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Abstract

XISTING approaches for analyzing security protocols, while quite successful,
E are limited in a number of ways. One limitation is that they often do not
supply a specification language. Another limitation is that the model of the adver-
sary is quite restricted, unable to capture protocol-specific knowledge or to sup-
port guessing. Informal specifications of security in the literature are typically
phrased in terms of knowledge. It thus seems natural to use an epistemic logic as
a specification language, where specifications can be written directly in terms of
knowledge. However, the standard interpretation of knowledge in such logics suf-
fers from the logical omniscience problem: agents know all logical consequences
of their knowledge. This gives a notion of knowledge too strong for the purpose
of reasoning about security, since the adversary knows information that no real-
istic adversary should know. Using a notion known as algorithmic knowledge it
is possible to define a logic for reasoning about security protocol under different
adversary models, where adversaries use algorithms to compute their knowledge.

The contributions of this dissertation are two-fold. Firstly, we develop the theory
of algorithmic knowledge in more depth. More precisely, we investigate the proper-
ties of the logic when the knowledge algorithms implement deductions in a logical
theory for the agents and when the knowledge algorithms are randomized. Dealing
with specifications in the presence of randomized knowledge algorithms requires a
notion of evidence, a concept heavily studied in the philosophical literature, but not
so much in computer science. Secondly, we develop a logic for reasoning about
security protocols based on the well-understood notions of knowledge, time, and
probability, as well as algorithmic knowledge to capture the capabilities of the ad-
versary. We show this logic is flexible enough to capture many of the adversaries
considered in the literature. We finally provide evidence that this logic is suffi-
ciently expressive to reason about security protocols: it can capture subtleties in
the handling of nonces that are not captured by non-epistemic approaches to secu-
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rity protocol analysis, and it can capture many operators believed to be important
for security protocol analysis.
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1
Introduction

HIs dissertation demonstrates that a logic for reasoning about resource-bounded
knowledge provides a good foundation for reasoning about security protocols.

Formal theories of knowledge have proved useful in a number of fields, including
artifical intelligence, economics, distributed computing, and security. However,
most theories of knowledge do not take resources available to agents into account;
this makes it difficult to reason about the complexity of establishing knowledge.
In the first part of this dissertation, we study a logical theory of resource-bounded
knowledge that captures a computational view of knowledge. In the second part
of this dissertation, we apply the theory studied in the first part to the problem of
reasoning about security protocols.

1.1 Knowledge and Evidence

The notion of knowledge has been a central preoccupation for western philosophy
since Aristotle. While philosophers have mostly been concerned with questions
such as “what is knowledge?”, “what is it possible to know?”, “are there facts
that can be known and that are not derived from experience?”, knowledge turns
out to be a useful concept to formalize various situations that can be analyzed most
naturally in terms of who knows what information. To illustrate this issue, consider
the following well-known puzzle.

A certain village contains a number of married couples, of whitlusbands are
cheating on their wives. It is a well-known fact within the community that every
woman knows about all the cheating taking place, except for the infidelities of her
own husband. The village is a matriarchal society which demands that husbands
remain faithful to their wives. If a wife discovers irrefutable evidence that her
husband has been cheating on her, she has to kill him that night and dump his
body in the town square for all to see. One day, at a town meeting, the chief
announces, “There is some cheating in this village, and | want it to stop.” Then,

1



2 1 Introduction

k — 1 nights pass uneventfully. After thigh night, however, the bodies of the
cheating husbands are found in the town square. How did this happen?

The argument for explaining the puzzle goes roughly as follows. The idea is to
show that for the firsk — 1 nights, none of the cheated wives kills her husband,
but after thekth night, all the cheated wives kill their husbandk £ 1, the result
is immediate; after the first night, the single cheated wife notices that no other
husband has cheated, so she knows that her own husband has chehated?2,If
the result is similar. Say thatandb are the cheated wives. After the first night,
notices that’s husband has cheated, udid not kill him. The only reason that
b did not kill her husband must be that she was not sure that he was cheating, that
is, she must have withessed another husband cheating. &Simely noticedd’s
husband cheating, it must be that her own husband was cheating.b Véifews
the same reasoning to establish that her own husband was cheating. Thus, both
wife a andb know that their husbands cheated, and they promptly kill them the
second night. A similar argument works for all valuescof

A key point for this argument to go through is the initial statement by the vil-
lage chief that there is at least one husband cheating. It is interesting to ask why.
Intuitively, the initial statement establishes common knowledge among the wives
that there is at least one cheating husband, that is, all the wives know that there is
at least one cheating husband, all the wives know that all the wives know that there
is at least one cheating husband, and so on. This knowledge is needed in the above
argument, for instance, for wifeto reason thak did not kill her husband because
she saw another cheating.

The argument above is informal, but can be formalized in a straightforward way.
A good formal model of knowledge helps explain the subtleties involved in the
above puzzle, and the role of the utterance of the village chief. It also has applica-
tions to fields other than puzzle-solving.

Artificial Intelligence. One of the goals of artificial intelligence research is to
design rational independent agents. To achieve this, it seems that agents should be
based on notions such as belief, knowledge, intention, and so on. Thus, a formal
model of knowledge is useful alongside other formal models. Knowledge in fact
has been studied from at least two distinct perspectives in artificial intelligence.
First, in any intelligent being, knowledge is a process that seems central to the
understanding of cognition, that is, an understanding of the way the higher-level
functions of the brain work. This is held by many researchers as a prerequisite to
the building of intelligence in machines. For instance, in order to help machines
understand natural language, it is useful to have an idea how humans understand
language, from the perception of sounds to the formation of concepts. Knowledge
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is an intrinsic part of this equation, so that a study of knowledge is part of a com-
plete study of cognitive models for artificial intelligence. The second perspective
from which knowledge has been studied is that of finding useful representations for
the knowledge an agent has about his environment, about his internal state, and so
on. Often, the representation of knowledge is very specific (a database of facts, a
set of logical formulas), and research in knowledge representation involves finding
efficient ways of querying for knowledge in such representations and updating the
representations when new information is available to the agent.

