How to Understand and Create Mapping Reductions

What is a mapping reduction?

- A mapping reduction $A \leq_{\mathrm{m}} B$ (or $A \leq_{\mathrm{P}} B$) is an algorithm (respectively, polytime algorithm) that can transform any instance of decision problem A into an instance of decision problem B, in such a way that the *answer correspondence* property holds.
- Answer correspondence property: The answer (yes/no) to any A problem instance must be the same as the answer to the corresponding B problem instance to which the reduction transforms it.¹
- Thus the following two-step algorithm can be used to solve any A problem instance:
 - 1. Transform the given A problem instance to a corresponding B problem instance.
 - 2. Call a solver for B problem instances and return whatever answer (yes/no) it gives.

How should one make sense of the \leq notation?

- $A \leq_{\mathrm{m}} B$ means "A problems are no harder to solve than B problems."
- $A \leq_{\mathbf{P}} B$ means "A problems are no harder to solve in polytime than B problems."
- $A \leq_{\mathrm{m}} B$ means "Being able to solve any B problem \Rightarrow being able to solve any A problem."
- $A \leq_P B$ means "Being able to solve any B problem in polytime \Rightarrow being able to solve any A problem in polytime."

Examples of decision problem instances:

- An A_{TM} problem instance is (an encoding of) a given TM and a given string. The associated yes/no question is: *Does the given TM accept the given string?*
- A *REGULAR*_{TM} problem instance is (an encoding of) a given TM. The associated yes/no question is: Is the language recognized by the given TM regular?
- A *CLIQUE* problem instance is (an encoding of) a given undirected graph and a given number. The associated yes/no question is: *Does the given graph have a clique of the given size?*
- A 3SAT problem instance is (an encoding of) a 3CNF Boolean formula. The associated yes/no question is: Does the given Boolean formula have a satisfying assignment?

¹If the answer is just the opposite, for most purposes that's okay too. In this case the mapping reduction is actually from A to \overline{B} .

What are mapping reductions used for?

- To prove undecidability: If $A \leq_{m} B$ and A is undecidable, then B is undecidable.
- To prove non-Turing-recognizability: If $A \leq_m B$ and A is non-Turing-recognizable, then B is non-Turing-recognizable.
- To prove NP-completeness: If $A \leq_{\mathbf{P}} B$ and A is NP-complete (and $B \in \mathbf{NP}$), then B is NP-complete.

Other, less common, uses for mapping reductions:

- To prove decidability: If $A \leq_{m} B$ and B is decidable, then A is decidable.
- To prove Turing-recognizability: If $A \leq_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.
- To prove membership in P: If $A \leq_{P} B$ and B is in P, then A is in P.

Important considerations when constructing mapping reductions

- 1. Make sure your reduction goes in the correct direction. For example:²
 - If you're trying to prove A is undecidable, will it help to construct a reduction $A \leq_{m} B$ for some undecidable language B?
 - If you're trying to prove A is NP-complete, will it help to construct a reduction $A \leq_P B$ for some NP-complete language B?
- 2. *Type match:* A reduction (transformation) is an algorithm whose input and output must be of the right type. Examples:
 - $A_{\rm TM} \leq_{\rm m} REGULAR_{\rm TM}$
 - $A_{\rm TM}$ problem instances have the form $\langle M, w \rangle$, where M is a TM and w is a string.
 - $REGULAR_{TM}$ problem instances have the form $\langle M' \rangle$, where M' is a TM.
 - Therefore the input to the reducing function (transformation) must be (an encoding of) an arbitrary TM and an arbitrary string, and the output must be (an encoding of) some TM.
 - $3SAT \leq_{P} CLIQUE$
 - 3SAT problem instances have the form $\langle \phi \rangle$, where ϕ is a 3CNF Boolean formula.
 - *CLIQUE* problem instances have the form $\langle G, k \rangle$, where G is an undirected graph and k is a number.
 - Therefore the input to the reducing function (transformation) must be (an encoding of) an arbitrary 3CNF formula ϕ and the output must be (an encoding of) some undirected graph G and some number k.

²Analogously, if you're trying to prove a number is very large, will it help to prove that it's less than or equal to some very large number?

- 3. Answer correspondence: The answer to the transformed problem instance should be the same as the answer to the original problem instance, for any instance of the original problem.³ Examples:
 - $A_{\rm TM} \leq_{\rm m} REGULAR_{\rm TM}$
 - Let M' denote the corresponding TM whose encoding is produced as output by the reducing function when given as input (the encoding of) a TM M and a string w.
 - If the answer is yes to the question Does TM M accept string w?, then the answer must be yes to the question Does the TM M' recognize a regular language?
 - If the answer is no to the question Does TM M accept string w?, then the answer must be no to the question Does the TM M' recognize a regular language?
 - $3SAT \leq_{P} CLIQUE$
 - Let G and k denote the corresponding graph and number, respectively, whose encoding is produced as output by the reducing function when given as input (the encoding of) a 3CNF formula ϕ .
 - If the answer is yes to the question Does ϕ have a satisfying assignment?, then the answer must be yes to the question Does the graph G have a k-clique?
 - If the answer is no to the question Does ϕ have a satisfying assignment?, then the answer must be no to the question Does the graph G have a k-clique?

Proving answer correspondence always involves an "if and only if" proof.

³As observed earlier, for most purposes it's okay if the answers are always opposite. This just means the mapping reduction is actually from A to \overline{B} .