Neural Networks

Robert Platt Northeastern University

Some images and slides are used from:

1. CS188 UC Berkeley

- The essence of machine learning:
 - A pattern exists
 - We cannot pin it down mathematically
 - We have data on it
- A pattern exists. We don't know it. We have data to learn it.
- Learning from data to get an information that can make prediction

Applicant information:

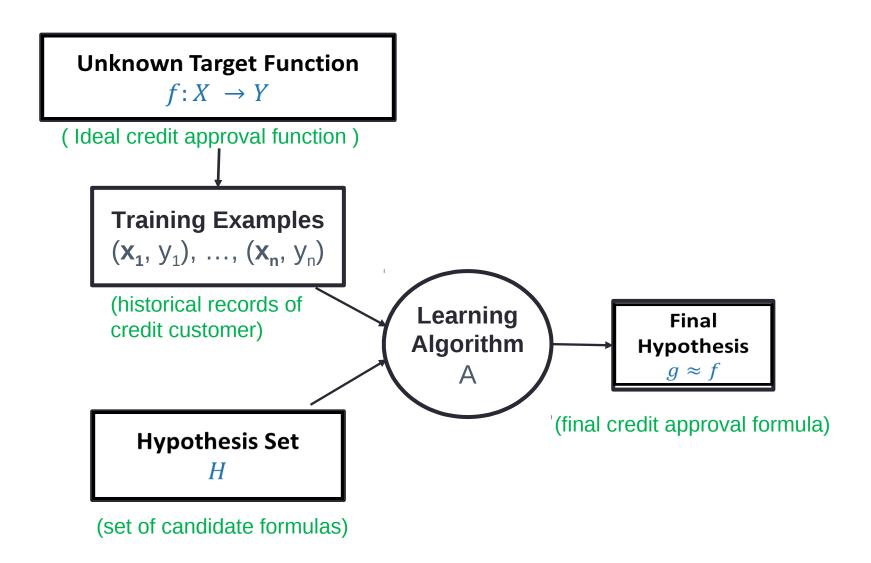
Age	23 years			
Gender	male			
Annual salary	\$30,000			
Years in residence	1 year			
Years in job	1 year			
Current debt	\$15,000			

Approve credit?

Formalization:

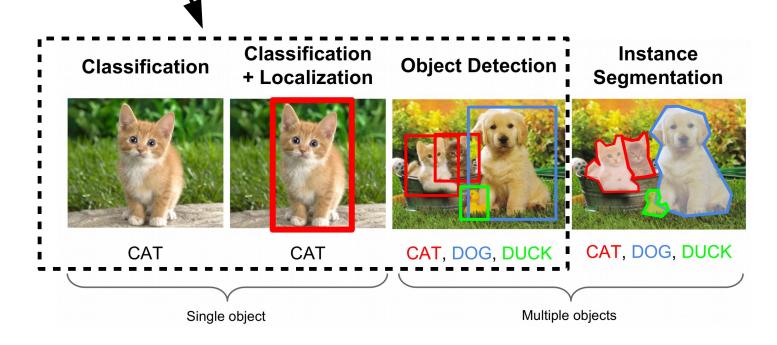
- Input: x (customer application)
- Output: y (good/bad customer?)
- Target function: (ideal credit approval formula)
- Data: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ (historical records)

• Hypothesis: $g: X \to Y$ (formula/classifier to be used)



Applications

We will focus on these applications



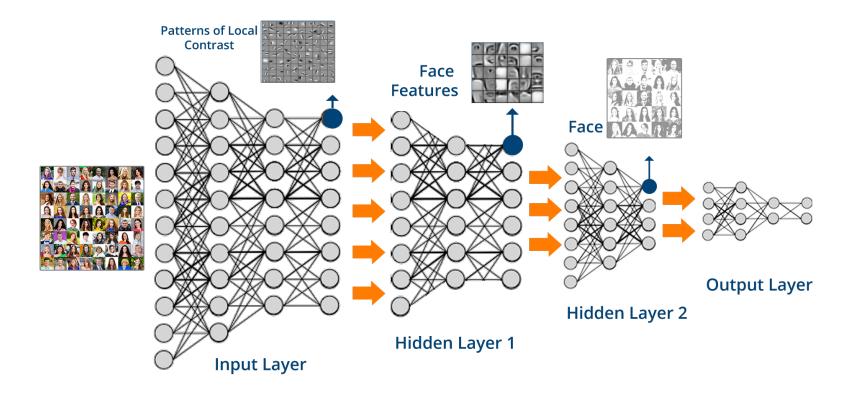
We will ignore these applications

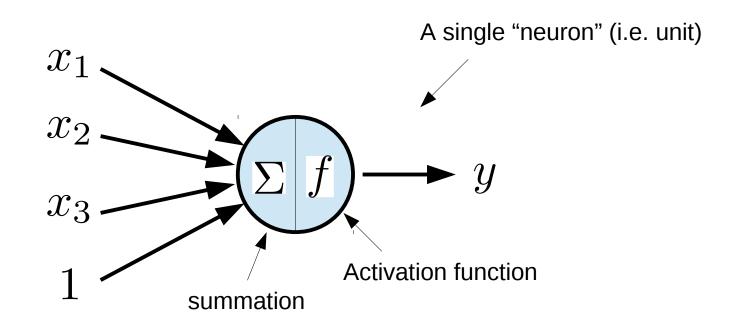
- image segmentation
- speech-to-text
- natural language processing

— ...

.. but deep learning has been applied in lots of ways...