Economics and Decision Theory. In decision theory, one often studies eco-
nomic agents engaging in competitive behaviour to maximize gain. The basis of
many decisions can be understood as a function of the knowledge of the agents.
This is often formalized via game theory, a theory that goes back to the semi-
nal work of John von Neumann and Oskar Morgenstern in the 1940s. Games, in
this sense, are typically taken to be games of strategy, such as chess and check-
ers. Games such as backgammon, that involve both strategy and chance, are also
considered. One of the important distinctions to make when analyzing games is
whether the game is one of perfect information, where the participants have access
to all the information relevant to the game, as in chess, or a game of imperfect
information, where some of the information is hidden from the participants. In the
latter case, the information each participant has access to, his information set, is
exactly his knowledge. Game theory could be characterized theory as the theory of
how to make the best decision, based on one’s knowledge.

Distributed Computing. In distributed computing, one studies programs that
consist of different processes running essentially independently on different ma-
chines and communicating by various means. In this context, knowledge turns
out to be a useful form of specification. For example, suppose that two processes
engage in a protocol to synchronize their content, such as two databases. After
completion of the protocol, a desirable guarantee is that each process proceeds
only if it is sure that the content was successfully synchronized, even in the pres-
ence of network failures. One way to enforce this guarantee is simply to force each
process to confirm to the other that the exchange was successful, and to proceed
only once that acknowledgment is received. Pending issues such as what happens
if an acknowledgment is lost, there are many other ways in which such a confir-
mation could be implemented. What is an appropriate specification of the desired
behaviour that does not force a particular number of details into the specification?
A specification that is too precise would say, for example, that at the end of the ex-
ecution of the protocol, the acknowledgments have been received. However, such
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a specification really works only for a particular way of establishing confirmation.

A more widely applicable specification is to say that at the end of the protocaoal,
each procesknowsthat the other process has successfully synchronized. Now,
whether this knowledge is achieved by explicit acknowledgments or some other
mechanism is immaterial to the specification. Of course, this requires a formal
definition of knowledge for processes.

As the examples above show, there are many areas where a formal theory of
knowledge is useful. The examples also highlight two distinct uses of such a the-
ory. On the one hand, knowledge can be used by someone designing or analyzing
a system to verify that the system behaves in a way consistent with a specification
that is best expressed using knowledge. In this case, knowledge should be viewed
as something ascribed to agents by an external observer. In the synchronization
protocol example above, the designer of a distributed protocol wants to check that
the protocol behaves as follows: “once the process knows that the synchronization
succeeded, it proceeds”. There is no question of the processes themselves deter-
mining whether or not they know whether the synchronization succeeded. The pro-
cesses follow a particular implementation, that for instance allows them to proceed
once they receive an acknowledgment from the other process. The specification,
however, is given in terms of the more general notion of knowledge. This form
of knowledge is known amnplicit knowledgebecause it can be understood as the
knowledge implicit in the situation of the agent. This form of knowledge has been
extensively studied in the literature and leads to a rather elegant theory, which we
review in Chapter 2.

A different use of knowledge is as something concrete that agents can manipu-
late. For example, independent agents in artifical intelligence often need to base
their decisions on their knowledge of the environment, such as whether there is an
obstacle on their path, in the case of robotic agents. This knowledge can come di-
rectly from sensors, or from indirect reasoning such as the fact that another robotic
agent had to change direction to avoid the obstacle. This requires the agent to
determine whether or not he knows a fact. This form of knowledge is known as
explicit knowledgebecause it can be understood as the knowledge that the agent
explicitly needs to compute in order to make decisions. Clearly, whether or not the
agent explicitly knows a fact should depend on his resources. There can be time
constraints restricting the amount of deduction that can be performed, or there may
be limited computational abilities, such as only a small memory available on robot
processors. Reasoning about knowledge in such a setting calls for a theory of
resource-bounded knowledge, that can be used to model situations where agents
that are resource-bounded need to explicitly compute their knowledge.

A general way of modeling explicit knowledge, known agorithmic knowl-
edge provides every agent in the system with a “knowledge algorithm” that they
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can use to answer questions about their knowledge. This framework can capture
most of the approaches to modeling explicit knowledge from the literature. It is
then possible to develop a logic to reason about the implicit and explicit knowledge
of agents, where the explicit knowledge is modeled using algorithmic knowledge.
This logic can be used as a specification language to write specifications that talk
about what agents know both implicitly and explicitly, and to reason about what
agents know about each other’s ability to compute what they know. We review this
approach in Chapter 2.

One possible interpretation of algorithmic knowledge is to view it as a way for
an agent to “test” whether or not he knows a fact. Many properties of algorith-
mic knowledge depend on whether or not this test for knowledge is “sound”, that
is, if whenever the knowledge algorithm answers “Yes” when asked whether the
agent knows a particular fact, then the agent indeed (implicitly) knows that fact.
If a knowledge algorithm is sound, then algorithmic knowledge of a fact implies
knowledge of that fact. Not all knowledge algorithms are sound in this way; many
of them are “almost sound”, especially those that involve some randomization.
Despite the fact that these algorithms are sometimes wrong, it certainly seems that
if the probability that the algorithm gives the wrong answer is low, it provides
very useful information when it says “Yes” to a query. This intuition appears in
the randomized algorithms literature, where a “Yes” answer from a highly reliable
randomized algorithm that is, one with a low probability of being wrong, is deemed
“good enough”. Itis certainly not the case that a “Yes” answer to a gbidrpm a
highly reliable randomized knowledge algorithm should make the probability that
Fis true be high. Rather, the information should be vieweglédencehat the fact
Fis true; the probability thak’ is true also depends in part on the prior probability
of the fact.

The notion of evidence, like that of knowledge, has been widely discussed in
the philosophical literature. Much of this discussion occurs in the philosophy of
science, specificallgonfirmation theorywhere the concern has been historically
to assess the support that evidence obtained through experimentation lends to var-
ious scientific theories. Confirmation theory aims at determining and measuring
the support a piece of evidence provides a hypothesis. Many different measures of
confirmation have been proposed in the literature. Typically, a proposal has been
judged on the degree to which it satisfies various properties that are considered ap-
propriate for confirmation. For example, it may be required that a piece of evidence
e confirms a hypothesis if and only if e makesh more probable.

