Graph Search

Rob Platt
Northeastern University

Some images and slides are used from:
AIMA, Chris Amato, Stacy Marcella, CS188 UC
Berkeley

Applications of graph search

GeeksforGeeks |

Custom Search

A computer science portal for geeks
26

Popular Tags

Amazon, Microsoft, Dynamic Programming,
Samsung
Click here for more

Interview Preparation

Step by Step Preparation

Company Preparation

Top Topics

Company Specific Practice

Software Design Patterns

Placements Preparation Course

Interview Corner

Recent Interview Experiences

GQ Home Page

Quiz Corner

LMNs

Practice Platform

What's New ?

Leaderboard !!

Topic-wise Practice

Subjective Problems

Difficulty Level - School

Difficulty Level - Basic

Difficulty Level - Easy

Difficulty Level - Medium

Difficulty Level - Hard

Algo v D!

v Languages ¥ Interview v Students ¥ GATE v CS Subjects ¥ Quizzes V

Applications of Depth First Search

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph.
Following are the problems that use DFS as a bulding block.

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all pair shortest
path tree.

2) Detecting cycle in a graph
A graph has cycle if and only if we see a back edge during DFS. So we can run DFS for the graph and check for
back edges. (See this for details)

3) Path Finding

We can specialize the DFS algorithm to find a path between two given vertices u and z.

i) Call DFS(G, u) with u as the start vertex.

i) Use a stack S to keep track of the path between the start vertex and the current vertex.
iii) As soon as destination vertex z is encountered, return the path as the

contents of the stack

See this for details.

4) Topological Sorting

Topological Sorting is mainly used for scheduling jobs from the given dependencies among jobs. In computer sci-
ence, applications of this type arise in instruction scheduling, ordering of formula cell evaluation when recomputing
formula values in spreadsheets, logic synthesis, determining the order of compilation tasks to perform in makefiles,
data serialization, and resolving symbol dependencies in linkers [2].

5) To test if a graph is bipartite
We can augment either BFS or DFS when we first discover a new vertex, color it opposited its parents, and for each
other edge, check it doesn't link two vertices of the same color. The first vertex in any connected component can be
red or black! See this for details.

6) Finding Strongly Connected Components of a graph A directed graph is called strongly connected if there is a
path from each vertex in the graph to every other vertex. (See this for DFS based algo for finding Strongly Connect-
ed Components)

7) Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find all solutions to a maze by
only including nodes on the current path in the visited set.)

GBlog

Applications of Breadth First Traversal

We have earlier discussed Breadth First Traversal Algorithm for Graphs. We have also discussed Applications of
Depth First Traversal. In this article, applications of Breadth First Search are discussed.

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, the shortest path is
the path with least number of edges. With Breadth First, we always reach a vertex from given source using minimum
number of edges. Also, in case of unweighted graphs, any spanning tree is Minimum Spanning Tree and we can use
either Depth or Breadth first traversal for finding a spanning tree.

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to find all neighbor
nodes.

3) Crawlers in Search Engines: Crawlers build index using Breadth First. The idea is to start from source page and
follow all links from source and keep doing same. Depth First Traversal can also be used for crawlers, but the ad-
vantage with Breadth First Traversal is, depth or levels of built tree can be limited.

4) Social Networking Websites: In social networks, we can find people within a given distance ‘k’ from a person
using Breadth First Search till 'k’ levels.

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations.
6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to reach all nodes.

7) In Garbage Collection: Breadth First Search is used in copying garbage collection using Cheney’s algorithm.
Refer this and for details. Breadth First Search is preferred over Depth First Search because of better locality of
reference:

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth First Search
can be used to detect cycle. In directed graph, only depth first search can be used.

9) Ford-Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or Depth First Traversal
to find the maximum flow. Breadth First Traversal is preferred as it reduces worst case time complexity to O(VE?).

10) To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal.

11) Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path between two
vertices.

12) Finding all nodes within one connected component: We can either use Breadth First or Depth First Traversal
to find all nodes reachable from a given node.

