RL + DL

Rob Platt
Northeastern University

Some slides from David Silver, Deep RL Tutorial

Deep RL In an exciting recent development

Deep RL Iin an exciting recent development

Convg}utiun Ccnuglution Fully cannected Fully cgnnected
;N:l.l:'|3.|£
Iu'l k- = E f."l < \
I|lI [:I (% IIIII.I IIID .l"-lll '.lllI “
' f kA
;"f 8 // I\
| :-'I B : [:ﬁ E |ln'll)"I.I II".IIII \
I/, g o\
I| .'l i @/ \
) e \\
[] '.'|
- Bl Q ﬁé_ .—_ __-_n
g L]
IIII ».\D _ é II'I.I"-. L] /| -
\ - S A\ -/
\ I". o II'. .1' e/ I{.
\ : g8 | i YO
".. N _ o _._la HI'\...D ¢/
?

Remember the RL scenario...

Agent takes actions

/

S,I

N\

Agent perceives states and rewards

Tabular RL

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S5

until S is terminal

Q-function

argmax
state \ .
> / action
Update rule

Tabular RL

Q-function

argmax

\
/

Update rule

State :
action

Deep RL

Q-function

e ‘wA
state »‘ ' ‘

action

Deep RL

Q-function

e ‘w‘
state >‘ ‘ ‘

action

Where does “state” come from?

Agent takes actions

/

A\ 4
*

*

Agent

*
-»
*»
*»
*
*
-»
*»
L

Agent perceives states and rewards

Earlier, we dodged this question: “it's part of the MDP problem statement”
But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— It's too big (e.g. pacman has something like 2*(num pellets) + ... states)

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q(s,a) = w1 f1(s,a)Fwafo(s, a)+.. . Fwnfn(s, a)
\

Q-function encoded by the weights

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q(s,a) = w1 f1(s,a)Fwafa(s, a)+.. . Fwnfn(s, a)
\

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!

Linear function approximation?

Imation:

)

In the R

Q(

Q-functi

But, this ures!

Deep Q Learning

Convolutional Agent

input possible
image actions

f
18U [BJNaU [BUOIN|OAUOD

Deep Q Learning

Convolutional Agent

input possible
image actions

jJau |einad |euonnjoAuod

Instead of state, we have an image
— In practice, it could be a history of the kK most recent images
stacked as a single k-channel image

Hopefully this new image representation is Markov...
— in some domains, it might not be!

Network structure

Stack of images Q-function

ot

Convl Conv2 FC1 Output

Network structure

Stack of images Q-function

ot

Convl Conv2 FC1 Output

Network structure

Num output nodes equals
the number of actions

Stack of images Q-function

ot

Convl Conv2 FC1 Output

Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Updating the Q-function

Here’s the standard Q-learning update equation:

Q(s,a) <+ Q(s,a) + a [7“ +ymaxQ(s',a’) = Q(s, a)}

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S+ S

until S is terminal

Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|

Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) « Qs,a) + o |1+ ymaxQ(s',a') — Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|

(G 4
Y

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) = Q(s,a) +a [r +ymax Q(s',a') = Q(s,)|

Rewriting:

Q(s,a) « (1 —a)Q(s,a) + « [r + 7y max Q(s', a’)}

\ J/
Y

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Remember how we train a neural network...

Given a dataset: [) = {(331, yl), (CEQ, yQ), Ceey (%n, y”)}
Define loss function: L(z",y";w,b) = %(y’ — f(w'z" +b))?

Adjust w, b so as to minimize: Z L(z',y";w,b)
(i yT1ED

Do gradient descent on dataset:

1. repeat
1 o
2w %w—ozﬁ Z Vo Lzt y'sw,b)
(z%,y")€D
1 o
3_ b . _ 1 1.
+—b o Z VyL(x*,y*;w,b)
(z*,y*)€eD

4. until converged

Updating the Q-network

Use this loss function:

1 2
L(s,a,s;w) = 5 (r—l—vma}wa(s’,a’) — Qw(s,a))

a

Updating the Q-network

Use this loss function:

L(s,a,s;w) =

(r +ymax Qu(s',a’) — Qu(s, “)) |

N,

Notice that Q is now
parameterized by the weights, w

DO | —

Updating the Q-network

Use this loss function: I’m including the bias in the weights

r + 7 max Qu(s',a)

a

— Qu (S, a)) 2

Updating the Q-network

Use this loss function:

| | 2
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))

Updating the Q-network

Use this loss function:

2

a

L(s,a,s;w) = ! (Er—l—fymz}wa(s’,a’);— Qw(s,a))2

Notice that the target is a function of the weights
— this is a problem b/c targets are non-stationary

Updating the Q-network

Use this loss function:

target
L(s,a,s;w) = 5\ +7m@wa(s’,a’)g— Qw(s,a))

Notice that the target is a function of the weights
— this is a problem b/c targets are non-stationary

/4

So... when we do gradient descent, we're
going to hold the targets constant

Now we can do gradient descent!