Such a notion of evidence is more generally relevant to understanding situations
involving a combination of nondeterministic choices and probabilistic choices. The
following example illustrates the issues involved. Suppose Alice chooses one of
two coins, nondeterministically. One is fair, meaning it has probal:r}lity land-
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ing heads and probability of landing tails when tossed, and the other is double-
headed. Bob, who does not see which coin Alice chose, sees her toss the coin a
hundred times, landing on heads on every toss. What is the probability, according
to Bob, that the next coin toss lands heads as well? Since the example does not give
a probability distribution on Alice’s choice of coin, this question has no precise an-
swer, beyond the unsatisfying “the probability of the next coin toss landing heads
is either% or 1”. Yet, there is an intuition that it is more likely than not that the
coin is double-headed. This can be made clearer if Bob sees an additional thousand
coin tosses, all landing heads. Again, it is not possible to assign a probability to
the event of the next coin toss landing heads, but now it is even more likely for the
coin being double-headed. Something has changed, but what? Intuitively, there is
accumulated evidence for the coin to be double-headed, and hence for the fact that
the next coin toss will land heads.

The first part of this dissertation is concerned with the study of the form of
resource-bounded knowledge modeled using algorithmic knowledge, and its rela-
tionship to evidence. The particular contributions of this first part are as follows.

— In Chapter 3, we study a particular form of knowledge algorithm that captures
many situations of interest, where the explicit knowledge of an agent is assumed
to come from a logical theory in which the agent performs his reasoning. The
knowledge algorithm corresponding to such a logical theory is the algorithm that
attempts to infer whether a fact is derivable from the deduction rules provided
by the agent’s logical theory. In contrast with the general form of algorithmic
knowledge, where the algorithm is arbitrary, the highly structured presentation
of the logical theory permits an axiomatization of the properties of the resulting
form of algorithmic knowledge. Formally, we show that the logic interpreted
over such knowledge algorithms admits sound and complete axiomatizations
that can be derived directly from the rules of the logical theory. We also consider
the complexity of the decision problem.

— In Chapter 4, we study what happens when the knowledge algorithm used by an
agent is randomized. Handling this case requires an extension of the theory. In
this context, it becomes necessary to characterize the information obtained by
an agent when a randomized knowledge algorithm gives a positive answer to a
query, since there is often some probability that the algorithm is wrong when it
answers positively. It certainly seems that if the probability that the algorithm
gives the wrong answer is low, it provides very useful information when it an-
swers “Yes” to a query. A positive answer from a randomized algorithm that
has a low probability of being wrong is often deemed “good enough”. In what
sense is this true? We show how to quantify this statement using an appropriate
measure of evidence from the literature.
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— In Chapter 5, we focus on the notion of evidence that was used in the Chap-
ter 4 to quantify the evidence provided by randomized knowledge algorithms.
We develop a logic for reasoning about evidence in a more general setting that
essentially views evidence as a function from prior beliefs (before making an
observation) to posterior beliefs (after making the observation). We provide a
sound and complete axiomatization for the logic, and consider the complexity
of the decision problem.

1.2 Security Protocol Analysis

A particularly interesting field of application for formal theories of knowledge is
that of reasoning about security. An important aspect of security is confidentiality,
either in the form of data that needs to be kept from falling into the wrong hands,
or more generally, in the form of controlling who can know particular facts, such
as passwords, keys, or identity. It therefore seems reasonable that formal theories
of knowledge should shed light on security issues.

In the second part of this dissertation, we focus on a particular aspect of security,
namely security protocols. Security protocols mediate the exchange of information
between different agents, in order, for example, to exchange a confidential piece of
information or to establish the respective identity of the agents. Security protocols
often rely on cryptography to exchange messages, including mechanisms for en-
crypting messages and mechanisms to digitally sign messages with an unforgeable
token whose validity is easy to check. As an illustration, consider the following
security protocol to authenticate two agents, Alice and Bob:

1. A—B : {na, A}k,
2. B— A : {]nA,nB[}kA
3. A—B : {npli,-

Here,k 4 represents the public key of Alice aig the public key of Bob, while
n4 andnp are unpredictable values chosen by Alice and Bob, respectively. The
notationA — B : m indicates that agent sends a messageto agentB, and the
notation{ v} indicates the (public key) encryption of valuaising keyk.

Assume that all agents have access to the public kgysnd .z which can be
used to encrypt data, but only Alice has the decryption key correspondiig, to
and only Bob has the decryption key corresponding: o Thus, everyone can
encrypt a message withy and send it to Alice, but only Alice can decrypt this
message, since only she has the corresponding decryption key. The protocol above
says that to authenticate two agents, Alice and Bob, Alice first begins by sending a
messag€gn 4, Al}x,, to Bob containing her name and a vatugthat Alice chooses
S0 as to be unpredictable. Since only Bob has the decryption key corresponding to
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kg, only Bob can decrypt the message. Bob receives this message, decrypts it, and
replies to Alice with a messag§ 4, ngli, containing the value: 4 that Alice

sent, along with Bob’s own unpredictabilg, all encrypted so that only Alice can
decrypt it. When Alice receives that message, if she assumes that Bob is honest
and does not reveal4 to any other agent, then she sees that the message must be
from Bob, since only he could have decrypted her original message, extragted

and used it in the reply message. Hence, she knows she is indeed talking to Bob,
and that is Bob’s value. She then replies to Bob by sending him back his value
np encrypted again in such a way that only Bob can read it. A similar argument
shows that Bob knows he is talking to Alice, since only Alice could have extracted
hisnp from his earlier reply, and used it in the message he received. Intuitively,
at the end of the exchange, Alice knows that she has been talking to Bob, and vice
versa. Therefore, if Alice and Bob are communicating using a fixed channel, then
Alice knows that the channel on which she is talking can be used to communicate
with Bob, and vice versa. (Assuming, of course, that the agent at each end of the
channel is also fixed.)

When faced with a security protocol such as the one above, there are really two
tasks involved in formally reasoning about it. First, the properties of the protocol
must be specified. Second, the properties must be shown to be satisfied by the
protocol. While arguably the latter has received the most attention in the recent
literature, the task of specifying security properties is far from having received a
satisfactory solution.