Example of a deep neural network

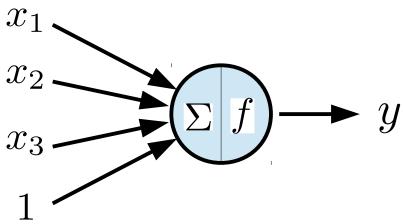




$$y = f(w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + b)$$

$$= f(w^T x + b)$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$



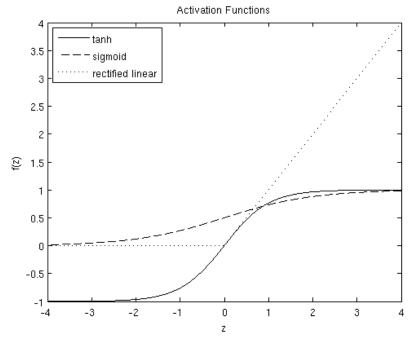
Different activation functions:

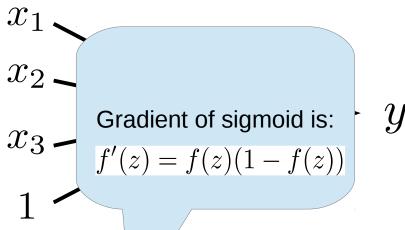
$$- \operatorname{sigmoid} \qquad f(z) = \frac{1}{1 + e^{-z}}$$

- sigmoid
$$f(z) = \frac{1}{1+e^{-z}}$$
 - tanh
$$f(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- rectified linear unit (ReLU)

$$f(z) = \max(0, z)$$





Different activation functions

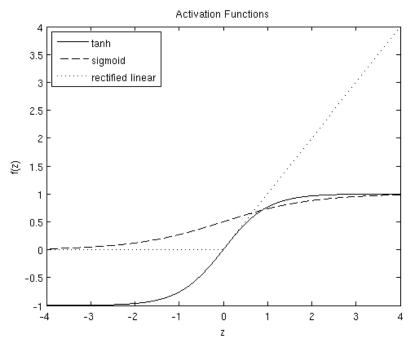
- sigmoid
$$f(z) = \frac{1}{1 + e^{-z}}$$

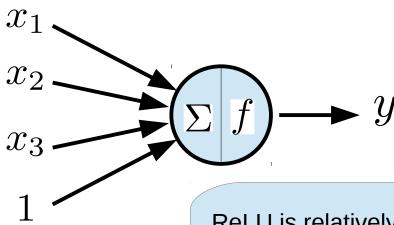
$$- \operatorname{sigmoid} \qquad f(z) = \frac{1}{1+e^{-z}}$$

$$- \tanh \qquad f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- rectified linear unit (ReLU)

$$f(z) = \max(0, z)$$





Different activation functions:

– sigmoid
$$f(z) = \frac{1}{1 + e^{-z}}$$

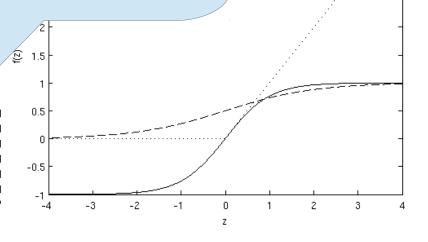
$$- \mbox{ sigmoid } \qquad f(z) = \frac{1}{1+e^{-z}}$$

$$- \mbox{ tanh } \qquad f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

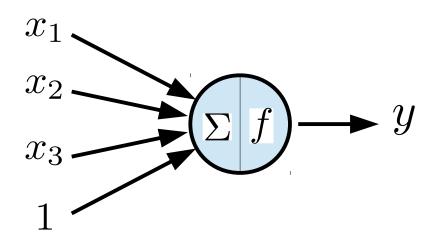
rectified linear unit (ReLU)

$$f(z) = \max(0, z)$$

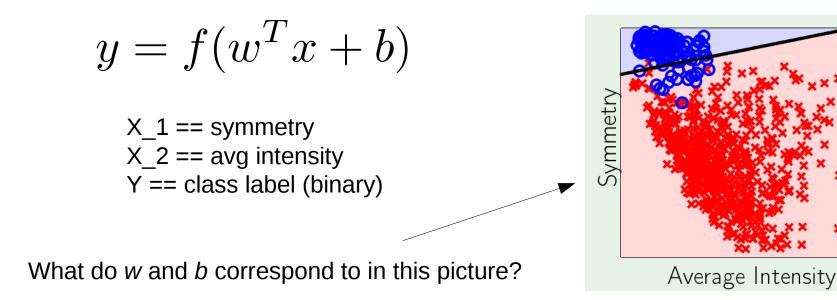
- efficient to evaluate
- enables more layers b/c attenuates gradient less



Functions



One layer neural network has a simple interpretation: linear classification.



Given a dataset:
$$D = \{(x^1, y^1), (x^2, y^2), \dots, (x^n, y^n)\}$$

Define loss function:
$$L(x^i, y^i; w, b) = (y^i - f(w^T x^i + b))^2$$

Given a dataset:
$$D = \{(x^1, y^1), (x^2, y^2), \dots, (x^n, y^n)\}$$

Define loss function:
$$L(x^i,y^i;w,b)=\frac{1}{2}(y^i-f(w^Tx^i+b))^2$$

Loss function tells us how well the network classified x^i

Given a dataset:
$$D = \{(x^1, y^1), (x^2, y^2), \dots, (x^n, y^n)\}$$

Define loss function:
$$L(x^i, y^i; w, b) = \frac{1}{2}(y^i - f(w^Tx^i + b))^2$$

Loss function tells us how well the network classified x^i

Method of training: adjust w, b so as to minimize the net loss over the dataset

i.e.: adjust
$$w$$
, b so as to minimize:
$$\sum_{(x^i,y^i)\in D} L(x^i,y^i;w,b)$$

If the sum of losses is zero, then the network has classified the dataset perfectly

Method of training: adjust *w*, *b* so as to minimize the net loss over the dataset

i.e.: adjust
$$w$$
, b so as to minimize:
$$\sum_{(x^i,y^i)\in D} L(x^i,y^i;w,b)$$

Method of training: adjust *w*, *b* so as to minimize the net loss over the dataset

i.e.: adjust w, b so as to minimize: $\sum_{(x^i,y^i)\in D} L(x^i,y^i;w,b)$

How?

