

Markov Decision Processes

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. AIMA
3. Chris Amato
4. Stacy Marsella

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

But only in deterministic domains...

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

We are going to introduce a new framework for encoding problems
w/ stochastic dynamics: the Markov Decision Process (MDP)

SEQUENTIAL DECISION-
MAKING

• Rational decision making requires reasoning
about one’s uncertainty and objectives

• Previous section focused on uncertainty

• This section will discuss how to make rational
decisions based on a probabilistic model and
utility function

• Last class, we focused on single step decisions,
now we will consider sequential decision
problems

MAKING DECISIONS UNDER
UNCERTAINTY

REVIEW: EXPECTIMAX

• What if we don’t know the outcome of actions?
• Actions can fail

• when a robot moves, it’s wheels might slip
• Opponents may be uncertain

• Expectimax search: maximize average score
• MAX nodes choose action that maximizes

outcome
• Chance nodes model an outcome (a value)

that is uncertain
• Use expected utilities
• weighted average (expectation) of children

10 4 5 7

20 55

max

chance

20 20 10 100

a b

.3 .7 .5 .5

REVIEW: PROBABILITY AND EXPECTED
UTILITY

• EU= ∑ probability(outcome) * value(outcome)

• Expected utility is the probability-weighted average of
all possible values
• I.e., each possible value is multiplied by its probability

of occurring and the resulting products are summed

• What is the expected value of rolling a six-sided die if
you threw the die MANY times?

• (1/6 * 1) + (1/6 * 2) + (1/6 * 3) + (1/6 * 4) + (1/6 * 5) +
(1/6 * 6) = 3.5

DIFFERENT APPROACH IN
SEQUENTIAL DECISION MAKING
• In deterministic planning, our agents generated entire plans

• Entire sequence of actions from start to goals

• Under assumption environment was deterministic, actions were
reliable

• In Expectimax, chance nodes model nondeterminism

• But agent only determined best next action with a bounded horizon

• Now we consider agents who use a “Policy”

• A strategy that determines what action to take in any state

• Assuming unreliable action outcomes & infnite horizons

Markov Decision Process (MDP): grid world example

+1

-1

Rewards:
– agent gets these rewards in these cells
– goal of agent is to maximize reward

Actions: left, right, up, down
– take one action per time step
– actions are stochastic: only go in intended
direction 80% of the time

States:
– each cell is a state

Markov Decision Process (MDP)

Deterministic
– same action always has same outcome

Stochastic
– same action could have different outcomes

1.0 0.1

0.8

0.1

Markov Decision Process (MDP)
Same action could have different outcomes:

0.1
0.8

0.1

0.1
0.8

0.1

s' T(s,a,s')

s_2 0.1

s_3 0.8

s_4 0.1

Transition function at s_1:

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Technically, an MDP is a 4-tuple

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Objective: calculate a strategy for acting so as to maximize
the future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple

What is a policy?

Optimal policy when
R(s, a, s’) = -0.03

for all non-terminals
s (cost of living)

• We want an optimal policy

• A policy gives an action for each state

• An optimal policy is one that maximizes
expected utility if followed

• For Deterministic single-agent search problems,
derived an optimal plan, or sequence of
actions, from start to a goal

• For Expectimax, didn’t compute entire policies

• It computed the action for a single state
only

• Over a limited horizon

• Final rewards only

What is a policy?

A policy tells the agent what action to execute as a function of state:

Deterministic policy:

– agent always executes the same action from a given state

Stochastic policy:

– agent selects an action to execute by drawing from a
probability distribution encoded by the policy ...

Examples of optimal policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Markov?

• “Markovian Property”

• Given the present state, the future and the past are independent

• For Markov decision processes, “Markov” means action
outcomes depend only on the current state

• This is just like search, where the successor function could
only depend on the current state (not the history)

Andrey Markov
(1856-1922)

Another example of an MDP

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actons: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Objective: maximize expected future reward

Expected future reward starting at time t

Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Two viable alternatives:

1. maximize expected future reward over the next T timesteps (finite horizon):

2. maximize expected discounted future rewards:

Discount factor (usually around 0.9):

Discounting

STATIONARY PREFERENCES

• Theorem: if we assume stationary
preferences:

• Then: there are only two ways to defne
utilities

• Additive utility:

• Discounted utility:

QUIZ: DISCOUNTING

• Given:

• Actins: East, West, and Exit (only available in exit states a,
e)

• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which  are West and East equally good
when in state d?

UTILITIES OVER TIME: FINITE OR
INFINITE HORIZON?

• If there is fxed time, N, after which nothing can
happen, what should an agent do?

• E.g., if N=3, Bot must head directly for +1 state

• If N =100, can take safe route

• So with fnite horizon, optimal action changes
over time

• Optimal policy is nonstationary

• (depends on time left)

Choosing a reward function

A few possibilities:
– all reward on goal
– negative reward everywhere

except terminal states
– gradually increasing reward

as you approach the goal

In general:
– reward can be whatever you

want

+1

-1

Value functions

Expected discounted reward if agent acts optimally
starting in state s.

Game plan:

1. calculate the optimal value function

2. calculate optimal policy from optimal value function

Expected discounted reward if agent acts optimally
after taking action a from state s.