To see the need for a good specification language for security properties, con-
sider the kind of properties that arise in the example above. The goal is to establish
that Alice has successfully authenticated herself to Bob, and vice versa. But what
does that mean exactly? We argued that at the end of the execution of the proto-
col, Alice knew Bob’s value:g, and Bob knew Alice’s value. 4, and moreover
both Alice and Bob knew that the other knew their value. We took this to mean
that Alice and Bob successfully authenticated themselves to each other. Is that a
reasonable definition? Clearly, it only makes sense if the protocol being analyzed
actually involves exchanging secret values. Is there a general notion of authenti-
cation that can be captured in a specification language? What about protocols that
aim at preserving anonymity, or privacy? At the very least, a specification language
for security protocols should be expressive enough to capture all of these notions
in a natural way.

Determining the security properties that a security protocol should satisfy is an
important part of the analysis. Another important part is determining the context in
which the protocol is meant to be analysed. Protocols are not analyzed in a vacuum,
but rather with respect to an execution context. To see the subtleties involved in
taking the context of execution into account, consider the argument above. The
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reasoning appears sound, and should prove that Alice is talking to Bob, and vice
versa, since only the appropriate agent can decode the exchanged messages at key
points of the interaction. But in what context does this reasoning hold? It turns
out that Trudy, an “insider” in the system, can fool Bob into thinking he’s talking

to Alice while he’s in fact talking to Trudy. Consider the following interaction,
where Alice initiates an interaction with Trudy, and Trudy uses that interaction as

an “oracle” to drive her interaction with Bob:

A—=T : {na, A}k,
T(A) — B : {na, ALk,
B—-T(A) : {na,nplk,
T—A : {na,npli,
A—T : {npli,
T(A) — B ﬂnB[}kB.

The first column reports the messages exchanged between Alice and Trudy, while
the second column reports the messages exchanged between Trudy masquerading
as Alice (writtenT'(A)), and Bob. Here, Trudy has managed to convince Bob that
he’s talking to Alice, when he is not. It requires Trudy to be a known principal
of the system, albeit a dishonest one. This attack is simple, and more importantly,
does not show up in the informal analysis of the protocol given above. This does
not necessarily mean that the initial protocol is flawed. It depends on the context
in which the protocol is to be used. In a closed system where every agent known
to the other agents is honest, the argument we gave originally holds. However, if
dishonest agents are allowed in the system, then the above attack is a possibility.

The goal of security protocol analysis is to develop tools and methods to reason
about protocols, highlighting problems such as the above. As the example above
illustrates, there are many aspects to this: Who are the principals involved? Who
is compromised? What are the capabilities of adversaries? How many instances
of the protocol are running concurrently on the system? To illustrate the difficul-
ties, consider the protocol above, corrected in such a way that the attack we just
illustrated is no longer possible. The idea is to add the name of Bob to the second
message:

1. A—B : {na, A},
2. B— A : {na,np,Bl}i,
3. A— B : {]nBﬂkB.

Intuitively, in the attack scenario above, if Alice sees that she gets her second
message back and it contains Bob’s name instead of Trudy’s, with whom she is
talking, then she will figure out something is wrong.

Being clear about the context of execution of a protocol is one important aspect
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of reasoning about security protocols. Another important aspect is to determine the
capabilities of the adversary. In the example above, what can Trudy do? Clearly,
if she can “crack” arbitrary encrypted messages, then she can easily fool Alice or
Bob. Indeed, the informal analysis relied on the fact that only Bob could decrypt
a message encrypted witly. What is commonly done in the literature is to give

the adversary some very restricted capabilities, such as being able to intercept and
reroute messages, compose new messages by concatenation, but only allowing an
adversary to decrypt a message if the decryption key is known. While such an ab-
stract adversary is useful (it is sufficient to find the insider attack described above),
it is also fairly limited, as there may be contexts where it makes sense to assume
the adversary has more refined capabilities; for example, there may be properties
of the encryption that the adversary can use without cracking the encryption.

There are many approaches to reasoning about security protocol analysis, which
we review in Chapter 6. These approaches can be classified into broad categories,
depending on how exactly they approach the protocol analysis problem. Some
approaches are based on standard techniques for analyzing software systems, by
focussing on the modeling of the system and the resulting properties. Other ap-
proaches are based on the theory of programming languages, and focus on compo-
sitional ways of representing the protocols so that the analysis can be done directly
on the protocol text. Finally, other approaches are more in the spirit of logic-based
verification, in that they offer a precise specification language that is given a formal
semantics in terms of the protocols. Each class of approaches makes decisions as
to the points raised above: how to model the protocol, how to specify properties,
and how to verify that these properties hold. Most importantly, however, few ap-
proaches provide a way to model different capabilities of adversaries. The few that
are flexible enough to provide such a facility do not provide a suitable specification
language. Is it possible to develop a framework for modeling and reasoning about
security protocols, where adversaries can be are defined in a flexible way, and that
supports an expressive and natural specification language for security properties?

In the second part of this dissertation, we apply the framework developed in the
first part of the dissertation to the problem of reasoning about security protocols,
taking into account the aspects highlighted above. The goal is to derive a logic-
based specification language suitable for capturing security properties, with a clear
semantics ground in well-understood and intuitive models, that moreover provides
enough flexibility to capture various capabilities of adversaries. The particular
contributions of this second part are as follows.

— In Chapter 7, we describe a formal framework to model security protocols, a mi-
nor specialization of existing models from the distributed computing literature.
Our models are simply dynamic versions of the structures studied in the first
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part of the dissertation, and they allow for the clean expression of knowledge-
theoretic concepts, which underlies the specification of security notions. We
introduce a programming language for writing protocols, and show how it is
used to generate models. We finally compare our models to a popular class of
models in the literature, strand spaces, and show that they are at least as expres-
sive as strand space models. Thus, our models can be used to model security
protocols at least at the level of expressiveness of other approaches.

— In Chapter 8, we introduce a formal logic for reasoning about security properties
of the models described in the previous chapter. In keeping with the observation
above that most security notions are really epistemic notions, our logic is a logic
of knowledge. The capabilities of adversaries can be nicely captured using a
knowledge algorithm and thus the knowledge of an adversary can be expressed
by the algorithmic knowledge studied in the first part of this dissertation. We
show that this can be used to express in a natural way many of the adversaries
studied in the literature.