Time out for gradient descent

Suppose someone gives you an unknown function F(x)

- you want to find a minimum for F
- but, you do not have an analytical description of F(x)

Use gradient descent!

– all you need is the ability to evaluate F(x) and its gradient at any point x

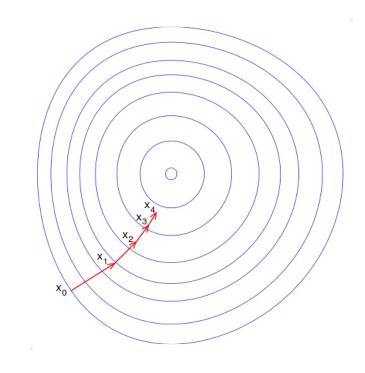
1. pick x_0 at random

2.
$$x_1 = x_0 - \alpha \nabla_x F(x_0)$$

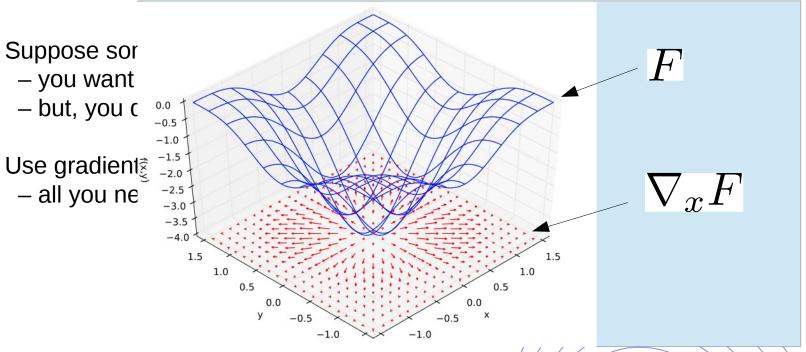
з.
$$x_2=x_1-\alpha \nabla_x F(x_1)$$

4.
$$x_3 = x_2 - \alpha \nabla_x F(x_2)$$

5. ...



Time out for gradient descent



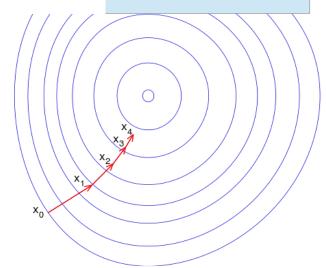
1. pick x_0 at random

2.
$$x_1 = x_0 - \alpha \nabla_x F(x_0)$$

3.
$$x_2=x_1-\alpha\nabla_xF(x_1)$$

4.
$$x_3 = x_2 - \alpha \nabla_x F(x_2)$$

5. ...



Method of training: adjust w, b so as to minimize the net loss over the dataset

i.e.: adjust
$$w$$
, b so as to minimize:
$$\sum_{(x^i,y^i)\in D} L(x^i,y^i;w,b)$$

Do gradient descent on dataset:

1. repeat

2.
$$w \leftarrow w - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_w L(x^i, y^i; w, b)$$
3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_b L(x^i, y^i; w, b)$$

3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_b L(x^i, y^i; w, b)$$

4. until converged

$$\nabla_w L(x^i, y^i; w, b) = -(y^i - f(w^T x^i + b)) f'(w^T x^i + b) x^i$$
 Where:
$$\nabla_b L(x^i, y^i; w, b) = -(y^i - f(w^T x^i + b)) f'(w^T x^i + b)$$

Method of training: adjust w, b so

i.e.: adjust w, b so as to minimize:

This is the similar to logistic regression

- logistic regression uses a cross entropy loss
- we are using a quadratic loss

Do gradient descent on dataset:

1. repeat

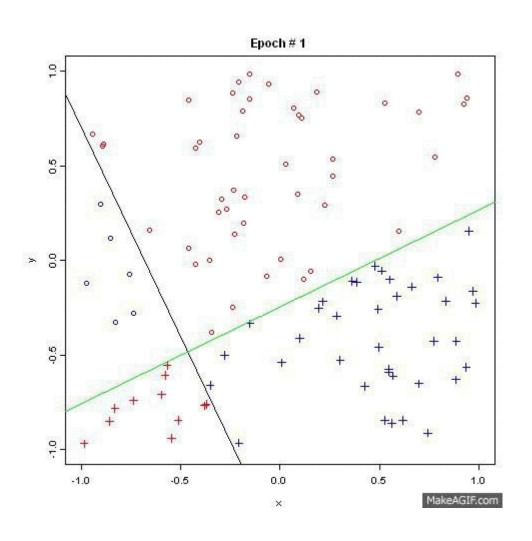
2.
$$w \leftarrow w - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_w L(x^i, y^i; w, b)$$
3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_b L(x^i, y^i; w, b)$$

