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What is a CSP?

The space of all search 
problems
– states and actions are 

atomic
– goals are arbitrary sets of 

states

CSPs All search problems

The space of all CSPs
– states are defined in 

terms of variables
– goals are defined in terms 

of constraints

A CSP is defined by:
1. a set of variables and their associated domains
2. a set of constraints that must be satisfied.



  

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent 
territories have the same color

Variables:

Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other
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Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?
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Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?

Is there a better way?



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for each row

A number between 1 and 8

Enumeration of disallowed configurations

– why is this representation better?
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The constraint graph

Variables represented as nodes (i.e. as circles)

Constraint relations represented as edges

– map coloring is a binary CSP, so it's easier to represent...



  

A harder CSP to represent: Cryptarithmetic

Variables: F, T, U, W, R, O, X_1, X_2, X_3

Domain of variables: integers between 0 and 9

Constraints:



  

Another example: sudoku

Variables: empty squares
Domains: 1-9
Constraints:
– alldiff for cols, rows, and 9-regions



  

Types of Constraints

Some constraints are more complex than others:

Unary constraints: involve only one variable, e.g. WA=RED

Binary constraints: involve two variables, e.g. NT != Q

Higher-order constraints: ...



  

Types of CSPs

Finite domain:
– d^n complete assignments (where d = size of domain 

and n = num variables)
– NP-complete in the worst case, e.g. boolean SAT

Infinite domain:
– linear constrains → linear programming
– non-linear constraints → undecidable



  

Naive solution: apply BFS, DFS, A*, ...

Which would be better: BFS, DFS, A*?

– remember: it doesn't know if it reached 
a goal until all variables are assigned ...



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?
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Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

This will take a long time.
How can we speed it up?



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.

Does this state have any 
valid successors?



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens

We'll talk about the inference 
part in a moment...



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Yes: keep track of viable variable assignments as you go



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables
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Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens

Could infer a partial 
assignment using forward 
checking...



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Forward checking

But, failure was inevitable here!
– what did we miss?This is failure is implied, not explicit.

– need to do inference to detect it...



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

WA
SA

NT Q

NSW
V
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– subsumes forward checking

Arc Consistency:
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Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
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– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat
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Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

WA
SA

NT Q

NSW
V

Okay?

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat



  

Forward Checking & Arc consistency

Forward checking is arc consistency applied 
once to each new variable assignment.

WA
SA

NT Q

NSW
V



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Arc consistency

WA
SA

NT Q

NSW
V



  

Arc consistency

WA
SA

NT Q

NSW
V



  

Arc consistency

WA
SA

NT Q

NSW
V

Conflict!



  

Arc consistency

Why does this algorithm converge? 



  

Arc consistency?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Is this arrangement arc-consistent?

Does a feasible solution exist?

What happened?



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first
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Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least



  

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least

The combination of MRV and 
LCV w/ backtracking can solve 

the 1000-queens problem



  

Using structure to reduce problem complexity

In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d)

But, sometimes CSPs have special structure that makes them simpler!



  

When the constraint graph is a tree

This CSP is easier to solve than the general case...



  

When the constraint graph is a tree

1. Do a topological sort
– a partial ordering over variables

i. choose any node as the root
ii. list children after their parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)
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When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

okokok



  

When the constraint graph is a tree

3. Now, start at the root and do backtracking
– will backtracking ever actually backtrack?

okokok

So, what's the time complexity of this algorithm?



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

But, sometimes CSPs have special structure that makes them simpler!



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

This is not a tree...



  

Cutset conditioning

This is a tree...



  

Cutset conditioning

Solve three versions of the “tree-version” of the problem
– one for SA=RED, SA=BLUE, SA=GREEN

SA=RED SA=BLUE SA=GREEN

If a solution exists, then you'll find it this way!
– less complex than general version of problem
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