Many algorithms like Prim’s Minimum Spanning Tree and Dijkstra’s Single Source Shortest Path use structure simi-
lar to Breadth First Search.

There can be many more applications as Breadth First Search is one of the core algorithm for Graphs.

What Is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What Is graph search?

2 4 1 2

6 > 3 4 5

3 1 6 7 8
Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What Is graph search?

Start state

Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What is graph search?

[[] Oradea

1 Goal state
Sibiu 99 Fagaras
v £ vaslui
] Timisoara
Start state
[] Mehadia - Hirsova
86

5
Drobeta []

Yl 7e 3 3
Ceaioye [1 Giurgiu

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What is a graph?

Graph: G = (V, E)

Vertices: |/

Edges: F,

/ \ Directed graph
V ={A,B,C}
—=(©

b= {(BaA)v (Av C)v (Bv 0)7 (Ca B)}

What is a graph?

Graph: G = (V, E)

Vertices: |/

Edges: F,

: I Undirected graph
| vwsen

@ @ E = {{A,C},{4, B},{C,D},{B, D},{C, B}}

What is a graph?

Graph: G = (V, E)
Vertices: |/ <®—— Also called states

Edges: [, <4——— Also called transitions

Defining a graph: example

Defining a graph: example

<+ How many states?

Y

%

Defining a graph: example

Defining a graph: example

V =7

E =7 «4—— Pairs of states that are “connected”
by one turn of the cube.

Example: Romania

« On holiday in Romania; currently
In Arad. Flight leaves tomorrow |, iy e
from Bucharest SIS

3
{ \ IRV IO _':"'
WA o] 7. i
F . Tt e Bistrita : s
O I I l Iza e ‘ ’E.I' I ; I ; h A Zalau® .":_ _/ Toplita” : 4,
° r u g - e I n u C ares Omdqsol‘ AMexandru Borza Batanical Garden | Reghlno =T j: y
| , e s Bt T Y ;
| H UNGARY 2, | > ,@%Clu]-ﬂapoca ~ Targu Mures : a: |
Form m = (Cfswoms g = L xnminel
° Or u Iate ro b I e . | < |0 T scarisoara Cave L Sighisoara 12 ~UKRAINE (S
| \ £ O A 4 * t g
p] \ ' | § 7__7_'\‘\ stel L & ¢ %“a’, i B o
| o p oA AN, | HisericaMeagra S
Arad \Arsenal Park Transilvania =

%‘2"' Vil Moldoveanu pBra;ov{ Rarmnicu Sarat |
F 2544m i " P

. states: various cities | it reeaE o sl

e _ aieg o fan ;AIIIP' 5 Pelestants %
.]‘. '.‘. dic—s, .,,M.::_ wrf 1 Bran Castle & "c‘
e actions: drive between cities ‘R g IR
. ﬂ nm.,?o z ,‘:‘“T, = /Rovinaris Moo shi e q.{@ cgatinasi
\ ~ robeta Turnu Y

Sea

LEGE N D w * Museum of the Romanian Peasant

. . Yoy \ o
[" | 2 1 i \ * Palace of the Parliament,
everin \ i \ |
I I I I d S O I u tl O n . \ Lo jarsnts oWl M Videle -y |+ Dimitrie Gusti National Village Museum
b Y (;fj = strehaia | Slatina \
- ~ ! \

W e Craiova ™ | N O urgit / *Mogosoaia Palace
= = = Country Boundary A ahal® = Se Alexandria "3’” * Romanian Athenaeum
= . Major fvad Statue of Decebalus = =5 /| *nNational Museum of Romanian History
° Othes Road SERBIA! . "\ *Curtea de Arges Cathedral
Fiver ks i s e A | *National Museum of Art of Romania
] " "9] Dap R
Major City —-,,,-‘Fj_slibe, 4 | * Herastriu Park
Other City 0 e 2 * Bucharest Botanical Garden
Counniy Capial * CECPalace