3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_b L(x^i, y^i; w, b)$$

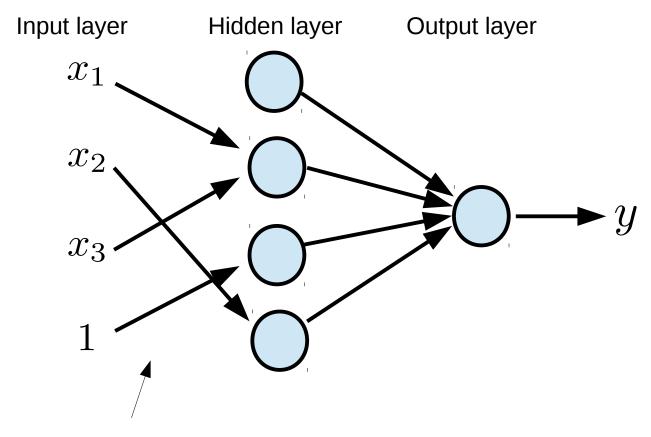
4. until converged

$$\nabla_w L(x^i, y^i; w, b) = -(y^i - f(w^T x^i + b)) f'(w^T x^i + b) x^i$$
 Where:
$$\nabla_b L(x^i, y^i; w, b) = -(y^i - f(w^T x^i + b)) f'(w^T x^i + b)$$

Training example

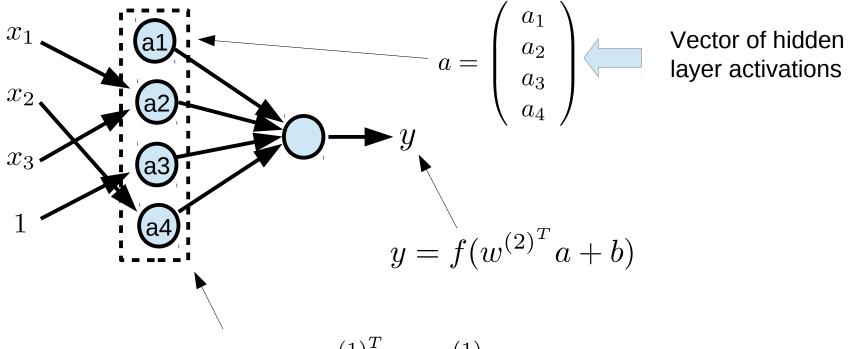


Going deeper: a one layer network



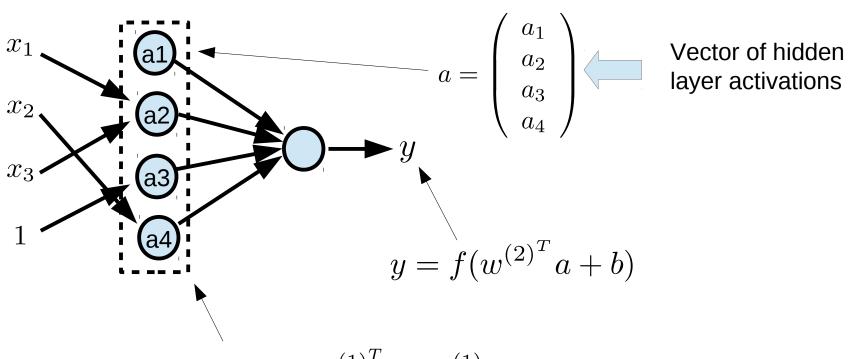
Each hidden node is connected to every input

Multi-layer evaluation works similarly



Single activation: $a_i = f(w_i^{(1)^T} x + b_i^{(1)})$

Multi-layer evaluation works similarly

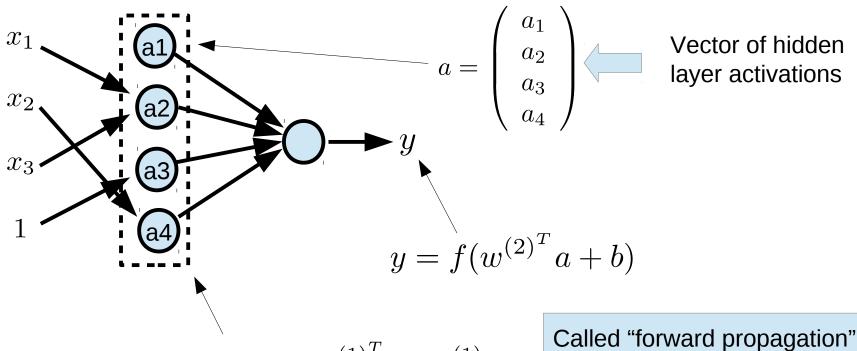


Single activation: $a_i = f(w_i^{(1)^T} x + b_i^{(1)})$

Vector of activations: $a = f(W^{(1)}x + b^{(1)})$

where
$$W^{(1)}=\left(egin{array}{c} w_1^{(1)^T} \\ draingledows\\ w_4^{(1)^T} \end{array}
ight)$$
 $b^{(1)}=\left(egin{array}{c} b_1 \\ draingledows\\ b_4 \end{array}
ight)$

Multi-layer evaluation works similarly



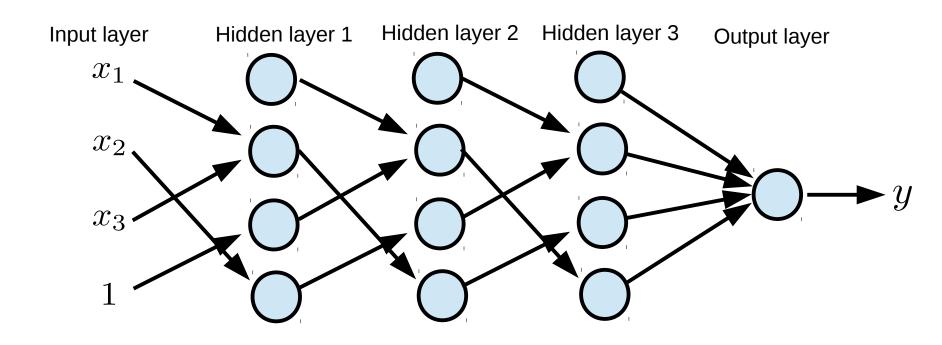
Single activation: $a_i = f(w_i^{(1)^T} x + b_i^{(1)})$

Vector of activations: $a = f(W^{(1)}x + b^{(1)})$

- b/c the activations are propogated forward...

where
$$W^{(1)}=\left(egin{array}{c} w_1^{(1)^T} \\ draingledows \\ w_4^{(1)^T} \end{array}
ight)$$
 $b^{(1)}=\left(egin{array}{c} b_1 \\ draingledows \\ b_4 \end{array}
ight)$

Can create networks of arbitrary depth...



