
  

Constraint Satisfaction Problems

Robert Platt
Northeastern University

Some images and slides are used from:
1. AIMA



  

What is a CSP?

The space of all search 
problems
– states and actions are 

atomic
– goals are arbitrary sets of 

states

CSPs All search problems

The space of all CSPs
– states are defined in 

terms of variables
– goals are defined in terms 

of constraints

A CSP is defined by:
1. a set of variables and their associated domains
2. a set of constraints that must be satisfied.



  

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent 
territories have the same color

Variables:

Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?

Is there a better way?



  

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for each row

A number between 1 and 8

Enumeration of disallowed configurations

– why is this representation better?

1

2

3

4

5

6

7

8



  

The constraint graph

Variables represented as nodes (i.e. as circles)

Constraint relations represented as edges

– map coloring is a binary CSP, so it's easier to represent...



  

A harder CSP to represent: Cryptarithmetic

Variables: F, T, U, W, R, O, X_1, X_2, X_3

Domain of variables: integers between 0 and 9

Constraints:



  

Another example: sudoku

Variables: empty squares
Domains: 1-9
Constraints:
– alldiff for cols, rows, and 9-regions



  

Types of Constraints

Some constraints are more complex than others:

Unary constraints: involve only one variable, e.g. WA=RED

Binary constraints: involve two variables, e.g. NT != Q

Higher-order constraints: ...



  

Types of CSPs

Finite domain:
– d^n complete assignments (where d = size of domain 

and n = num variables)
– NP-complete in the worst case, e.g. boolean SAT

Infinite domain:
– linear constrains → linear programming
– non-linear constraints → undecidable



  

Naive solution: apply BFS, DFS, A*, ...

Which would be better: BFS, DFS, A*?

– remember: it doesn't know if it reached 
a goal until all variables are assigned ...



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?



  

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

This will take a long time.
How can we speed it up?



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.



  

Backtracking search

When a node is expanded, check that each successor state 
is consistent before adding it to the queue.

Does this state have any 
valid successors?



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens

We'll talk about the inference 
part in a moment...



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?



  

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Yes: keep track of viable variable assignments as you go



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables



  

Backtracking search

– backtracking enables us the ability to solve a problem as big as 25-queens

Could infer a partial 
assignment using forward 
checking...



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Forward checking

But, failure was inevitable here!
– what did we miss?This is failure is implied, not explicit.

– need to do inference to detect it...



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

WA
SA

NT Q

NSW
V



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

1. given a changed variable:

WA
SA

NT Q

NSW
V



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable

WA
SA

NT Q

NSW
V



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

WA
SA

NT Q

NSW
V



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat

WA
SA

NT Q

NSW
V



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

WA
SA

NT Q

NSW
V

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

WA
SA

NT Q

NSW
V

Okay?

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

WA
SA

NT Q

NSW
V

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat



  

Arc consistency

Want to detect implied constraint violations:
– iterate a rule called arc consistency
– subsumes forward checking

WA
SA

NT Q

NSW
V

Okay?

Arc Consistency:

1. given a changed variable:
2. draw arcs pointing from all adjacent variables to changed 
variable
3. delete conflicting values from domains at the tail

– for every value in tail, there must be some value in 
head that is consistent. 

4. rinse and repeat



  

Forward Checking & Arc consistency

Forward checking is arc consistency applied 
once to each new variable assignment.

WA
SA

NT Q

NSW
V



  

Forward checking

But, failure was inevitable here!
– what did we miss?



  

Arc consistency

WA
SA

NT Q

NSW
V



  

Arc consistency

WA
SA

NT Q

NSW
V



  

Arc consistency

WA
SA

NT Q

NSW
V

Conflict!



  

Arc consistency

Why does this algorithm converge? 



  

Arc consistency?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

Is this arrangement arc-consistent?

Does a feasible solution exist?

What happened?



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first



  

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least



  

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change 
under A.C.

– choose value that contrains neighboring domains 
the least

The combination of MRV and 
LCV w/ backtracking can solve 

the 1000-queens problem



  

Using structure to reduce problem complexity

In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d)

But, sometimes CSPs have special structure that makes them simpler!



  

When the constraint graph is a tree

This CSP is easier to solve than the general case...



  

When the constraint graph is a tree

1. Do a topological sort
– a partial ordering over variables

i. choose any node as the root
ii. list children after their parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

ok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

ok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

ok

Image: Berkeley CS188 course notes (downloaded Summer 2015)

okok



  

When the constraint graph is a tree

2. make the graph directed arc consistent
– start w/ the tail and make each variable arc 

consistent wrt its parents

okokok



  

When the constraint graph is a tree

3. Now, start at the root and do backtracking
– will backtracking ever actually backtrack?

okokok

So, what's the time complexity of this algorithm?



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

But, sometimes CSPs have special structure that makes them simpler!



  

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
– is there anything we can do?

This is not a tree...



  

Cutset conditioning

This is a tree...



  

Cutset conditioning

Solve three versions of the “tree-version” of the problem
– one for SA=RED, SA=BLUE, SA=GREEN

SA=RED SA=BLUE SA=GREEN

If a solution exists, then you'll find it this way!
– less complex than general version of problem


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

