RL + DL

Rob Platt
Northeastern University

Some slides from David Silver, Deep RL Tutorial
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Remember the RL scenario...

Agent takes actions
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Agent perceives states and rewards




Tabular RL

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S5

until S is terminal

Q-function

argmax
state \ .
> / action
Update rule




Tabular RL
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Where does “state” come from?

Agent takes actions
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Agent perceives states and rewards

Earlier, we dodged this question: “it's part of the MDP problem statement”
But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
— It's too big (e.g. pacman has something like 2*(num pellets) + ... states)



Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q(s,a) = w1 f1(s,a)Fwafo(s, a)+.. . Fwnfn(s, a)
\

Q-function encoded by the weights



Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q(s,a) = w1 f1(s,a)Fwafa(s, a)+.. . Fwnfn(s, a)
\

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!



Linear function approximation?

Imation:
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But, this ures!



Deep Q Learning

Convolutional Agent

input possible
image actions
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Deep Q Learning

Convolutional Agent

input possible
image actions

jJau |einad |euonnjoAuod

Instead of state, we have an image
— In practice, it could be a history of the kK most recent images
stacked as a single k-channel image

Hopefully this new image representation is Markov...
— in some domains, it might not be!



Network structure

Stack of images Q-function

ot

Convl Conv2 FC1 Output
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Network structure

Num output nodes equals
the number of actions

Stack of images Q-function

ot

Convl Conv2 FC1 Output



Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]



Updating the Q-function

Here’s the standard Q-learning update equation:

Q(s,a) <+ Q(s,a) + a [7“ +ymaxQ(s',a’) = Q(s, a)}

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)]
S+ S

until S is terminal



Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) < Q(s,0) + a |7+ ymax Q(s',a') = Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|



Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) « Qs,a) + o |1+ ymaxQ(s',a') — Q(s,0)]

Rewriting:

Q(s,a) « (1= a)Q(s,a) + a |r + ymax Q(s',a')|
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let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target



Updating the Q-function

Here’s the standard Q-learning update equation:

Qs,a) = Q(s,a) +a [r +ymax Q(s',a') = Q(s, )|

Rewriting:

Q(s,a) « (1 —a)Q(s,a) + « [r + 7y max Q(s', a’)}

\ J/
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let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target




Remember how we train a neural network...

Given a dataset: [) = {(331, yl), (CEQ, yQ), Ceey (%n, y”)}
Define loss function: L(z",y";w,b) = %(y’ — f(w'z" +b))?

Adjust w, b so as to minimize: Z L(z',y";w,b)
(i yT1ED

Do gradient descent on dataset:

1. repeat
1 o
2w %w—ozﬁ Z Vo Lzt y'sw,b)
(z%,y")€D
1 o
3_ b . _ 1 1.
+—b o Z VyL(x*,y*;w,b)
(z*,y*)€eD

4. until converged



Updating the Q-network

Use this loss function:

1 2
L(s,a,s;w) = 5 (r—l—vma}wa(s’,a’) — Qw(s,a))

a



Updating the Q-network

Use this loss function:

L(s,a,s;w) =

(r +ymax Qu(s',a’) — Qu(s, “)) |

N,

Notice that Q is now
parameterized by the weights, w

DO | —



Updating the Q-network

Use this loss function: I’m including the bias in the weights

r + 7 max Qu(s',a)

a

— Qu (S, a)) 2



Updating the Q-network

Use this loss function:

| | 2
L(s,a,s;w) = 5 (7“ +ymax Qy (s’ a')i— Qw(s,a))



Updating the Q-network

Use this loss function:

2

a

L(s,a,s;w) = ! (Er—l—fymz}wa(s’,a’);— Qw(s,a))2

Notice that the target is a function of the weights
— this is a problem b/c targets are non-stationary



Updating the Q-network

Use this loss function:

target
L(s,a,s;w) = 5\ +7m@wa(s’,a’)g— Qw(s,a))

Notice that the target is a function of the weights
— this is a problem b/c targets are non-stationary

/4

So... when we do gradient descent, we're
going to hold the targets constant

Now we can do gradient descent!



