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Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems, 
e.g. robot planning using A*

But only in deterministic domains...
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Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems, 
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

We are going to introduce a new framework for encoding problems 
w/ stochastic dynamics: the Markov Decision Process (MDP)



SEQUENTIAL DECISION- 
MAKING



• Rational decision making requires reasoning 
about one’s uncertainty and objectives 

• Previous section focused on uncertainty 

• This section will discuss how to make rational 
decisions based on a probabilistic model and 
utility function 

• Last class, we focused on single step decisions, 
now we will consider sequential decision 
problems 

MAKING DECISIONS UNDER 
UNCERTAINTY



REVIEW: EXPECTIMAX

• What if we don’t know the outcome of actions?
• Actions can fail

• when a robot moves, it’s wheels might slip
• Opponents may be uncertain

• Expectimax search: maximize average score 
• MAX nodes choose action that maximizes 

outcome
• Chance nodes model an outcome (a value) 

that is uncertain
• Use expected utilities
• weighted average (expectation) of children
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REVIEW: PROBABILITY AND EXPECTED 
UTILITY

• EU= ∑ probability(outcome) * value(outcome)

• Expected utility is the probability-weighted average of 
all possible values
• I.e., each possible value is multiplied by its probability 

of occurring and the resulting products are summed

• What is the expected value of rolling a six-sided die if 
you threw the die MANY times?

• (1/6 * 1) + (1/6 * 2) + (1/6 * 3) + (1/6 * 4) + (1/6 * 5) + 
(1/6 * 6) = 3.5



DIFFERENT APPROACH IN 
SEQUENTIAL DECISION MAKING 
• In deterministic planning, our agents generated entire plans

• Entire sequence of actions from start to goals

• Under assumption environment was deterministic, actions were 
reliable

• In Expectimax, chance nodes model nondeterminism 

• But agent only determined best next action with a bounded horizon

• Now we consider agents who use a “Policy”

• A strategy that determines what action to take in any state

• Assuming unreliable  action outcomes & infnite horizons



  

Markov Decision Process (MDP): grid world example

+1

-1

Rewards:
– agent gets these rewards in these cells
– goal of agent is to maximize reward

Actions: left, right, up, down
– take one action per time step
– actions are stochastic: only go in intended 
direction 80% of the time

States:
– each cell is a state



  

Markov Decision Process (MDP)

Deterministic
– same action always has same outcome

Stochastic
– same action could have different outcomes

1.0 0.1

0.8

0.1



  

Markov Decision Process (MDP)
Same action could have different outcomes:

0.1
0.8

0.1

0.1
0.8

0.1

s' T(s,a,s')

s_2 0.1

s_3 0.8

s_4 0.1

Transition function at s_1:



  

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Technically, an MDP is a 4-tuple
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Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Probability of going from s to s' 
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?



  

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process) 
defines a stochastic control problem:

Probability of going from s to s' 
when executing action a

Objective: calculate a strategy for acting so as to maximize 
the future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple



  

What is a policy?

Optimal policy when 
R(s, a, s’) = -0.03 

for all non-terminals 
s (cost of living)

• We want an optimal policy

• A policy gives an action for each state

• An optimal policy is one that maximizes 
expected utility if followed

• For Deterministic single-agent search problems, 
derived an optimal plan, or sequence of 
actions, from start to a goal

• For Expectimax, didn’t compute entire policies

• It computed the action for a single state 
only

• Over a limited horizon

• Final rewards only



  

What is a policy?

A policy tells the agent what action to execute as a function of state:

Deterministic policy:

– agent always executes the same action from a given state

Stochastic policy:

– agent selects an action to execute by drawing from a
probability distribution encoded by the policy ...



  

Examples of optimal policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



  

Markov?

• “Markovian Property”

• Given the present state, the future and the past are independent

• For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

• This is just like search, where the successor function could 
only depend on the current state (not the history)

Andrey Markov 
(1856-1922)



  

Another example of an MDP

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actons: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Objective: maximize expected future reward

Expected future reward starting at time t
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Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Two viable alternatives:

1. maximize expected future reward over the next T timesteps (finite horizon):

2. maximize expected discounted future rewards:

Discount factor (usually around 0.9):



Discounting



STATIONARY PREFERENCES

• Theorem: if we assume stationary 
preferences:

• Then: there are only two ways to defne 
utilities

• Additive utility:

• Discounted utility:



QUIZ: DISCOUNTING

• Given:

• Actins: East, West, and Exit (only available in exit states a, 
e)

• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which              are West and East equally good 
when in state d?



UTILITIES OVER TIME: FINITE OR 
INFINITE HORIZON?

• If there is fxed time, N, after which nothing can 
happen, what should an agent do?

• E.g., if N=3, Bot must head directly for +1 state

• If N =100, can take safe route

• So with fnite horizon, optimal action changes 
over time

• Optimal policy is nonstationary 

• (        depends on time left)



  

Choosing a reward function

A few possibilities:
– all reward on goal
– negative reward everywhere 

except terminal states
– gradually increasing reward 

as you approach the goal

In general:
– reward can be whatever you 

want

+1

-1



  

Value functions

Expected discounted reward if agent acts optimally 
starting in state s.

Game plan:

1. calculate the optimal value function

2. calculate optimal policy from optimal value function

Expected discounted reward if agent acts optimally 
after taking action a from state s.