— In Chapter 9, we examine in more detail some of the more interesting notions
that arise in security protocol analysis, using the logic of Chapter 8. One notion
central to security protocol analysis is that of nonces (the unpredictable values
n4 andnpg in the protocol above). The unpredictability of nonces can best be
understood and modeled using an epistemic language. Additionally, it is possi-
ble to encode many of the higher-level security operators that have been advo-
cated in the literature using a language with well-understood and well-studied
operators for knowledge, time, and probability. This provides evidence that the
logic introduced in Chapter 8 supplies a reasonable foundation on which to base
security protocol analysis.

1.3 Remarks

We assume the reader has a basic knowledge of logic. We assume exposure to com-
plexity theory, including the fact that the satisfiability problem for propositional
logic is NP-complete. For Chapter 4 and beyond, we assume a basic knowledge of
probability theory, as well as exposure to randomized algorithms. For the second
part of this dissertation, we assume a passing familiarity with basic cryptographic
concepts, such as shared-key and public-key cryptography.

Keeping in mind these assumptions, every attempt has been made to make this
dissertation as self-contained as possible. To avoid distracting the reader, bibli-
ographic information and precise relationships with related work have been rele-
gated to the end of every chapter. The proofs of the technical results appear in
Appendix B.
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Most of the core work in this dissertation is the result of collaborations. Specifi-
cally, Chapters 4-5 and 7-8 are joint work with Joseph Halpern. Chapter 9 is joint
work with Joseph Halpern and Ron van der Meyden.

Notes

The branch of philosophy that studies the origin, structure, methods and validity of
knowledge is epistemology. For moderns accounts and overviews of contemporary
theories, see Hamlyn [1970] and Pollock and Cruz [1999].

The cheating husbands puzzle (variously known as the muddy children puzzle,
the three blind wise men puzzle) was described, among others, by Gamow and
Stern [1958]. An analysis in terms of a formal theory of knowledge as described
in the next chapter is presented by Halpern and Vardi [1991].

One of the first papers to advocate associating mental qualities to machines is
McCarthy [1979]. The issues involved in knowledge representations can be found
in [Davis, Shrobe, and Szolovits 1993; Sowa 2000].

A discussion of the role of theories of knowledge in economics can be found in
[Brandenburger 1989; Aumann 1999]. They have their source in Aumann’s [1976]
seminal work on the role of common knowledge in reaching agreement. Game
theory originated with Von Neumann and Morgenstern [1947]. See [Fudenberg
and Tirole 1991] for a modern introduction.

The use of formal theories of knowledge to specify and reason about distributed
computation was advocated in a number of early papers [Halpern 1990; Dwork
and Moses 1990; Moses and Tuttle 1988; Halpern and Zuck 1992]. See Fagin et
al. [1995] for more references. Algorithmic knowledge was introduced by Halpern,
Moses, and Vardi [1994]. Kyburg [1983] gives a good overview of the literature
on evidence.

The protocol in Section 1.2 is due to Needham and Schroeder [1978]. The in-
sider attack and the fix were discovered by Lowe [1995].

A good modern introduction to logic is Enderton [1972]. A good introduction
to complexity theory is Papadimitriou [1994]. The NP-completeness of proposi-
tional logic was first proved by Cook [1971]. Good introductions to probability
theory include Feller [1957] and Billingsley [1995]. Randomized algorithms are
described by Motwani and Raghavan [1995]. Stinson [1995] and Schneier [1996]
give excellent overviews of cryptography.
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2
Algorithmic Knowledge

N the first part of this dissertation, we study a formalism to reason about resource-
bounded knowledge. In this chapter, we review the intuitions underlying the

classical approach to knowledge, and describe various ways in which it can be ex-
tended to take into account resource bounds. We highlight the particular approach
we use in the remainder of this dissertation. This chapter is mostly review of exist-
ing literature.

Note that there is a strong philosophical component to any study of logics of
knowledge (also known aspistemic logics While this is an intriguing topic—
to develop a theory of knowledge that captures in a logic the features of what
might be termed “human knowledge”—this will not be our aim in this work. The
intent is to focus on epistemic logic as a specification language for systems. This
leads to a particular set of desiderata, distinct from what one might expect from
a logic of human knowledge. (We do consider some philosophical implications
of the approach described in this chapter to the problem of human knowledge in
Appendix A.)

2.1 A Model of Knowledge

What does it mean tknowa fact? The modern approach, due to Jaakko Hintikka,
goes something like this. Assume a 8étof worlds. Intuitively, each world rep-
resents a possible state of affairs in the situation being studied. For example, if the
situation consists of tossing a die, we might consider six worlds, one for each way
the die can land. (We are implicitly assuming, therefore, that the die cannot land
on its edge, or indeed not land at all.) A more complicated situation might actually
involve a great many more worlds. If we are interested in a situation where we
worry about the weather around the world, then we may have a world where it is
cloudy in Edinburgh and raining in Ithaca, a world where it is cloudy in Edinburgh

15
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and sunny in Ithaca, and so on. The number of worlds to consider multiply quickly.
Clearly, some facts will be true at some worlds, others will be false.

Given the current (or actual) world, there are a number of worlds that may be
considered as possible alternatives to the actual world. Intuitively, these are the
worlds that cannot be distinguished from the actual world. Given a woylde
typically refer to the worlds that are indistinguishable franas the worlds consid-
ered possible ab. In the weather example, if we are currently in Edinburgh and
we witness the sky is cloudy, then we will only consider a world possible if indeed
it says that it is cloudy in Edinburgh. Using this notion, we know a fact at a world
w if that fact is true at all the worlds considered possible at

This can be formalized as follows. Agpistemic framéZ = (W, X) consists of a
setlV of possible worlds (or states), and a binary relaflosuch tha{w, w’) € X
if the agent considera’ possible at worldv. (That is, if the agent considers that
w’ is a possible alternative to the actual would It is useful to writeX as though
it were a function, as((w) = {v' € W | (w,w’) € X}. Afactin E can be
understood as a set of worlds, intuitively, the set of worlds where that fact is true.
Hence, the fact “It is raining in Ithaca” can be identified with the set of worlds
where it is raining in Ithaca. Following the intuition above, the agent knows a fact
F at a worldw, if X(w) C F': at every world the agent considers possibleat
the fact is true.