- Forward propagation works the same for any depth network.
- Whereas a single output node corresponds to linear classification, adding hidden nodes makes classification non-linear

How do we train multi-layer networks?

Almost the same as in the single-node case...

Do gradient descent on dataset:

1. repeat

2.
$$w \leftarrow w - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_w L(x^i, y^i; w, b)$$
3. $b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in D} \nabla_b L(x^i, y^i; w, b)$

4. until converged

Now, we're doing gradient descent on all weights/biases in the network – not just a single layer

this is called backpropagation

Backpropagation

- 1. Perform a feedforward pass, computing the activations for layers L_2 , L_3 , and so on up to the output layer L_{n_l} .
- 2. For each output unit i in layer n_l (the output layer), set

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

3. For $l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$

For each node i in layer l, set

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

4. Compute the desired partial derivatives, which are given as:

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x, y) = a_j^{(l)} \delta_i^{(l+1)}$$
$$\frac{\partial}{\partial b_i^{(l)}} J(W, b; x, y) = \delta_i^{(l+1)}.$$

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Training in mini-batches

1. repeat

A batch is typically between 32 and 128 samples

2. randomly sample a mini-batch: $B \subset D$

3.
$$w \leftarrow w - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in B} \nabla_w L(x^i, y^i; w, b)$$
3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in B} \nabla_b L(x^i, y^i; w, b)$$

3.
$$b \leftarrow b - \alpha \frac{1}{n} \sum_{(x^i, y^i) \in B} \nabla_b L(x^i, y^i; w, b)$$

4. until converged

Training in mini-batches helps b/c:

- don't have to load the entire dataset into memory
- training is still relatively stable
- random sampling of batches helps avoid local minima

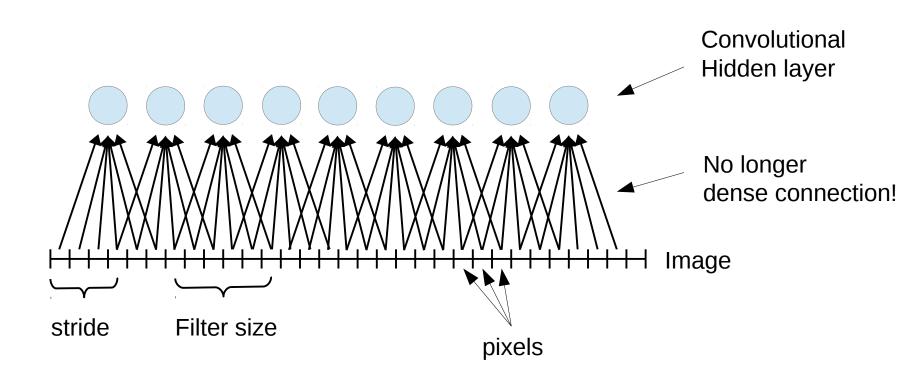
Deep multi-layer perceptron networks

- general purpose
- involve huge numbers of weights

We want:

- special purpose network for image and NLP data
- fewer parameters
- fewer local minima

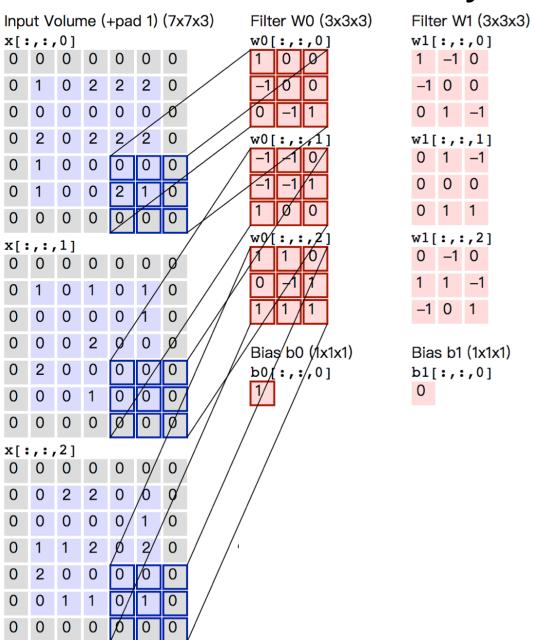
Answer: convolutional layers!



Two dimensional example:

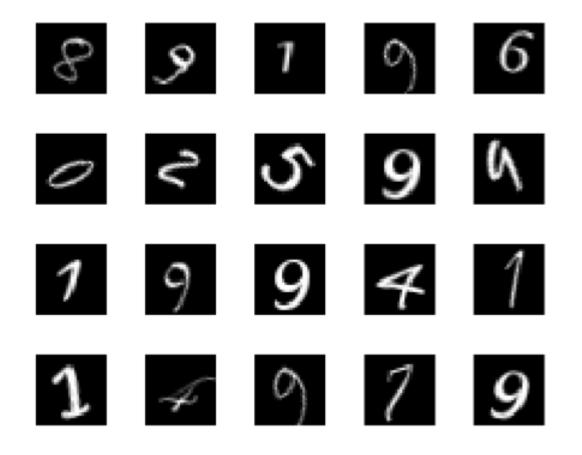
1,	1 _{×0}	1,	0	0				
O _{×0}	1 _{×1}	1,0	1	0	4			
0 _{×1}	0,0	1,	1	1				
0	0	1	1	0				
0	1	1	0	0				•
Image			Convolved Feature					

Why do you think they call this "convolution"?