BULGARIA

Majar Rirpart 0 50Miles = \ #Howard Johnson Hotel Bucharest

\ d
Major Point of interest | Copyright & 2013 www.mapsofworld.com + Victoria Palace

aor Pk (Crested on 3rd Dacembar 2013) ™= 4 wE O

ro@Eo0

Sibiu, Fagaras, Bucharest

] Oradea

Graph search

Neamt
= 87
75 _
] lasi
Arad[]
Sibi o2
blu o, Fagaras
118 .
] Vaslui
80
Timisoara Rimnicu Vilcea
]
142
11 Pitesti \2!!
|
70 .
i 85 - 98 lesova
[JMehadia 101 — Urziceni
(=) 86
5 138 - Bucharest
Dobreta] 120 %0
—Craiova o Eforie
[]1Giurgiu

Given: a graph, G
Problem: find a path from Ato B

— A: start state

— B: goal state

75

Arad[}

118

Graph search

Oradea

n Neamt

i 7
Zerind \ |5, 8
lasi
140

92

Problem: find a path from Ato B

— A: start state

— B: goal state

Problem formulation

A problem is defined by four items:

e initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs
e.g., S(Arad) = {{Arad — Zerind, Zerind), . . .}

goal test, can be explicit, e.g., x = “at Bucharest” implicit, e.g.,
NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(X, a, y)
IS the step cost, assumed to be =0

A solution is a sequence of actions leading from the initial state to a
goal state

A search tree

[]Vaslui

Timisoara

JMehadia

75
Dobreta]
Eforie

¢ Startat A

A search tree

[]Vaslui

Timisoara

JHirsova
]Mehadia
75 86
Dobreta []

Eforie

y Successors of A

A search tree

[]Vaslui

Timisoara

JHirsova
]Mehadia
75 86
Dobreta []

Eforie

y Successors of A

parent children

A search tree

[]Vaslui

Timisoara

JHirsova
]Mehadia
75 86
Dobreta []

Eforie

4 Let's expand S
next

A search tree

[]Vaslui

Timisoara

JMehadia

75
Dobreta]
Eforie

O
/ Successors
WO () &>
L@

A search tree

[]Vaslui

Timisoara

JMehadia

75
Dobreta]
Eforie

A was already

- /@

A search tree

[]Vaslui

Timisoara

JMehadia

75
Dobreta
Eforie

A search tree

/
D
@/@

TG

— here, we expanded S, but we could also have expanded Zor T

In what order should we expand states?

— different search algorithms expand in different orders

Breadth first search (BFS)

Breadth first search

[] Oradea

Arad L]

118

] Timisoara

L] Hirsova

[] Mehadia

Urziceni
75 86

Drobeta []

Bucharest

it s R Eforie
Craiova [] Giurgiu

(BFS)

Breadth first search (BFS)

Start node

[] Oradea

Arad L[]

118

-] Timisoara

L] Hirsova
[] Mehadia
73 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

Breadth first search

TN

[] Oradea

Arad L[]

118

-] Timisoara

L] Hirsova
[] Mehadia
73 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

(BFS)

Breadth first search

TN

[] Oradea

Arad L[]

118

-] Timisoara

L] Hirsova
[] Mehadia

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

(BFS)

Breadth first search

TN

\@ @/

[] Oradea

Arad L[]

118

-] Timisoara

L] Hirsova
[] Mehadia
73 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

(BFS)

Breadth first search (BFS)

Fringe We're going to maintain a queue called the fringe

— Initialize the fringe as an empty queue

Fringe

— add A to the fringe

Breadth first search (BFS)

Fringe @
: @ x fringe

O W

-- remove A from the fringe

-- add successors of A to the fringe

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

Breadth first search (BFS)

--

-- remove C from the fringe

-- add successors of C to the fringe

Breadth first search (BFS)

--

Which state gets removed next from the fringe?

Breadth first search (BFS)

--

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
ezplored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node «— POP(frontier) /[* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element

------ - . . - . .

if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution
— complexity = ?7??

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O (b%)

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O (b%)

What is the space complexity of BFS?
— how much memory is required?
— complexity = ?7??

