditional Probability

At a regular checkup, assume the unconditional probability that you have a cavity is 0.2

But what if I have a toothache? Does this change the probability of a cavity?

Probability of a cavity GIVEN a toothache

Conditional Probability

At a regular checkup, assume the unconditional probability that you have a cavity is 0.2

But what if I have a toothache? Does this change the probability of a cavity?

P(cavity | toothache) Probability of a cavity GIVEN a toothache

Definition of conditional probability: $P(a|b) = \frac{P(a,b)}{P(b)}$

Can be rewritten as the Product Rule: P(a,b) = P(a|b)P(b) = P(b|a)P(a)

$$P(x_n, \dots, x_1) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$

The Chain Rule

The product rule can be applied iteratively to obtain the chain rule:

$$P(x_n, \dots, x_1) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$
$$= P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1} | x_{n-2}, \dots, x_1) \dots P(x_1)$$

Chain rule

	toothache		⊐ toot	hache
	catch	¬catch	catch	¬catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

We want to calculate the probability of a cavity given that we have a toothache

Recall that:
$$P(a|b) = \frac{P(a,b)}{P(b)}$$

 $\begin{array}{ll} P(cavity \mid toothache) = \underline{P(cavity \land toothache)} \\ P(toothache) \end{array} = \underbrace{0.108 + 0.012}_{0.108 + 0.012 + 0.016 + 0.064} = 0.6 \end{array}$

 $P(\neg cavity \mid toothache) = P(\neg cavity \land toothache) = ???$ P(toothache)

P(snow|warm) = Probability that it will snow *given* that it is warm

Т	W	P(T,W)
Warm	snow	0.3
Warm	hail	0.2
Cold	snow	0.2
Cold	hail	0.3

$$P(snow|warm) = \frac{P(warm, snow)}{P(warm)} = \frac{P(warm, snow)}{P(warm, hail) + P(warm, snow)}$$

$$P(snow|warm) = \frac{P(warm, snow)}{P(warm)} = \frac{P(warm, snow)}{P(warm, hail) + P(warm, snow)}$$
$$= \frac{0.3}{0.2 + 0.3}$$

$$P(snow|warm) = \frac{P(warm, snow)}{P(warm)} = \frac{P(warm, snow)}{P(warm, hail) + P(warm, snow)}$$
$$= \frac{0.3}{0.2 + 0.3}$$

$$P(snow|warm) = \frac{P(warm, snow)}{P(warm)} = \frac{P(warm, snow)}{P(warm, hail) + P(warm, snow)}$$
$$= \frac{0.3}{0.2 + 0.3}$$

Т	W	P(T,W)			
Warm	snow	0.3		W	P(W T=warm)
Warm	hail	0.2	>	snow	0.6
Cold	snow	0.2		hail	0.4
Cold	hail	0.3			

Can we avoid explicitly computing this denominator?

$$P(snow|warm) = \frac{P(warm, snow)}{P(warm, hail) + P(warm, snow)}$$

Any ideas?

Т	W	P(T,W)	P(W,t)		· · · · · · · · · · · · · · · · · · ·
Warm	snow	0.3	$P(W t) = \frac{I(W,t)}{D(t)}$	W	P(W T=warm)
Warm	hail	0.2	$\Gamma(l)$	SNOW	0.6
Cold	snow	0.2		hail	0.4
Cold	hail	0.3	<u>Two steps:</u>		
			1. Copy entries		
Γ	W P	v(W,T=warny)		W	P(W T=warm)
Γ	snow	0.3 🗡	■2. Scale them up so	snow	0.6
	hail	0.2	that entries sum to 1	hail	0.4

$$P(W|t) = \frac{P(W,t)}{P(t)}$$

The only purpose of this denominator is to make the distribution sum to one.

- we achieve the same thing by scaling.

A Problem...

So far we have done inference using the full joint distribution

But, this doesn't scale well with complex domains...

- e.g. 30 boolean variables requires us to specify 2^30 probabilities!

Way too many!

Possible solution: exploit independence!

- Expand our dentistry joint distribution by adding a fourth variable, weather
 - P(Toothache, Catch, Cavity, Weather)
- Now have a table of 32 entries
 - (Assuming Weather = {cloudy, rain, sunny, snow})
- But consider the relation these variables have:
 - P(toothache, catch, cavity, cloudy)
 - Does cloudy influence dentistry?