Value function

Action value function

Grid world optimal value function

Noise = 0.2
Discount = 0.9
Living reward = 0

Grid world optimal action-value function

Noise = 0.2
Discount = 0.9
Living reward = 0

Time-limited values

• Key idea: time-limited values

• Defne Vk(s) to be the optimal value of s if the
game ends in k more time steps

• Equivalently, it’s what a depth-k expectimax would
give from s

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Value iteration calculates the time-limited value function, V_i:

Value iteration example

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Let's look at this eqn more closely...

Value iteration

Value of getting to s' by taking a from s:

reward obtained on this time step

discounted value of being at s'

Value iteration

Value of getting to s'
by taking a from s

Expected value of
taking action a

Why do we maximize?

Value iteration

Value iteration:

1. initialize

2.

3.

4. ….

k.

Value of s at k timesteps to go:

Value iteration

 0 0 0

 2 1 0

 3.5 2.5 0

Assume no discount!
S=1.0 [1 + V0(c)]

F=.5[2+V0(c)] + .5[2 + V0(w)]

S=1.0 [1 + V1(c)]

F=.5 [2+ V1(c)]+.5[2+V1(w)]

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

How do we know that this converges?

How do we know that this converges to the optimal value function?

Convergence

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds

the actual untruncated values

• Case 2: If the discount is less than 1

• Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectmax results in nearly identcal search trees

• The last layer is at most all RMAX and at least RMIN

• But everything is discounted by γk that far out
– So Vk and Vk+1 are at most γk max|RMAX - RMIN| diferent

• So as k increases, the values converge

Optimality

At convergence, this property must hold (why?)

What does this equation tell us about optimality of value iteration?

– we denote the optimal value function as:

Bellman Equation

Richard Bellman
1920 –1984

• With this equation, Bellman introduced
dynamic programming in 1953

• Will be the focus of the next few
lectures

Gauss-Siedel Value Iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Regular value iteration maintains two
V arrays: old V and new V

Gauss-Siedel maintains only one V matrix.
– each update is immediately applied
– can lead to faster convergence

Computing a policy from the value function
Notice these little arrows

The arrows denote a policy
– how do we calculate it?

Computing a policy from the value function

Given values calculated
using value iteration, do
one step of expectimax:

The optimal policy is implied by the optimal value function...

Stochastic policies vs deterministic policies

In general, a policy is a distribution over actions:

Here, we restrict consideration to deterministic policies:

Problem 1: It’s slow – O(S2A) per iteraton

Problem 2: The “max” at each state rarely changes

Problem 3: The policy ofen converges long before the
values

Problems with value iteration

Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed policy
(not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using one-step look-
ahead with resulting converged (but not optimal!) utilities as
future values

Repeat steps until policy converges

This is policy iteration

It’s still optimal!

Can converge (much) faster under some conditions

Policy iteration

Policy evaluation

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy evaluation

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy Evaluation
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Policy evaluation

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy Evaluation
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Notice this

Policy evaluation

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy Evaluation
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=0 to infinity

3. for all

4.

5. if V converged, then break

Notice this

OR: can solve for value function as the sol'n to a system of linear equations
– can't do this for value iteration because of the maxes

Policy iteration: example

Always Go Right Always Go Forward

Policy iteration often converges in few iterations, but each is expensive

Idea: use a few steps of value iteration (but with π fixed) starting from the
value function produced the last time to produce an approximate value
determination step.

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown
environment

Modified policy iteration

Solving for a full policy offline is expensive!

What can we do?

Online methods

Online methods compute optimal action from current state

Expand tree up to some horizon

States reachable from the current state is typically small compared

to full state space

Heuristics and branch-and-bound techniques allow search space

to be pruned

Monte Carlo methods provide approximate solutions

Online methods

Provides optimal action from current state s up to depth d

Recall

Time complexity is O((|S| x |A|)d)

Forward search

V(s) =maxaÎA(s) R(s,a)+g T
¢s

å (s,a, ¢s)V(¢s)
é

é
é

é

é
é

Estimate value of a policy by sampling from a simulator

Monte Carlo evaluation

Requires a generative model (s’,r) ∼ G(s,a)

Complexity? Guarantees?

Sparse sampling

Requires a generative model (s’,r) ∼ G(s,a)

Complexity = O((n ×|A|)d), Guarantees = probabilistic

Sparse sampling

UCT (Upper Confident bounds for Trees)

Monte Carlo tree search

Search (within the tree, T)

Execute action that maximizes

Update the value Q(s,a) and counts N(s) and N(s,a)

c is a exploration constant

Expansion (outside of the tree, T)

Create a new node for the state

Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:

UCT continued

Continue UCT until some termination
condition (usually a fixed number of
samples)

Complexity?

Guarantees?

UCT continued

Uses UCT with neural net to approximate opponent

choices and state values

AlphaGo

Requires a lower bound Ṳ(s) and upper bound Ū(s)

Worse case complexity?

Branch and bound search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Sequential Decision- Making
	Making decisions under uncertainty
	Review: Expectimax
	REVIEW: Probability and Expected Utility
	Different Approach in Sequential Decision Making
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Stationary Preferences
	Quiz: Discounting
	Utilities over time: Finite or Infinite Horizon?
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

