
RL + DL

Rob Platt
Northeastern University

Some slides from David Silver, Deep RL Tutorial

Deep RL in an exciting recent development

Deep RL in an exciting recent development

Remember the RL scenario...

Agent World

a

s,r

Agent takes actions

Agent perceives states and rewards

Tabular RL

World
state action

argmaxQ action

st
a

te
Q-function

Update rule

Tabular RL

World
state action

argmaxQ action

st
at

e

Q-function

Update rule

Deep RL

World
state action

argmax

Q-function

Deep RL

World
state action

argmax

Q-function

But, why would we
want to do this?

Where does “state” come from?

Agent

a

s,r

Agent takes actions

Agent perceives states and rewards

Earlier, we dodged this question: “it’s part of the MDP problem statement”

But, that’s a cop out. How do we get state?

Typically can’t use “raw” sensor data as state w/ a tabular Q-function
– it’s too big (e.g. pacman has something like 2^(num pellets) + … states)

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!

Linear function approximation?

In the RL lecture, we suggested using Linear Function approximation:

Q-function encoded by the weights

But, this STILL requires a human designer to specify the features!

Is it possible to do RL WITHOUT
hand-coding either states or features?

Deep Q Learning

Instead of state, we have an image
– in practice, it could be a history of the k most recent images
 stacked as a single k-channel image

Hopefully this new image representation is Markov…
– in some domains, it might not be!

Deep Q Learning

Network structure

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Network structure

Q-function

Conv 1 Conv 2 FC 1 Output

Stack of images

Num output nodes equals
the number of actions

Network structure

Updating the Q-function

Here’s the standard Q-learning update equation:

Here’s the standard Q-learning update equation:

Updating the Q-function

Here’s the standard Q-learning update equation:

Rewriting:

Updating the Q-function

Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

Updating the Q-function

Here’s the standard Q-learning update equation:

Rewriting:

let’s call this the “target”

This equation adjusts Q(s,a) in the direction of the target

We’re going to accomplish this same thing in
a different way using neural networks...

Updating the Q-function

Remember how we train a neural network...

Given a dataset:

Define loss function:

Adjust w, b so as to minimize:

Do gradient descent on dataset:

1. repeat

2.

3.

4. until converged

Use this loss function:

Updating the Q-network

Use this loss function:

Updating the Q-network

Notice that Q is now
parameterized by the weights, w

Use this loss function:

Updating the Q-network

I’m including the bias in the weights

Use this loss function:

Updating the Q-network

target

Use this loss function:

Updating the Q-network

target

Notice that the target is a function of the weights
– this is a problem b/c targets are non-stationary

Use this loss function:

Updating the Q-network

target

Notice that the target is a function of the weights
– this is a problem b/c targets are non-stationary

So… when we do gradient descent, we’re
going to hold the targets constant

Now we can do gradient descent!

Deep Q Learning, no replay buffers

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Where:

This is all that changed
relative to standard

q-learning

Deep Q Learning, no replay buffers

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!

Experience replay

Deep learning typically assumes independent,
identically distributed (IID) training data

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent,
identically distributed (IID) training data

But is this true in the deep RL scenario?

Experience replay

Initialize Q(s,a;w) with random weights
Repeat (for each episode):

Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

Until s is terminal

Deep learning typically assumes independent,
identically distributed (IID) training data

But is this true in the deep RL scenario?

Our solution: buffer experiences and then
“replay” them during training

Initialize Q(s,a;w) with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Deep Q Learning WITH replay buffers

Replay buffer

Add this exp to buffer

One step grad
descent WRT buffer

Train every
trainfreq steps

Initialize Q(s,a;w) with random weights

Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):

Choose a from s using policy derived from Q (e.g. e-greedy)
Take action a, observe r, s’

If mod(step,trainfreq) == 0:
sample batch B from D

Deep Q Learning WITH replay buffers

Replay buffer

Add this exp to buffer

One step grad
descent WRT buffer

Train every
trainfreq steps

– buffers like this are pretty common in DL...

Example: 4x4 frozen lake env

Get to the goal (G)
Don’t fall in a hole (H)

Demo!

Atari Learning Environment

Atari Learning Environment

Atari Learning Environment

Additional Deep RL “Tricks”

Additional Deep RL “Tricks”

Additional Deep RL “Tricks”

Additional Deep RL “Tricks”

Combined algorithm: 3x mean Atari score DQN w/ replay buffers

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