This definition is quite general. For one, we have not put any restrictions on
the worlds an agent considers possible. In general, restrictions on knowledge will
amount to properties of the relatidd. Some of those are rather standard, with
equally standard interpretations. For instance, one restriction could be that the
actual world is always considered possible, i@, w) € X; in other wordsX is
reflexive. Similarly, X may be transitive, so thétv,, w2) € X and(ws, ws) € X
imply that(w;, ws3) € K, and so on.

There is at least one feature of knowledge in epistemic frames thatrddes
depend on the properties of thérelation. Consider a fadt’ along with a faci?
that is a “consequence” df. Formally, this simply means th#&t C G: whenever
F holds,G holds as well. It follows directly from the definition of knowledge that
an agent knowing fadt' also knows fact. In this sense, agents are very powerful
reasoners, knowing all the consequences of the facts they know. We return to this
observation in Section 2.3.

1 One of these properties, reflexivity, is in fact the property that differentiates knowledge from belief, at least
according to philosophers: knowledge has the property that if you know a fact, that fact is true. In contrast, it
is possible to believe a fact that happens to be false.
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2.2 Reasoning about Knowledge

We now define a formal logic for reasoning about the properties of epistemic
frames. The starting point is propositional logic. Propositional logic can be un-
derstood as a formal system for reasoning about a particular world. Assume a set
&y = {p1,p2, ... } of primitive propositions; each primitive proposition represents
a primitive “fact”, such as “the door is closed”, or “messagdas been sent”. The
syntax of L¥(®g) is obtained by starting with a sét, of primitive propositions,
and closing off by forming conjunctions of formulas;(A ¢2), negations of formu-
las (—¢), and knowledge formulagi{y). The formulakK ¢ intuitively reads “the
agent knowsy”. The remaining logical operators, such as disjunction, implication,
equivalence, are defined as abbreviations for more complex formulas. The disjunc-
tion p1 V g is taken to be an abbreviation fer(—¢; A —¢2), the implication
©1 = 2 an abbreviation fory; V @2, and the equivalencg; < ¢, an abbre-
viation for (o1 = 2) A (2 = ¢1). The formulatrue is taken to be an arbitrary
but fixed tautology of the logic, anflise is an abbreviation fortrue. When the
set of primitive propositions is not relevant, we often simply wiifé instead of
LX(®g). (This convention will hold for most logics throughout this dissertation.)
The ideas of the previous section can be used to assign a semantics to this logic.
More precisely, we can understand the knowledge of a fact (here understood as a
formula) at a worldw as the fact being true at all worlds considered possibie. at
This can be turned into a semantics for formul&6fby starting with an epistemic
frame and adding an interpretation that assigning a truth value to every primitive
proposition at every world of the frame. More formally, apistemic structure
(also known as Kripke structure) is a tuplé = (W, X, 7) where(W,X) is an
epistemic frame and is an interpretation foy in W, that is, for every world
w € W and primitive propositiop € ®(, 7(w)(p) € {true, false}.
Define a formulap of L (®) to be true (or satisfied) in a world of the struc-
ture M, written (M, w) = ¢, according to the following inductive rules:

(M,w) = pif m(w)(p) = true

(M. w) = —p it (M,w) £

(M. w) b= o A it (M) (= o and(M, w) = o
(M,w) = Keif (M,w') = ¢forallw € X(w).

A formula ¢ is valid in M, written M = o, if (M,w) = ¢ forallw € W. A
formula isvalid, written |= ¢, if M |= ¢ for all modelsM. If ¢ is valid, ¢ is often
called a tautology. Conversely,is satisfiableif there is a structurd/ and a state
w of M such thati M, w) = ¢.

Given the above semantics &<, it is straightforward to verify that some of
the properties alluded to in the previous section hold in this system. First, an agent
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knows all “consequences” of his knowledge. This can be made precise via the
following formula. If an agent knows a formula and knows thaty = 1, then

at each state the agent considers possible, pahdy =- ¢ hold, and hence
holds. In other words, the agent knowslIt follows that

KoNK(p=1v)= K

is valid in epistemic structures. This property is often calledDistribution Ax-
iom.

This property seems to imply that agents are powerful reasoners. The follow-
ing observation provides further evidence. If a formulés valid in an epistemic
structureM, thenyp holds at all the states dff, including of course all the states
an agent consider possible. Therefore, at every staté,ahe agent must knoyy.
Hence, the followingRule of Knowledge Generalizatidrolds: for all epistemic
structures\/,

if M = pthenM = Ko.

As a consequence, | is valid, thenK ¢ must be valid as well. Note that this does
not say thatp = K¢ is valid. This would require that for all/ and allw € W,
(M,w) = ¢ implies(M,w) = K, which is clearly false in general. In a sense,
the Rule of Knowledge Generalization says that an agent knows all the facts that
are necessarily true.

It turns out that additional properties hold in epistemic structures wkehas
particular properties. The following formula is valid in any structure wtigris
transitive:

Kp= KKop.
This is typically called thdPositive Introspection Axioman agent knows that he
knows what he knows. On the other hand, in a structure wKeaseEuclidean (that

is, if (w1, we) € K and(wy,ws3) € K, then(ws, ws) € X), the following formula
is valid:

Kp= K-Kop.

This is theNegative Introspection Axiomin an epistemic structure whefé is
serial, that is, an agent always considers at least one world possible, then

=K false

must be valid. It is probably easier to see the conversE:fiflse holds at a world
of M, it must be that there is no world the agent considers possible, since there is
no world such thatM, w) | false.
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Finally, in a structure wher# is reflexive, that is, where the agent always con-
siders the actual world possible, the formula

Kp=¢

is valid. This is called th&nowledge Axiom

In the remainder of this dissertation, we focus, for the interpretation of knowl-
edge, on structures where the relatiéims an equivalence relation. Roughly speak-
ing, this is because we assume a particular structure to the worlds, where the agent
gets to “observe” part of the world, and considers two worlds possible if they yield
the same observations. Henceforth, we assume that the relétiman epistemic
structureM = (W, X, ) is an equivalence relation. L&* be the class of all
such epistemic structures.

