How to Understand and Create Mapping Reductions

What is a mapping reduction?

- A mapping reduction $A \leq_{\mathrm{m}} B$ (or $A \leq_{\mathrm{P}} B$) is an algorithm (respectively, polytime algorithm) that can transform any instance of decision problem A into an instance of decision problem B, in such a way that the answer correspondence property holds.
- Answer correspondence property: The answer (yes/no) to any A problem instance must be the same as the answer to the corresponding B problem instance to which the reduction transforms it. ${ }^{1}$
- Thus the following two-step algorithm can be used to solve any A problem instance:

1. Transform the given A problem instance to a corresponding B problem instance.
2. Call a solver for B problem instances and return whatever answer (yes $/ \mathrm{no}$) it gives.

How should one make sense of the \leq notation?

- $A \leq_{\mathrm{m}} B$ means " A problems are no harder to solve than B problems."
- $A \leq_{\mathrm{P}} B$ means " A problems are no harder to solve in polytime than B problems."
- $A \leq_{\mathrm{m}} B$ means "Being able to solve any B problem \Rightarrow being able to solve any A problem."
- $A \leq{ }_{\mathrm{P}} B$ means "Being able to solve any B problem in polytime \Rightarrow being able to solve any A problem in polytime."

Examples of decision problem instances:

- An $A_{\text {TM }}$ problem instance is (an encoding of) a given TM and a given string. The associated yes/no question is: Does the given TM accept the given string?
- A REGULAR ${ }_{\text {TM }}$ problem instance is (an encoding of) a given TM. The associated yes/no question is: Is the language recognized by the given TM regular?
- A CLIQUE problem instance is (an encoding of) a given undirected graph and a given number. The associated yes/no question is: Does the given graph have a clique of the given size?
- A $3 S A T$ problem instance is (an encoding of) a 3CNF Boolean formula. The associated yes/no question is: Does the given Boolean formula have a satisfying assignment?

[^0]What are mapping reductions used for?

- To prove undecidability: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.
- To prove non-Turing-recognizability: If $A \leq_{\mathrm{m}} B$ and A is non-Turing-recognizable, then B is non-Turing-recognizable.
- To prove NP-completeness: If $A \leq_{\mathrm{P}} B$ and A is NP-complete (and $B \in \mathrm{NP}$), then B is NP-complete.

Other, less common, uses for mapping reductions:

- To prove decidability: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.
- To prove Turing-recognizability: If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turingrecognizable.
- To prove membership in P : If $A \leq_{\mathrm{P}} B$ and B is in P , then A is in P .

Important considerations when constructing mapping reductions

1. Make sure your reduction goes in the correct direction. For example: ${ }^{2}$

- If you're trying to prove A is undecidable, will it help to construct a reduction $A \leq_{\mathrm{m}} B$ for some undecidable language B ?
- If you're trying to prove A is NP-complete, will it help to construct a reduction $A \leq{ }_{\mathrm{P}} B$ for some NP-complete language B ?

2. Type match: A reduction (transformation) is an algorithm whose input and output must be of the right type. Examples:

- $A_{\mathrm{TM}} \leq_{\mathrm{m}} R E G U L A R_{\mathrm{TM}}$
- $A_{\text {TM }}$ problem instances have the form $\langle M, w\rangle$, where M is a TM and w is a string.
- REGULAR R_{TM} problem instances have the form $\left\langle M^{\prime}\right\rangle$, where M^{\prime} is a TM.
- Therefore the input to the reducing function (transformation) must be (an encoding of) an arbitrary TM and an arbitrary string, and the output must be (an encoding of) some TM.
- $3 S A T \leq_{\mathrm{P}}$ CLIQUE
- 3SAT problem instances have the form $\langle\phi\rangle$, where ϕ is a 3CNF Boolean formula.
- CLIQUE problem instances have the form $\langle G, k\rangle$, where G is an undirected graph and k is a number.
- Therefore the input to the reducing function (transformation) must be (an encoding of) an arbitrary 3CNF formula ϕ and the output must be (an encoding of) some undirected graph G and some number k.

[^1]3. Answer correspondence: The answer to the transformed problem instance should be the same as the answer to the original problem instance, for any instance of the original problem. ${ }^{3}$ Examples:

- $A_{\mathrm{TM}} \leq_{\mathrm{m}}$ REGULAR TM
- Let M^{\prime} denote the corresponding TM whose encoding is produced as output by the reducing function when given as input (the encoding of) a TM M and a string w.
- If the answer is yes to the question Does TM M accept string w ?, then the answer must be yes to the question Does the TM M' recognize a regular language?
- If the answer is no to the question Does TM M accept string w ?, then the answer must be no to the question Does the $T M M^{\prime}$ recognize a regular language?
- $3 S A T \leq_{\mathrm{p}} C L I Q U E$
- Let G and k denote the corresponding graph and number, respectively, whose encoding is produced as output by the reducing function when given as input (the encoding of) a 3CNF formula ϕ.
- If the answer is yes to the question Does ϕ have a satisfying assignment?, then the answer must be yes to the question Does the graph G have a k-clique?
- If the answer is no to the question Does ϕ have a satisfying assignment?, then the answer must be no to the question Does the graph G have a k-clique?

Proving answer correspondence always involves an "if and only if" proof.

[^2]
[^0]: ${ }^{1}$ If the answer is just the opposite, for most purposes that's okay too. In this case the mapping reduction is actually from A to \bar{B}.

[^1]: ${ }^{2}$ Analogously, if you're trying to prove a number is very large, will it help to prove that it's less than or equal to some very large number?

[^2]: ${ }^{3}$ As observed earlier, for most purposes it's okay if the answers are always opposite. This just means the mapping reduction is actually from A to \bar{B}.

