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Remember the RL scenario...

Agent World
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s,r

Agent takes actions

Agent perceives states and rewards
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Deep RL
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But, why would we 
want to do this?



  

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)



  

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights



  

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!



  

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!

Is it possible to do RL WITHOUT
hand-coding either states or features?



  

Deep Q Learning



  

Instead of state, we have an image
– in practice, it could be a history of the k most recent images
   stacked as a single k-channel image

Hopefully this new image representation is Markov…
– in some domains, it might not be!

Deep Q Learning



  

Network structure

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images



  

Q-function
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Network structure



  

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Num output nodes equals 
the number of actions

Network structure



  

Updating the Q-function

Here’s the standard Q-learning update equation:
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Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target
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Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

We’re going to accomplish this same thing in 
a different way using neural networks...

Updating the Q-function



  

Remember how we train a neural network...

Given a dataset:

Define loss function:

Adjust w, b so as to minimize:

Do gradient descent on dataset:

1. repeat

2.

3.

4. until converged



  

Use this loss function:

Updating the Q-network



  

Use this loss function:

Updating the Q-network

Notice that Q is now 
parameterized by the weights, w



  

Use this loss function:

Updating the Q-network

I’m including the bias in the weights



  

Use this loss function:

Updating the Q-network

target
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Use this loss function:

Updating the Q-network

target

Notice that the target is a function of the weights
– this is a problem b/c targets are non-stationary

So… when we do gradient descent, we’re 
going to hold the targets constant

Now we can do gradient descent!



  

Deep Q Learning, no replay buffers

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:



  

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:

This is all that changed 
relative to standard 

q-learning

Deep Q Learning, no replay buffers



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Experience replay

Deep learning typically assumes independent, 
identically distributed (IID) training data
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Initialize Q(s,a;w) with random weights
Repeat (for each episode):
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Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’
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Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?



  

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent, 
identically distributed (IID) training data

But is this true in the deep RL scenario?

Our solution: buffer experiences and then 
“replay” them during training



  

Initialize Q(s,a;w) with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Deep Q Learning WITH replay buffers

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps



  

Initialize Q(s,a;w) with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Deep Q Learning WITH replay buffers

Replay buffer

Add this exp to buffer

One step grad 
descent WRT buffer

Train every 
trainfreq steps

– buffers like this are pretty common in DL...



  

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!



  

Atari Learning Environment
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Additional Deep RL “Tricks”



  

Additional Deep RL “Tricks”



  

Additional Deep RL “Tricks”



  

Additional Deep RL “Tricks”

Combined algorithm: 3x mean Atari score DQN w/ replay buffers
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