Deep Q Learning, no replay buffers

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

w4 w—aV,L(s,a,s;w)
s+ s
Until s is terminal

Where:

VwL(s,a,s;w) = — <7" +ymax Qu(s', a’) — Qu (s, a)) VuwQuw(s,a)



Deep Q Learning, no replay buffers

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s

This is all that changed
relative to standard
g-learning

Until s is terminal

Where:

VwL(s,a,s;w) = — (7’* +ymax Qu(s', a’) — Qu (s, a)) VuwQuw(s,a)



Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)
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.0520431995392




Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data



Experience replay

Deep learning typically assumes independent,
identically distributed (lID) training data

— But s this true in the deep RL scenario?

Initialize Q(s,a,w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
~ Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

—»<  wew-—aVyL(s,a, s w)
/

L S& S5

Until s is terminal




Experience replay

Deep learning typically assumes independent,
identically distributed (IID) training data

— But is this true in the deep RL scenario?

Initialize Q(s,a;w) with random weights
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)




Deep Q Learning WITH replay buffers

Initialize Q(s,a,w) with random weights
D« )
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observer, s’

D+ DU(s,a,s,r) Add this exp to buffer

/
S< S

If mod(step, trainfreq) == 0: Train every
sample batch B from D trainfreq steps
w < w = aVyL(Bw) One step grad
descent WRT buffer



Deep Q Learning WITH replay buffers

L(B§”LU) — % Z (T ‘|‘/7Hg}XQw(3/aa/) — Qw(sva))z

(s,a,s’,r)EB

— buffers like this are pretty common in DL...

g

If mod(step,t == 0: Train every
sample batch_fom D trainfreq steps

W<— W — Oévu:L<va> One step grad
descent WRT buffer




Example: 4x4 frozen lake env
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Atari Learning Environment

action




Atari Learning Environment

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Qutput is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer
16 8x8 filters uf_l
4xB84xB84

Stack of 4 previous _ Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games



Atari Learning Environment

%000E %000F %008 %005  %00F

%00€

[

[SAS-URUNY Mogeq

BADGE JO [SAB-UELLINY 1B

[ aBuanay s ewnzajuop

ak3 aleaud

”._n___..Em_

angsaud

[ spossisy

uBuDEd S

" Bumog
[ wung sianoq
i jsanbees

aunjuan

[ veny

JepIY

[ piey senny

IS8y yueg

[ epedqueg
[ puewwo seddouo

JOMA JO PIEZIAA

[ auoz omeg

XUBISY

la” R EL

vag.0

RSSO

umog pue dn

| faseq Buisi4

ounpu3

s RETE

Aemaalq

%sz) |} Jasepw n4-Bumy
| weyyuen |
N japiy weag

siapeau) aseds

”se
| puog sswer
siuua)

oouebuey

”.EE..E peoy
[0 wnessy
[ iy

aweg siy L aweN

[ weny uoweq
=
[ sequino Azeso

SHuUEdY

[ wuejoqoy
| seuung Jmis
[ 1noyeasg

Buxog

[ irequig ospin



Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))
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» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error
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Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error
‘r + v max Q(s’,a’,w™) — Q(s, a, W)‘
af

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,a) = V(s,v) + A(s,a, w)



Additional Deep RL “Tricks”

» Double DQN: Remove upward bias caused by max Q(s, a, w)

» Current Q-network w is used to select actions
» Older Q-network w ™ is used to evaluate actions

2
| = (r +vQ(s’,argmax Q(s',a" . w),w™) — Q(s, a,w))

» Prioritised replay: Weight experience according to surprise

» Store experience in priority queue according to DQN error
‘r + v max Q(s’,a’,w™) — Q(s, a, W)‘
af

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a, w)

Q(s,a) = V(s,v) + A(s,a, w)

Combined algorithm: 3x mean Atari score DQN w/ replay buffers
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