- By the product rule:
 - P(toothache, catch, cavity, cloudy) = P(cloudy|toothache, catch, cavity) x P(toothache, catch, cavity)
- Reasonable to assume dental facts and the weather don't influence each other, so:
 - P(cloudy | toothache, catch, cavity) = P(cloudy)
- Therefore: P(toothache, catch, cavity, cloudy) = P(cloudy) x P(toothache, catch, cavity)
- Reducing the 32 entry table to an 8 element table and 4 element table
 - Calculation of joint is a product of the entries in these tables

- A and B are independent iff P(X, Y) = P(X)P(Y)
 - P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P(Weather)
- In other words the joint distribution factors into a product of two smaller, simpler distributions
- Equivalently
 - P(X|Y) = P(X) or P(Y|X) = P(Y)
- If two events are independent, knowing one has occurred does not give us any new information about the other

INDEPENDENT?

• P(X|Y) = P(X) or

- P(Y|X) = P(Y) or
- P(X, Y) = P(X)P(Y)

$P_1(T,W)$				
Т	W	Ρ		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

P(T)				
Т	Р			
hot	0.5			
cold 0.5				
P(V	V)			
<i>P(V</i>	V) P			

Dal	(T)	W)	
12	$(\bot,$	VV)	

		_
Т	W	Ρ
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

- Formally independence is (equivalently)
 - In terms of conditional distributions
 - P(X|Y) = P(X) or P(Y|X) = P(Y)
 - In terms of joint distributions
 - P(X, Y) = P(X)P(Y)
- Independence can greatly reduce the probabilities that need to be specified
INDEPENDENCE

- However full independence is rare
 - Just as separate subgraphs were rare in CSPs
 - In empirical data especially, it's rare not to see some interaction (real or not)
 - Sunspot activity and GDP,
 - Sunspot activity and stock market
 - Sunspot activity and ...
- We need to consider a more limited form of independence

CONDITIONAL INDEPENDENCE

We will consider a more limited form of independence Conditional Independence: P(X,Y|Z) = P(X|Z)P(Y|Z)

P(Toothache, Cavity, Catch) has 8 - 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: P(catch|toothache, ¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity: P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:

P(Toothache|Catch, Cavity)=P(Toothache|Cavity) P(Toothache, Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)

CONDITIONAL INDEPENDENCE

- Write out full joint distribution using chain rule:
- P(Toothache, Catch, Cavity)
 - = P(Toothache|Catch, Cavity)P(Catch, Cavity)
 - = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
 - = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
- 2 + 2 + 1 = 5 independent numbers
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n
- Conditional independence is our most basic and robust form of knowledge about uncertain environments

Bayes Rule

<u>Thomas Bayes (1701 – 1761)</u>:

- English statistician, philosopher and Presbyterian minister
- formulated a specific case of the formula above
- his work later published/generalized by Richard Price

Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

It's easy to derive from the product rule:

$$P(a,b) = P(b|a)P(a) = P(a|b)P(b)$$

Using Bayes Rule

 $P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$

Using Bayes Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

But harder to estimate this

It's often easier to estimate this

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

We need a little more information...

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

- P(s|m) = 0.7
- P(s) = 0.01

Prior probability of stiff neck

Prior probability of meningitis

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$

Given:

W	P(W)
snow	0.8
hail	0.2

Т	W	P(T W)
Warm	snow	0.3
Warm	hail	0.4
Cold	snow	0.7
Cold	hail	0.6

Calculate P(W|warm):

$$P(W|warm) = \frac{P(warm|W)P(W)}{P(warm)}$$

Given:

W	P(W)	
snow	0.8	
hail	0.2	

Т	W	P(T W)
Warm	snow	0.3
Warm	hail	0.4
Cold	snow	0.7
Cold	hail	0.6

Calculate P(W|warm):

$$P(W|warm) = \frac{P(warm|W)P(W)}{P(warm)}$$

$$P(hail|warm) = \frac{0.4 \times 0.2}{P(warm)} = \frac{0.08}{P(warm)}$$

$$= 0.25$$

$$P(snow|warm) = \frac{0.3 \times 0.8}{P(warm)} = \frac{0.24}{P(warm)}$$

$$= 0.75$$

SO FAR: IMPORTANT FORMULAS

- Basic axioms
 - $P(a) \ge 0$
 - $\sum_{a \in X} P(a) = 1$
 - $P(\neg a) = 1 P(a)$
 - (holds for joint distributions as well)
- Inclusion-exclusion principle
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$
- Marginal probability

• $P(Y) = \sum_{z \in Z} P(Y, z)$

- X and Y are independent IF
 - P(X, Y) = P(X)P(Y)
 - P(X|Y) = P(X) or P(Y|X) = P(Y) or
- *X*, *Y* are conditional independent given Z <u>IF</u>
 - $\mathbf{P}(X,Y|Z) = \mathbf{P}(X|Z) \mathbf{P}(Y|Z)$
 - P(X|Y,Z) = P(X|Z)
 - $\mathbf{P}(Y|X,Z) = \mathbf{P}(Y|Z)$