Deep Q Learning, no replay buffers

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

w4 w—aV,L(s,a,s;w)
s+ s
Until s is terminal

Where:

VwL(s,a,s;w) = — <7" +ymax Qu(s', a’) — Qu (s, a)) VuwQuw(s,a)

Deep Q Learning, no replay buffers

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s

This is all that changed
relative to standard
g-learning

Until s is terminal

Where:

VwL(s,a,s;w) = — (7’* +ymax Qu(s', a’) — Qu (s, a)) VuwQuw(s,a)

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:

episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode

reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:

reward

lcjocoBoRoNoNoooNoooNoNoBoRoNoNoloNo)

exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:

elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:

lcooNoRoNoNoooNoooNoNoNoRoNoNoRoNo)

.0873818397522
.0872020721436
.138998985291
.0649240016937
.0546970367432
.0260739326477
.110991954803
.135339975357
.0810689926147
.0643260478973
.169064044952
.117113113403
.279519796371
.234206199646
.0835938453674
.150979042053
.155304908752
.194122076035
.102608919144
.0520431995392

Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

— But s this true in the deep RL scenario?

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
~ Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

—»< wew-—aVyL(s,a, s w)
/

L S& S5

Until s is terminal

Experience replay

Deep learning typically assumes independent,
identically distributed (IID) training data

— But is this true in the deep RL scenario?

Initialize Q(s,a;w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)

Deep Q Learning WITH replay buffers

Initialize Q(s,a,w) with random weights
D«)
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

D+ DU(s,a,s,r) Add this exp to buffer

/
S< S

If mod(step, trainfreq) == 0: Train every
sample batch B from D trainfreq steps
w < w = aVyL(Bw) One step grad
descent WRT buffer

Deep Q Learning WITH replay buffers

L(B§”LU) — % Z (T ‘|‘/7Hg}XQw(3/aa/) — Qw(sva))z

(s,a,s’,r)EB

— buffers like this are pretty common in DL...

g

If mod(step,t == 0: Train every
sample batch_fom D trainfreq steps

W<— W — Oévu:L<va> One step grad
descent WRT buffer

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:
episodes:

episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode
episode

reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:
reward:

reward

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)
~ =~~~ OO Dh

W e W W W W W W W W W W W W W W W e e

exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:
exploring:

PR PR RMNRMNMMRMPMRMMRMRMBPMRMRMNMBPRNRN PN

W e W W W W W W W W W W W W W W W W e

elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:
elapsed:

[cRoNoNoNoNoNoNoNoNooNoNoooNoNoNoNoNo)

.0873818397522
.0872020721436
.138998985291
.0649240016937
.0546570367432
.0260739326477
.110991954803
.135339975357
.0810689926147
.0643260478973
.169064044952
.117113113403
.279519796371
.234206199646
.0835938453674
.150979042053
.155304908752
.194122076035
.102608919144
.0520431995392

Atari Learning Environment

action

Atari Learning Environment

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Qutput is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer
16 8x8 filters uf_l
4xB84xB84

Stack of 4 previous _ Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

Atari Learning Environment

%000E %000F %008 %005 %00F

%00€

[

[SAS-URUNY Mogeq

BADGE JO [SAB-UELLINY 1B

[aBuanay s ewnzajuop

ak3 aleaud

”._n___..Em_

angsaud

[spossisy

uBuDEd S

" Bumog
[wung sianoq
i jsanbees

aunjuan

[veny

JepIY

[piey senny

IS8y yueg

[epedqueg
[puewwo seddouo

JOMA JO PIEZIAA

[auoz omeg

XUBISY

la” R EL

vag.0

RSSO

umog pue dn

| faseq Buisi4

ounpu3

s RETE

Aemaalq

%sz) |} Jasepw n4-Bumy
| weyyuen |
N japiy weag

siapeau) aseds

”se
| puog sswer
siuua)

oouebuey

”.EE..E peoy
[0 wnessy
[iy

aweg siy L aweN

[weny uoweq
=
[sequino Azeso

SHuUEdY

[wuejoqoy
| seuung Jmis
[1noyeasg

Buxog

[irequig ospin

Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error

‘rJrf}f max Q(s’,a".w™) — Q(s, a, W)‘
af

Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error
‘r + v max Q(s’,a’,w™) — Q(s, a, W)‘
af

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,a) = V(s,v) + A(s,a, w)

Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error
‘r + v max Q(s’,a’,w™) — Q(s, a, W)‘
af

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,a) = V(s,v) + A(s,a, w)

Combined algorithm: 3x mean Atari score DQN w/ replay buffers

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