We can establish that the above properties of knowledge, in a sense, are all the
relevant properties of knowledge in those kind of structures. Any other property
can be derived from these. This can be made formal using an axiomatization. An
axiomatizationAX for a logic is a set of formulas (the axioms) and inference rules
of the logic? Given a set of formulag’, ¢ is provablefrom the setF’ with respect
to the axiomatizatiol\ X, written ' -,x ¢, if there is a derivation op from the
axioms and inference rules dfX and the formulas irF". This is often written
F I o when the axiomatizatioA X is understood. Formally, derivationof ¢ is a
sequence of formulagy, .. ., ¢, such thatp,, is ¢, and for each, ; is either an
axiom of AX, a formula ofF’, or obtained frompy, ..., ¢;_1 via an inference rule
of AX. WhenF' is empty,p is said to bgrovable writtent ¢.

An axiomatizationAX is soundif every provable formula is valid, that is, if
F ¢ implies = ¢ for all ¢. This is a basic requirement of an axiomatization,
indicating that it can only prove true facts. An axiomatizatioK is completeif
every valid formula is provable, that is, if ¢ impliest- ¢ for all . Of course,
for every logic, there is a trivial sound and complete axiomatization, obtained by
takingall the valid formulas of the logic as axioms. This is uninteresting in general,
since it does not explain why formulas are valid. In order to be of interest, an
axiomatization should be either finite, or at least finitely described. It is possible
to relax the restrictions somewhat, and allow so-called axiom schemes as axioms,
that is, templates for axioms. Given an axiom scheme, replacing the metavariables
in the axiom scheme by actual formulas yields an axiom. For ease of exposition,
we will keep on referring to axiom schemes simply as axioms.

Since the logicL* includes propositional reasoning, any axiomatization pur-

2 An inference rulesays that when particular formulas are valid, others are valid as well. By abuse of termi-
nology, we will often refer to both axioms and inference rules as simply axioms. The form of an axiom will
always make clear whether it idna fideaxiom or an inference rule.
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ported to be sound and complete must somehow deal with propositional reasoning.
The following axiom and inference rule take care of this:

Prop. All instances of propositional tautologies.
MP. Fromy andy = ¢ infer ¢.

Axiom Prop stands for all instances of tautologies of propositional logic, where the
instances are obtained by instantiating arbitrafy(®,) formulas. For instance,
sincef Vv —f is a propositional tautology, Prop includ&sy vV =K ¢ as an instance.
Axiom MP is simplyModus PonensAxiom Prop can be replaced by the following
axioms:

Pl o= (¥ = ).
P2. (p1 = (92 = ¢3)) = ((v1 = ¥2) = (p1 = ¥3)).

The following axioms capture the properties of knowledge:

Kl. Ko A K(p = 1) = K.
K2. Fromy infer K.

K3. K¢ = ¢.

K4, Kp = KKo.

K5. - Ky = K- K.

Let AX® be the axiomatizatiofProp, MP, K1-K5}. (AX* has been called S5
in the literature, from a terminology on modal logics originally going back to the
philosopher Clarence Irving Lewis.)

Theorem 2.1.AX* is a sound and complete axiomatization £gr with respect to
the class of epistemic structurd$’.

A more general result holds when one considers epistemic structure with differ-
ent properties on the relatidd. For instance, there is an axiomatization that is
sound and complete fdt* with respect to epistemic structures whegeas reflex-
ive. Not all such properties can be captured by an axiomatization, however. The
classical example of this is irreflexivity, which cannot be captured by a formula of
modal logic.

2.3 The Problem of Logical Omniscience

A point we have already raised in the previous two sections when describing the
particular interpretation of knowledge at hand is that agents are powerful reasoners.
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If one looks at the axiomatization of the previous section, the culprit appears as the
axiom

KpANK(p=1)= K.

One reading of this axiom (in conjunction with the Knowledge Generalization ax-
iom) is that an agent knows all the logical consequences of his knowledge. Having
agreed to the intuitive notion of knowledge in Section 2.1, the formalization of that
intuition forces this property. It is of course possible to debate whether the notion
of knowledge in Section 2.1 is reasonable. It turns out that in some cases, it is
reasonable; in other cases, it is not. The above notion of knowledge has been used
successfully in the distributed systems literature to study properties of distributed
protocols—for example, that a protocol correctly implement a specification of the
sort: “a process repeatedly sends a message until it knows that the intended re-
ceiver has received it". Here, the knowledge is knowledge ascribed to the process
by the designer of the system; the process simply executes its program, and the
correctness of the implementation corresponds to the process behaving as though
it “knew” the particular fact. This is a form amplicit knowledge knowledge that

is implicit in the situation and the environment in which the process is executing.
More importantly, it is not knowledge that the process explicitly bases its actions
on. In the above example, the process will repeatedly send a message until it enters
a situation where it stops. It is up to the designer to ensure that this situation corre-
sponds to the state where the intended receiver has received the message. There is
no question of the process stopping to decide whether or not it knows that partic-
ular fact. (On the other hand, a reasonable way to implement an process might be
for it to do exactly that.)

Implicit knowledge is a useful analysis and design tool. On the other hand, it is
easy to imagine situations where it is reasonable for an agent to decide whether he
knows a particular fact. It is clear that the above notion of implicit knowledge will
not work in such a setting—it is simply unreasonable for agents to be able to derive
all consequences of their knowledge, or indeed, for them to know all tautologies.

This problem with implicit knowledge is not new. It is called the problem of
logical omniscienceUsing implicit knowledge to reason about the knowledge of
agents leads them to be logically omniscient. While in some situations this is a
perfectly reasonable assumption, it ceases to be one when the agents are meant
to act on their knowledge. What is needed for those cases is a notion of explicit
knowledge: a way for the agent to state what he explicitly knows, knowledge on
which he can base his actions. Ideally, explicit knowledge should not suffer from
the logical omniscience problem.

There have been quite a few attempts at getting around the logicial omniscience
problem in the literature. We will only survey the most relevant here. One way to
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circumvent logical omniscience is to posit a numbeinapossible worldsworlds
where the usual “laws” of logic do not hold. For instance, an impossible world
might be such that a primitive propositigris both true and false, so that\ —p is

in fact true at worldw. There are some difficulties with this approach, not the least
of which how to decide, when constructing the model, which impossible worlds
to add. Impossible worlds have to break the laws of logic in some way, otherwise
tautologies are still known. But which laws do you break?