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O (b%)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O (b%)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
Sibi o
ibiu 99 Fagaras
118 M1Vaslui
80
Timisoara Rimnicu Vilcea
=
142
I ugoj Pitesti \2!1
O
70 .
. 85 78 lesova
[JMehadia 101 — Urziceni
) 86
& 138 7~ Bucharest
Dobreta [120 %0
~Craiova o Eforie
[]Giurgiu

Notice the distances between cities

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
Sibi o
ibiu 99 Fagaras
118 .
M1Vaslui
80
Timisoara Rimnicu Vilcea
=
142
I ugoj Pitesti \2!1
O
70
. 85 78 Hirsova
[JMehadia 101 — Urziceni
) 86
& 138 7~ Bucharest
Dobreta [120 %0
~Craiova o Eforie
[]Giurgiu

Notice the distances between cities
— does BFS take these distances into account?

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
Sibi o
ibiu 99 Fagaras
118 .
M1Vaslui
80
Timisoara Rimnicu Vilcea
o
142
I ugoj Pitesti \2!1
O
70
. 85 78 Hirsova
[JMehadia 101 — Urziceni
) 86
& 138 - Bucharest
Dobreta [120 %0
~Craiova o Eforie
[]Giurgiu

Notice the distances between cities
— does BFS take these distances into account?
— does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
Sibi o
ibiu 99 Fagaras
118 .
M1Vaslui
80
Timisoara Rimnicu Vilcea
o
142
I ugoj Pitesti \2!1
O
70
. 85 78 Hirsova
[JMehadia 101 = Urziceni
() 86
& 138 - Bucharest
Dobreta [120 %0
~Craiova o Eforie
[]Giurgiu

Notice the distances between cities

— does BFS take these distances into account?

— does BFS find the path w/ shortest milage?

— compare S-F-B with S-R-P-B. Which costs less?

Uniform Cost Search (UCS)

JOradea
Neamt
~ 87
75 _
] lasi
Arad[}
. 92
Sibiu ., Fagaras
118 %0 M1Vaslui
Timisoara Rimnicu Vilcea
]
142
[
70
. 85 - 98 Hirsova
“]Mehadia .y Jrziceni
75 86
Dobreta [120

Eforie

Notic
—do
—do

— CO 5 less?

Uniform Cost Search (UCS)

]Oradea
Neamt
~ 87
75 _
] lasi
Arad[}
. 92
Sibiu oy Fagaras
118 % M1Vaslui
Timisoara Rimnicu Vilcea
]
142
[
70
. 85 - 98 Hirsova
“]Mehadia .y Jrziceni
75 86
Dobreta [120

Eforie

Notic
—do
—do

— CO 5 less?

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

BFS: expands states in order of hops from start

UCS: expands states in order of g(S)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(3)

BFS: ex

UCS: ex

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
— the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

] Oradea
Neamt
= 87
75 _
] lasi
Arad[}
Sibi o2
ibiu 99 Fagaras
118 .
]Vaslui
80
. Rimnicu Vilcea
Timisoara ~
142
U™ Lugoi Pitesti \!!
O
70
_ o5 % QHirsova
JMehadia 101 — Urziceni
(=) 86
5 138 /- Bucharest
Dobreta [120 %0
= raiova Eforie

[]Giurgiu

UCS

Fringe Path Cost
A 0

Explored set:

UCS

Fringe Path Cost @ -
A—0—

S 140 14i/ B

T 118

Z 75

Explored set: A

UCS

Fringe Path Cost @ -
A0
S 140 14i/ % 118\A

T 118
Z 15—
O 146

146

Explored set: A, Z

UCS

Fringe Path Cost @

A——10— 140 75
S 140 118

T—118

z o () (2)
@) 146

L 229 229 146

Explored set: A, Z, T

UCS

Fringe Path Cost @ -
A—0—

S———140 1M 118

118"

z (5) (2
O 146

L 229 23 220 299 146
F 239

T ® ®

Explored set: A, Z, T, S

UCS

Fringe Path Cost @ s
A—0—

S———140 1M 118

118"

e (5) (2
O 146

L 229 23 220 299 146
F 239

Explored set: A, Z, T, S, O

UCS

Fringe Path Cost @

A—0— 75
14i/ 118

S—140-

118

PE® @

O 146

F 239

R— 220

2 ® @

P 317

336 317

© @

Exploredset: A, Z, T, S, O, R

UCS

Fringe Path Cost e
A—0—
S 140 1M 118

z (s)

