NAIVE BAYES

Slide adapted from learning from data book and course, and
Berkeley cs188 by Dan Klein, and Pieter Abbeel



Machine Learning Recap

* Learning from data

* Tasks:

* Prediction

- Classification

* Recognition
* Focus on Supervised Learning only
* Classification: Naive Bayes



L
Example: Digit Recognition

* Input: images/ pixel grids
* Output: a digit 0-9
* Setup:

* Get a large collection of example images, each label with a digit 9-' 2
* Note: someone has to hand label all this data

- Want to learn to predict labels of new, future digit images

??



Model-Based Classification

* Model-Based approach

* Build a model (e.g. Bayes’ net) where both the label and features are
random variables

* Instantiate any observed features
* Query for the distribution of the label conditioned on the features

* Challenges (solution components)
* How to answer the query
* How should we learn its parameters?
- What structure should the BN have?



Naive Bayes for Digits

* Naive Bayes: Assume all features are independent effects of

the label °

* In other word: features are conditional independent given the

class/label
» Simple digit recognition version:
- One feature (variable) F; for each grid position <i,j> ° e e

 Feature vales are on/off, based on whether intensity is more or less than
0.5 in underlying image
+ Each input maps to feature vector, e.g.
: A - <Foo=0,Fo:=0, ..., Fis:5 =0
- Naive Bayes model: P(Y|Fpo...Fi515) < P(Y) ][ P(Fi;|Y)
]



General Naive Bayes

* A general Naive Bayes Model: G

. |Y| parameters

P(Y,F1...Fp) = P ]]P(FY)

Y| x |F|"values Y| x |F|"values G e G

* We only have to specify how each feature depends on the class
* Total number of parameters is linear in n
* Model is very simplistic, but often work anyway.



Inference for Naive Bayes

* Goal: compute posterior distribution over label variable Y
« Step 1: get joint probability of label and evidence for each label

- P(y1,f1--- fn) | - P(y1) 1L P(fily1) |
P(Y,f1...fn) = P(?J?vfil-'-fn) ‘ P(y2) ....iip(fz' Yy2)
| P(yg, f1--- fn) | - PQyr) I1; P(filyk)
P(f1... fn) +
- Step 2: sum to get probability of evidence 1

« Step 3: normalize by dividing Step 1 by Step 2
P(Y|f1 .- fn)



General Naive Bayes
* What do we need In order to use Naive Bayes?

* Inference method (we just saw this part)
- Start with a bunch of probabilities: P(Y) and the P(F|Y) tables
- Use standard inference to compute P(Y|F;...F,)
* Nothing new here

* Estimates of local conditional probability tables
* P(Y), the prior over labels
* P(F;|Y) for each feature (evidence variable)
- These probabilities are collectively called the parameters of the model and denoted by A
* Up until now, we assumed these appeared by magic, but...
* ...they typically come from training data counts



Example: Conditional Probabilities
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Parameter Estimation

* Estimating the distribution of a random variable (CPTs)
* Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)

 E.g.: for each outcome X, look at the empirical rate of that value:

P (2) = count(x) ‘ ‘ @

total samples
Puyr(r) =2/3

* This Is the estimate that maximizes the likelihood of the data

L(x,0) = [ Py(=2)

* Relative frequencies are the maximum likelihood estimate



Unseen Events and Laplace Smoothing

- What happen if you’'ve never seen an event or feature for a given class?

* Laplace’s estimate:
* Pretend you saw every outcome once more than you actually did

() +1
wossi @ @@
_c(x)+1
N =[x Pyp(X) =
|X| = #class
Prapx(z) = oAw) + & Prap(X) =

N + k| X]|



Summary

* Bayes rule lets us do diagnostic queries with causal probabilities

* The naive Bayes assumption takes all features to be independent given the
class label

* We can build classifiers out of a naive Bayes model using training data

- Smoothing estimates is important in real systems
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