Output Volume (3x3x2)
o[:,:,0]
2 -2 -1
2 -3 -3
2 -1 -2
o[:,:,1]
-2 4 -1
3 3 0
-2 2 -1

Example: MNIST digit classification with LeNet

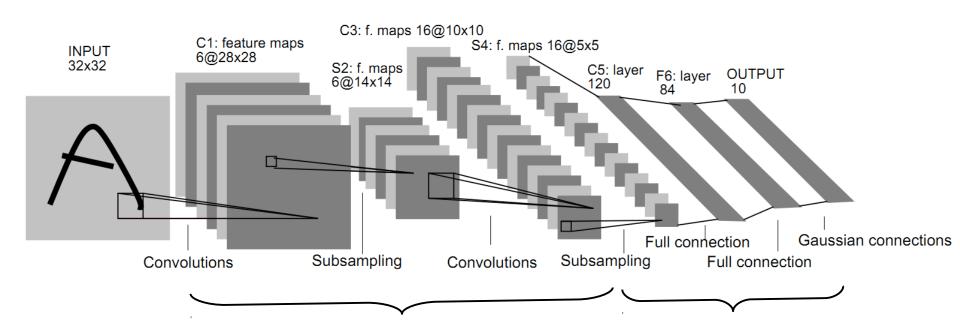


MNIST dataset: images of 10,000 handwritten digits

Objective: classify each image as the corresponding digit

Example: MNIST digit classification with LeNet

LeNet:



two convolutional layers – conv, relu, pooling

two fully connected layers

- relu
- last layer has logistic activation function

Example: MNIST digit classification with LeNet

Load dataset, create train/test splits

Example: MNIST digit classification with LeNet

Define the neural network structure:

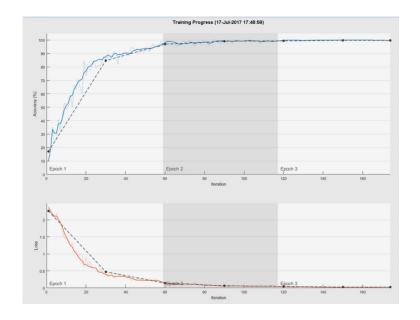
```
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16,'Padding',1)
                                                    Input
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride',2)
    convolution2dLayer(3,32, 'Padding',1)
    batchNormalizationLayer
                                                    Conv1
    reluLayer
    maxPooling2dLayer(2, 'Stride',2)
    convolution2dLayer(3,64, 'Padding',1)
                                                    Conv2
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(50)
                                                    FC1
    reluLayer
                                                    FC2
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
options = trainingOptions('sqdm',...
'MaxEpochs',3, ...
'ValidationData', valDigitData, . . .
'ValidationFrequency',30,...
'Verbose', true, ...
'ExecutionEnvironment', 'gpu', ....
'Plots', 'training-progress');
```

Example: MNIST digit classification with LeNet

Train network, classify test set, measure accuracy

- notice we test on a different set (a holdout set) than we trained on

```
net = trainNetwork(trainDigitData, layers, options);
predictedLabels = classify(net, valDigitData);
valLabels = valDigitData.Labels;
accuracy = sum(predictedLabels == valLabels)/numel(valLabels);
```



Using the GPU makes a huge differece...

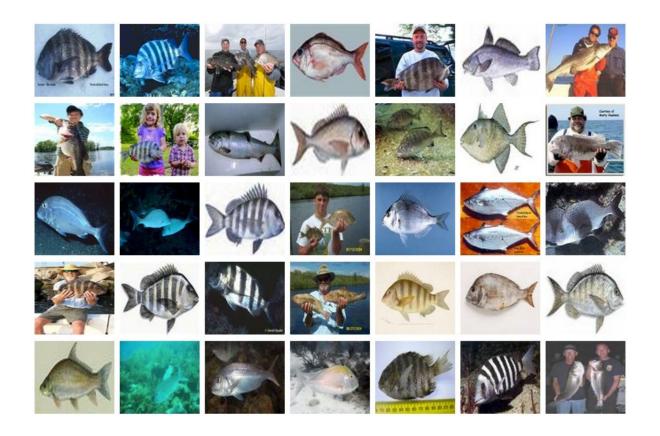
Deep learning packages

You don't need to use Matlab (obviously)

Tensorflow is probably the most popular platform

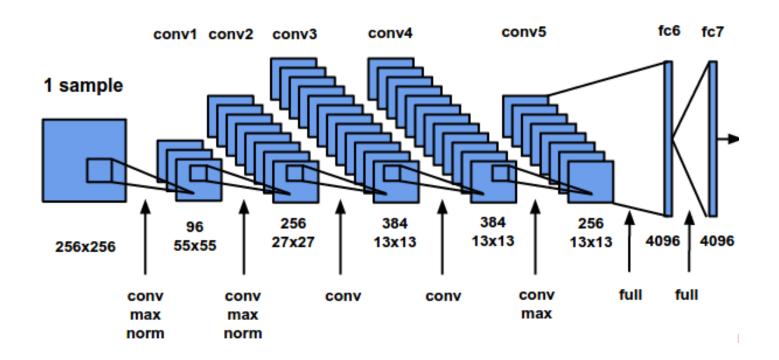
Caffe and Theano are also big

theano



ImageNet dataset: millions of images of objects

Objective: classify each image as the corresponding object (1k categories in ILSVRC)