O 146 @
F 239
R— 220

GRC

299 299
336 317

© @

Exploredset: A, Z, T,S,O, R, L

(=)

vy

UCS

Exploredset: A, Z, T, S, R, L

UCS

Exploredset: A, Z, T, S, R, L

UCS

Exploredset: A, Z, T, S, R, L

UCS

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «+— a node with STATE = problem . INITIAL-STATE, PATH-COST =0
frontier « a priority queue ordered by PATH-COST, with node as the only element
ezplored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child STATE is not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities

of a priority queue and a hash table.

UCS Properties

Is UCS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
— how many states are expanded before finding a
solution?

— b: branching factor

— C*: cost of optimal solution

— €: min one-step cost

— complexity = O(b% /7€)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bc*/e)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?

Strategy: expand
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

UCS vs BFS

@/4@ (e 5 17 (H11

| Pt N
@6 a @13®7 p
|
p q @8 q
q 11@ @) 10

a

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search

Tiers

UCS vs BFS

UCS vs BFS

Remember: UCS explores increasing cost
contours

The good: UCS is complete and optimal!

The bad:
= Explores options in every “direction”
= No information about goal location

We'll fix that soon!

Depth First Search (DFS)

lllll

Fringe
A

Fringe

DFS

---./@\

...... - /\
@ @ ﬂ; fringe

Fringe

e
&
©

Which state gets removed next from the fringe?

Fringe

©

Which state gets removed next from the fringe?

What kind of a queue is this?

Which state gets removed next from the fringe?

What kind of a queue is this?

DFS vs BFS: which one Is this?

DFS vs BFS: which one Is this?

BFS/UCS: which Is this?

BFS/UCS: which Is this?

DFS Properties: Graph search version

This is the “graph search”
version of the algorithm

Is DFS complete? '/
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a

solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?
— Is it guaranteed to find the best solution (shortest path)?

DFS Properties: Graph search version

This Is the “graph search
version of the algorithm

Is DFS complete? '/
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a

solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?

DFS: Tree search version

This Is the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

DFS: Tree search version
This i1s the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

DFS: Tree search version

This Is the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?
— b: branching factor

— m: maximum depth of any node " _
— complexity = O) This is why we might
----- want to use DFS

DFS: Tree search version
This i1s the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity =

DFS: Tree search version
This i1s the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity =

Is it complete?

DFS: Tree search version
This i1s the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a

solution? Ob™)
— complexity
. NO!
Is it complete?

DFS: Tree search version
This i1s the “tree search”
version of the algorithm

¥

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity

NO!
Is it complete? What do we do???

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum
depth at each stage

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
— any guesses?

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
— do DFS up to a certain pre-specified depth

IDS: Iterative deepening search

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no
solution...

= Run a DFS with depth limit 3.

= [sn’t that wastefully redundant?

= Generally most work happens in the
lowest level searched, so not so bad!

Limit =0 ® @
Limit=1 @
>(B) (C] >
Limit = 2 »(®
[(C)
® ®

Limit =3 ®

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity =

Is it complete?

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity =

Is it complete? YES!!!

Is it optimal?

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a
solution? Ob™)

— complexity =

Is it complete? YES!!!

Is it optimal? YES!!

General thoughts about search

If your model is wrong, then your solution will be La Ceiba

wrong.
Honduras
* In November 2010, Nicaraguan troops

unknowingly crossed the border to Costa dor
Rica, removed that country's flag and @
replaced it with their own. The reason: Nicaragua
Google Maps told the troops' commander Ncaragua
the territory belonged to Nicaragua.

Costa Rica

= -
San Jose

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