- Definition of conditional probability:
 - $P(a \mid b) = \frac{P(a \land b)}{P(b)}$
 - $P(X|Y) = \frac{P(X,Y)}{P(Y)}$
- Product Rule:
 - $P(a \land b) = P(a|b) P(b) \text{ or } P(a \land b) = P(b|a) P(a)$

•
$$P(X_n, ..., X_1) = P(X_n | X_{n-1}, ..., X_1) P(X_{n-1}, ..., X_1)$$

- Chain Rule:
 - $P(X_n, ..., X_1) = P(X_n | X_{n-1}, ..., X_1) P(X_{n-1} | X_{n-2}, ..., X_1) ... P(X_1)$
- Bayes Rule
 - $P(Y|X) = \underline{P(X|Y) P(Y)}$

P(X)

- $P(Y|X, e) = \underline{P(X|Y, e) P(Y | e)}$
 - P(X | e)

MAKING DECISIONS UNDER UNCERTAINTY

- Going to the airport: $A_{\boldsymbol{X}}$ means leaving \boldsymbol{X} minutes before the flight
- Suppose I believe the following:
- $P(A_{25} \text{ gets me there on time}|...) = 0.04$
- $P(A_{90} \text{ gets me there on time}|...) = 0.70$
- $P(A_{120} \text{ gets me there on time}|...) = 0.95$
- $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$
- Which action to choose?

MAKING DECISIONS UNDER UNCERTAINTY

- Suppose I believe the following:
- $P(A_{25} \text{ gets me there on time}|...) = 0.04$
- $P(A_{90} \text{ gets me there on time}|...) = 0.70$
- $P(A_{120} \text{ gets me there on time}|...) = 0.95$
- $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$
- Which action to choose?
- Depends on my preferences for missing flight vs. airport cuisine, etc.
- Utility theory is used to represent and infer preferences
- Decision theory = utility theory + probability theory

MAKING DECISIONS UNDER UNCERTAINTY

- Rational decision making requires reasoning about one's uncertainty and objectives
- Previous section focused on uncertainty
- This section will discuss how to make rational decisions based on a probabilistic model and utility function
- Focus will be on single step decisions, later we will consider sequential decision problems

PREFERENCES

- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
- Lottery *L*=[*p*,*A*; (1–*p*),*B*]
- Notation:

- A > B A preferred to B
- *A* ~ *B* indifference between *A* and *B*
- $A \ge B$ B not preferred to A

RATIONAL PREFERENCES

- Idea: preferences of a rational agent (*not* a human!) must obey constraints
- Rational preferences \Rightarrow behavior describable as maximization of expected utility
- The Axioms of Rationality:

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

RATIONAL PREFERENCES

- Violating the constraints leads to selfevident irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money

- If B > C, then an agent who has C would pay (say) 1 cent to get B
- If A > B, then an agent who has B would pay (say) 1 cent to get A
- If C > A, then an agent who has A would pay (say) 1 cent to get C

REMINDER: EXPECTATION

 The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

Example: How long to get to the airport?

MAXIMIZING EXPECTED UTILITY (MEU)

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a real-valued function U such that
 - $U(A) \ge U(B) \Leftrightarrow A \ge B$
 - $U(A) > U(B) \Leftrightarrow A > B$
 - $U(A) = U(B) \Leftrightarrow A \sim B$
 - $U([p_1, s_1; \dots; p_n, s_n]) = \sum_i p_i U(s_i)$
- MEU principle: Choose the action that maximizes expected utility

PREFERENCES LEAD TO UTILITIES

- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe
- Although a utility function must exist, it is not unique
 - If U'(S)=aU(S)+b and a and b are constants with a>0, then preferences of U' are the same as U
 - E.g., temperatures in Celcius, Fahrenheit, Kelvin

MAXIMIZING EXPECTED UTILITY

- Agent has made some (imperfect) observation *o* of the state of the world
- If the agent executes action a, the probability the state of the world becomes s' is given by P(s' | o, a)
- Preferences on outcomes is encoded using utility function U(s)
- Expected utility:
- Principal of maximum expected utility says that a rational agent should choose the action that maximizes expected utility a* =argmax_a EU(a|o)

UTILITIES: PREFERENCE ELICITATION

- When building a decision-making or decision-support system, it is often helpful to infer the utility function from a human
- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has
 - "best possible prize" u_{\top} with probability p
 - "worst possible catastrophe" u_{\perp} with probability (1-p)

pay \$30

• Adjust lottery probability p until $A \sim L_p$

Alternatively, set best possible utility to 1 and worst possible to 0

MONEY

- Money does not behave as a utility function
- Given a lottery *L* with expected monetary value *EMV(L)*, usually *U(L) < U(EMV(L))*, i.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between a prize x and a lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior (utility of money is proportional to the logarithm of the amount):

SUMMARY

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools
- Next time: sequential decision making!