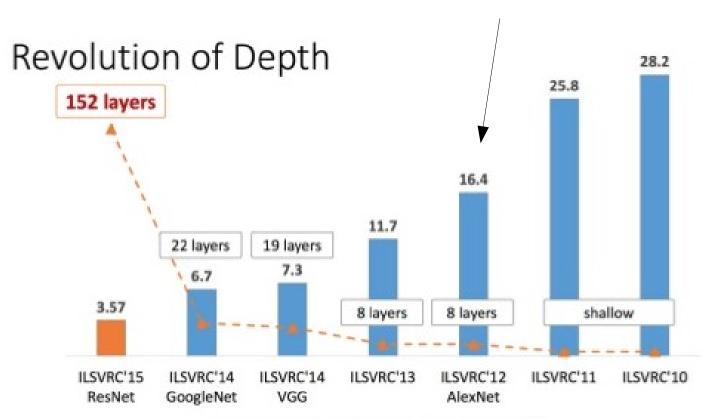


AlexNet has 8 layers: five conv followed by three fully connected

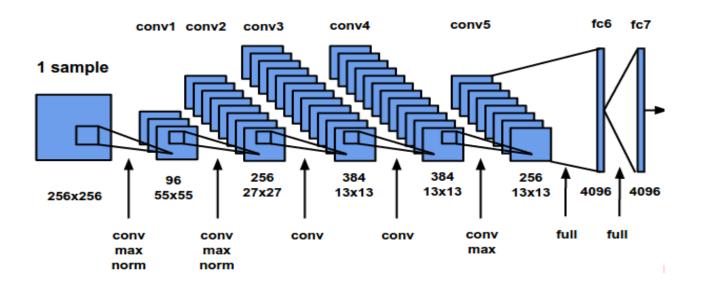
```
'data'
                Image Input
                                              227x227x3 images with 'zerocenter' normalization
1
     'conv1'
                                              96 11x11x3 convolutions with stride [4 4] and padding [0 0]
 2
                Convolution
     'relu1'
                ReLU
                                              ReLU
     'norm1'
                Cross Channel Normalization
                                              cross channel normalization with 5 channels per element
     'pool1'
                Max Pooling
                                              3x3 max pooling with stride [2 2] and padding [0 0]
     'conv2'
                Convolution
                                              256 5x5x48 convolutions with stride [1 1] and padding [2 2]
     'relu2'
 7
                ReLU
                                               ReLU
                                              cross channel normalization with 5 channels per element
                Cross Channel Normalization
     'norm2'
8
9
     'pool2'
                Max Pooling
                                              3x3 max pooling with stride [2 2] and padding [0 0]
     'conv3'
                Convolution
                                              384 3x3x256 convolutions with stride [1 1] and padding [1 1]
10
     'relu3'
                                              ReLU
11
                ReLU
     'conv4'
                Convolution
                                              384 3x3x192 convolutions with stride [1 1] and padding [1 1]
12
     'relu4'
13
                ReLU
                                              ReLU
                                              256 3x3x192 convolutions with stride [1 1] and padding [1 1]
14
     conv5'
                Convolution
    'relu5'
15
                ReLU
                                              ReLU
     'pool5'
16
                Max Pooling
                                              3x3 max pooling with stride [2 2] and padding [0 0]
     'fc6'
                Fully Connected
                                              4096 fully connected layer
17
18
     'relu6'
                ReLU
                                              ReLU
     'drop6'
                Dropout
19
                                              50% dropout
     'fc7'
                Fully Connected
                                              4096 fully connected layer
20
     'relu7'
21
                ReLU
                                              ReLU
    'drop7'
22
                                              50% dropout
                Dropout
     'fc8'
                Fully Connected
                                              1000 fully connected layer
23
     'prob'
                Softmax
                                              softmax
24
25
     'output'
                Classification Output
                                              crossentropyex with 'tench', 'goldfish', and 998 other classes
```

AlexNet has 8 layers: five conv followed by three fully connected

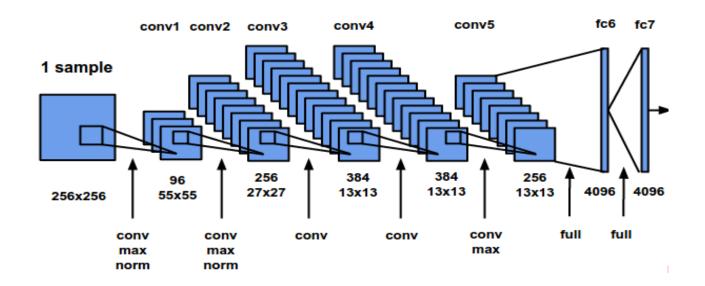
AlexNet won the 2012 ILSVRC challenge – sparked the deep learning craze



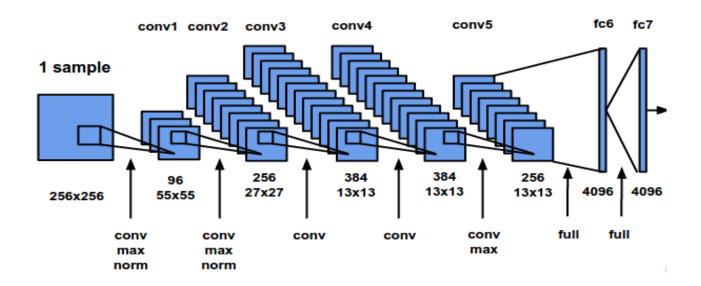
ImageNet Classification top-5 error (%)



