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Machine Learning Recap
• Learning from data
• Tasks:

• Prediction
• Classification
• Recognition

• Focus on Supervised Learning only
• Classification: Naïve Bayes



Example: Digit Recognition

• Input: images/ pixel grids
• Output: a digit 0-9
• Setup:

• Get a large collection of example images, each label with a digit
• Note: someone has to hand label all this data
• Want to learn to predict labels of new, future digit images



Model-Based Classification

• Model-Based approach
• Build a model (e.g. Bayes’ net) where both the label and features are 

random variables
• Instantiate any observed features
• Query for the distribution of the label conditioned on the features

• Challenges (solution components)
• How to answer the query
• How should we learn its parameters?
• What structure should the BN have?



Naïve Bayes for Digits

• Naïve Bayes: Assume all features are independent effects of 
the label

• In other word: features are conditional independent given the 
class/label

• Simple digit recognition version:
• One feature (variable) Fij for each grid position <i,j>
• Feature vales are on/off, based on whether intensity is more or less than 

0.5 in underlying image
• Each input maps to feature vector, e.g.
•  -> < F0,0 = 0, F0,1 =0 , …, F15,15 =0>

• Naïve Bayes model:

Y

F1 FnF2



General Naïve Bayes
• A general Naïve Bayes Model:

•  

• We only have to specify how each feature depends on the class
• Total number of parameters is linear in n
• Model is very simplistic, but often work anyway.

Y

F1 FnF2

|Y| parameters

|Y| x |F|n values |Y| x |F|n values



Inference for Naïve Bayes
• Goal: compute posterior distribution over label variable Y

• Step 1: get joint probability of label and evidence for each label

• Step 2: sum to get probability of evidence
• Step 3: normalize by dividing Step 1 by Step 2

+



General Naïve Bayes

• What do we need in order to use Naïve Bayes?

• Inference method (we just saw this part)
• Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
• Use standard inference to compute P(Y|F1…Fn)
• Nothing new here

• Estimates of local conditional probability tables
• P(Y), the prior over labels
• P(Fi|Y) for each feature (evidence variable)
• These probabilities are collectively called the parameters of the model and denoted by 
• Up until now, we assumed these appeared by magic, but…
• …they typically come from training data counts



Example: Conditional Probabilities

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

1 0.01

2 0.05

3 0.05
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9 0.60

0 0.80



Parameter Estimation
• Estimating the distribution of a random variable (CPTs)
• Elicitation: ask a human (why is this hard?)
• Empirically: use training data (learning!)

• E.g.: for each outcome x, look at the empirical rate of that value:

• This is the estimate that maximizes the likelihood of the data

• Relative frequencies are the maximum likelihood estimate

r r b



Unseen Events and Laplace Smoothing
• What happen if you’ve never seen an event or feature for a given class?
• Laplace’s estimate:

• Pretend you saw every outcome once more than you actually did

r r b

|X| = #class



Summary 
• Bayes rule lets us do diagnostic queries with causal probabilities

• The naïve Bayes assumption takes all features to be independent given the 
class label

• We can build classifiers out of a naïve Bayes model using training data

• Smoothing estimates is important in real systems


	Slide 1
	Machine Learning ??
	Example: Digit Recognition
	Model-Based Classification
	Naïve Bayes for Digits
	General Naïve Bayes
	Inference for Naïve Bayes
	General Naïve Bayes
	Example: Conditional Probabilities
	Parameter Estimation
	Unseen Events and Laplace Smoothing
	Summary