Value function

Action value function



  

Grid world optimal value function

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Grid world optimal action-value function

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Time-limited values

• Key idea: time-limited values

• Defne Vk(s) to be the optimal value of s if the 
game ends in k more time steps

• Equivalently, it’s what a depth-k expectimax would 
give from s



  

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

Value iteration calculates the time-limited value function, V_i:



  

Value iteration example

Noise = 0.2
Discount = 0.9
Living reward = 0



  

Value iteration example
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Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

Let's look at this eqn more closely...



  

Value iteration

Value of getting to s' by taking a from s:

reward obtained on this time step

discounted value of being at s'



  

Value iteration

Value of getting to s' 
by taking a from s

Expected value of 
taking action a

Why do we maximize?



  

Value iteration

Value iteration:

1. initialize 

2. 

3. 

4.     ….

k. 

Value of s at k timesteps to go:



  

Value iteration

  0             0             0

  2             1             0

  3.5          2.5          0

Assume no discount!
S=1.0 [1 + V0(c)]

F=.5[2+V0(c)] + .5[2 + V0(w)] 

S=1.0 [1 + V1(c)]

F=.5 [2+ V1(c)]+.5[2+V1(w)] 



  

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

How do we know that this converges?

How do we know that this converges to the optimal value function?



  

Convergence

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 

the actual untruncated values

• Case 2: If the discount is less than 1

• Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectmax results in nearly identcal search trees

• The last layer is at most all RMAX and at least RMIN 

• But everything is discounted by γk that far out
– So Vk and Vk+1 are at most γk max|RMAX - RMIN| diferent

• So as k increases, the values converge



  

Optimality

At convergence, this property must hold (why?)

What does this equation tell us about optimality of value iteration?

– we denote the optimal value function as:



  

Bellman Equation

Richard Bellman
1920 –1984

• With this equation, Bellman introduced 
dynamic programming in 1953

• Will be the focus of the next few 
lectures 



  

Gauss-Siedel Value Iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3.   for all 

4.   

5.   if V converged, then break

Regular value iteration maintains two
V arrays: old V and new V

Gauss-Siedel maintains only one V matrix.
– each update is immediately applied
– can lead to faster convergence



  

Computing a policy from the value function
Notice these little arrows

The arrows denote a policy
– how do we calculate it?



  

Computing a policy from the value function

Given values calculated 
using value iteration, do 
one step of expectimax:

The optimal policy is implied by the optimal value function...



  

Stochastic policies vs deterministic policies

In general, a policy is a distribution over actions:

Here, we restrict consideration to deterministic policies:



Problem 1: It’s slow – O(S2A) per iteraton

Problem 2: The “max” at each state rarely changes

Problem 3: The policy ofen converges long before the 
values

Problems with value iteration



Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed policy 
(not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using one-step look-
ahead with resulting converged (but not optimal!) utilities as 
future values

Repeat steps until policy converges

This is policy iteration

It’s still optimal!

Can converge (much) faster under some conditions

Policy iteration



  

Policy evaluation

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!
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1. let

2. for i=0 to infinity

3.   for all 

4.   
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Policy evaluation

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy Evaluation
Input: MDP=(S,A,T,r), 
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

Notice this



  

Policy evaluation

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Evaluation!

Policy Evaluation
Input: MDP=(S,A,T,r), 
Output: value function, V

1. let

2. for i=0 to infinity

3.   for all 

4.   

5.   if V converged, then break

Notice this

OR: can solve for value function as the sol'n to a system of linear equations
– can't do this for value iteration because of the maxes



  

Policy iteration: example

Always Go Right Always Go Forward



Policy iteration often converges in few iterations, but each is expensive 

Idea: use a few steps of value iteration (but with π fixed) starting from the 
value function produced the last time to produce an approximate value 
determination step. 

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and 
Howard policy updates can be performed locally in any order 

Reinforcement learning algorithms operate by performing such updates 
based on the observed transitions made in an initially unknown 
environment 

Modified policy iteration



Solving for a full policy offline is expensive!

What can we do?

Online methods



Online methods compute optimal action from current state 

Expand tree up to some horizon 

States reachable from the current state is typically small compared 

to full state space 

Heuristics and branch-and-bound techniques allow search space 

to be pruned 

Monte Carlo methods provide approximate solutions 

Online methods



Provides optimal action from current state s up to depth d 

Recall 

Time complexity is O((|S| x |A|)d) 

Forward search

V(s) =maxaÎA(s) R(s,a)+g T
¢s

å (s,a, ¢s )V( ¢s )
é

é
é

é

é
é



Estimate value of a policy by sampling from a simulator

Monte Carlo evaluation



Requires a generative model (s’,r)  ∼ G(s,a) 

Complexity? Guarantees?

Sparse sampling



Requires a generative model (s’,r)  ∼ G(s,a) 

Complexity = O((n ×|A|)d), Guarantees = probabilistic

Sparse sampling



UCT (Upper Confident bounds for Trees)

Monte Carlo tree search



Search (within the tree, T)

Execute action that maximizes

Update the value Q(s,a) and counts N(s) and N(s,a)

c is a exploration constant  

Expansion (outside of the tree, T)

Create a new node for the state

Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:

UCT continued



Continue UCT until some termination 
condition (usually a fixed number of 
samples)

Complexity? 

Guarantees? 

UCT continued



Uses UCT with neural net to approximate opponent 

choices and state values

AlphaGo



Requires a lower bound Ṳ(s) and upper bound Ū(s)

Worse case complexity? 

Branch and bound search
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