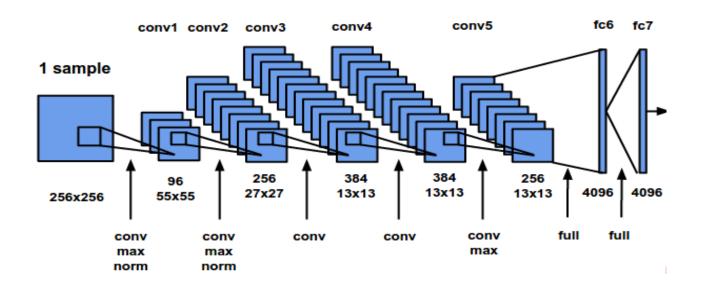
Layer conv1 Features



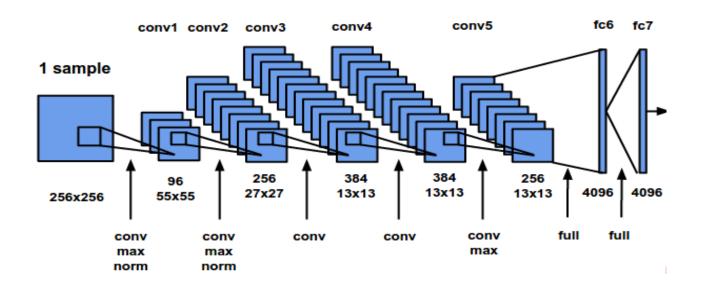
Layer conv2 Features



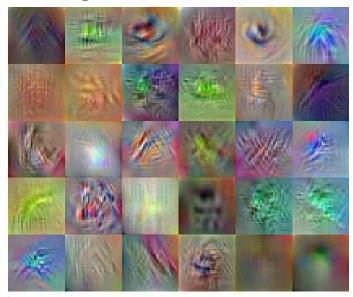
Layer conv3 Features



Layer conv4 Features

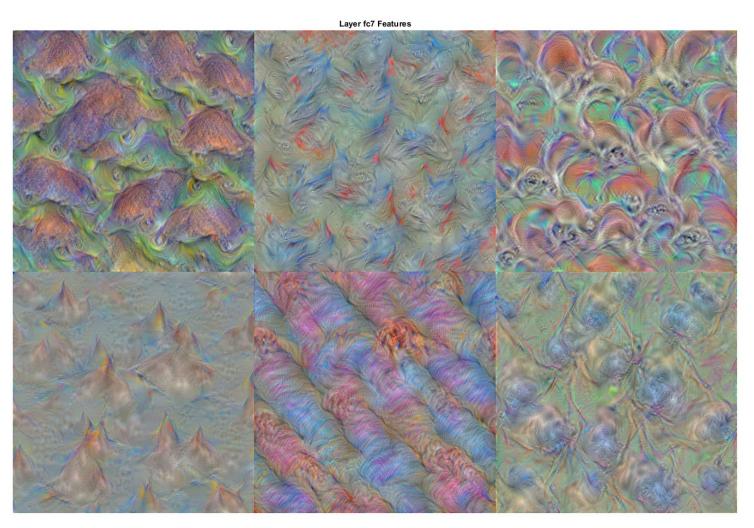


Layer conv5 Features

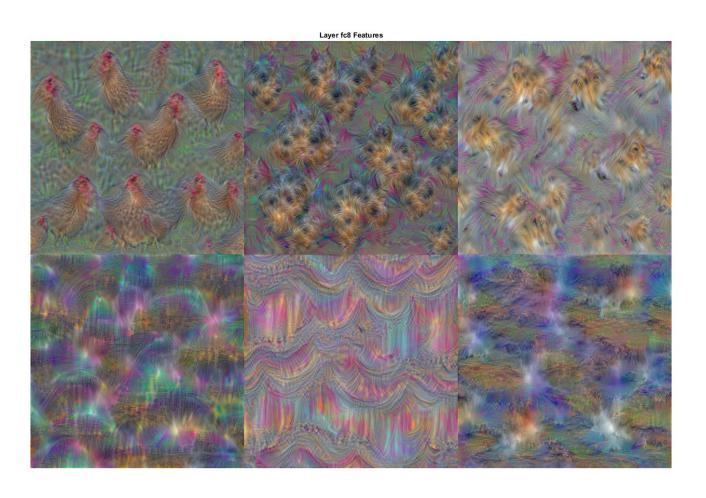


FC layer 6

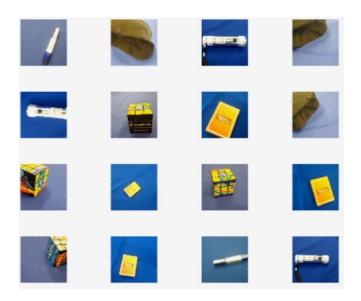
FC layer 7



Output layer



Finetuning



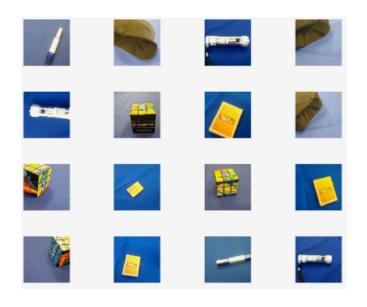
AlexNet has 60M parameters

therefore, you need a very large training set (like imagenet)

Suppose we want to train on our own images, but we only have a few hundred?

AlexNet will drastically overfit such a small dataset... (won't generalize at all)

Finetuning



<u>Idea:</u>

- 1. pretrain on imagenet
- 2. finetune on your own dataset

AlexNet has 60M parameters

therefore, you need a very large training set (like imagenet)

Suppose we want to train on our own images, but we only have a few hundred?

- AlexNet will drastically overfit such a small dataset... (won't generalize at all)