The impossible-worlds approach is a semantic approach: it modifies the models
of epistemic logic by adding new worlds. At the other extreme, there are syntactic
approaches based awarenessCircumventing logical omniscience via awareness
is based on the intuition that to explicitly know something is to firstimplicitly know
something, and then to be made aware of it. How can this awareness be modeled?
The simplest way is to assume that there is a set of formulas at each world, the
awareness set, those formulas of which the agent is awareAgay true if ¢ is
a formula in the awareness set of the agent; then, ¢at@ be explicitly known
at a world if Ko A Ay is true at that world. The advantage of this approach
over the impossible-worlds approach is that it is often easier to qualify what an
agents knows explicitly in terms of language (formulas) than it is in terms of sets
of worlds.

The awareness-based approach captures a nice intuition and underlies many re-
lated systems. There is one question that is not resolved by the general framework,
however, and itis the question of how to establish which formulas an agent is aware
of at every world? |Is the agent aware of the same formulas at all the worlds he con-
siders possible? That would seem reasonable. If an agent is aware of a compound
formula, is he aware of its subformulas? That would also seem reasonable. How-
ever, even if these questions are answered, how do you state that an agent only has
limited resources for reasoning?

It turns out that there is an approach related to the awareness approach that has a
particular answer to those questions, and that moreover captures nicely the intuition
that agents explicitly know facts by computing that they know them, within the
resources available to them. This is the approach studied in the remainder of this
dissertation.

2.4 Algorithmic Knowledge

The aim is to come up with a notion of explicit knowledge that can be used by an
agent to determine whether he knows a particular fact. Appealing to intuition for
a moment, how do we determine whether we know a particular fact? Typically,
it will either be a fact that we know “offhand”, say via a direct observation of the
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world around me, or it is a fact that we can somehow derive from other facts at
hand. Thus, intuitively, to explicitly know a fact is to have a procedure that says
whether or not that fact is true.

This can be formalized using a notion callalgjorithmic knowledge From a
semantic point of view, it requires adding to an epistemic structure (representing
the possible worlds and the implicit knowledge of the agente)@vledge algo-
rithm that can answer, given a formufaand a world, whether or not the agent
explicitly knows the formulap at that world. For the time being, we shall make no
assumption on the algorithm, except that it be effectively computable, that it always
terminate, and that it returns an answer of “Yes”, “No”, or “?”". Intuitively, “Yes”
indicates that, according to the knowledge algorithm, the agent explicitly knows
the formula, “No” indicates that the agent does not explicitly know the formula,
and “?” indicates that the algorithm does not have enough resources to determine
if the agent knows the formula. (It is this last possibility that allows knowledge
algorithms to model resource-boundedness.) 4€t(®,) be the following lan-
guage for reasoning about algorithmic knowledge. As before, it is obtained by
starting from a set of propositions by, and closing under negation, conjunction,
knowledge formulag<y, as well as algorithmic knowledge formul&syp, read
“the agent can compute thatis true”. As usual, define/, =, <, andtrue as
abbreviations. Similarlytrue is taken to be an arbitrary but fixed tautology of the
logic, and sefalse as—true.

In order to formalize the above, however, the structure of the worlds deserves
more attention. Up until now, the worlds were taken to be abstract elements of
a set. Algorithmic knowledge, on the other hand, is very concrete—there is an
explicit algorithm in the model that takes as input formulas and worlds. This makes
it necessary to agree on what a world is. Going back to the intuition, the procedure
for determining if we explicitly know something should not be based on the world
as a whole, but rather should be based on what we can observe of the world.

To give a semantics to algorithmic knowledge, start as before with a set of worlds
W, and an interpretation for the primitive propositions at the worlds. Rather
than directly postulate a relatidK, define a sef. of local statesand a function
V : W — L giving, for each world, the view of the agent at that world, that is, his
local state. Aralgorithmic knowledge structuiis a tupleM = (W, V, 7, A) where
W is a set of worldsY is the view of the world for the agent,is an interpretation
function for a setb of primitive propositions to truth values, ands a knowledge
algorithm. (The seL of local states is left implicit, as it can be recovered from the
functionV.) The knowledge algorithm takes as input a formgland a local state
¢ € L for the agent, and returns one gfYes”, “No”, “?” }. There is no relatiofi
in M, butitis easy to derive one. Say two worlds are indistinguishable to the agent
if they have the same view. Write; ~ ws if and only if V(w;) = V(w,). Itis not
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hard to see that is an equivalence relation on the worlds, so tfi&t ~, ) is an

epistemic structure. LéY(*'= be the class of all algorithmic knowledge structures.
Following this intuition of M/ as an epistemic structure, define a formule be

true at a world of\/, written (M, w) = ¢, by the following inductive definition:

(M,w) [ pif m(w)(p) = true

(M, w) |~ if (M,w) £

(M.w) | @ A if (M,w) |- @ and(M,w) |= o

(M,w) E Koif (M,w') = ¢ forallw € W such that’ ~ w
(M,w) = Xpif A(p,V(w)) = “Yes”

Itis easy to verify that the indistinguishability relatienis an equivalence relation.
Therefore, according to the discussion of Section 2.2, this notion of knowledge
satisfies axioms K1-5.

There is a subtlety about the logic above. By takingnd=- as abbreviation,
any formula containing/ or = is really a formula containing. and—. Thus,
the agent cannot explicitly distinguish betwegtv » and—(—¢ A —1)); they are
the same formula for him. In other words; X (¢ V ¢) < X (=(—¢ A —)).

This seems to go against the main motivation for explicit knowledge, to ensure
that knowledge is not closed under tautologies. One way around this problem is
to use a syntax that directly uses=-, and perhaps other connectives, rather than
introducing them through abbreviations. We will not follow this approach in this
dissertation.

It is immediate from the above definitions that there is no necessary connection
between implicit and explicit knowledge. Indeed, there is nothing constraining
the knowledge algorithm. One way to see this is to look at axiomatizations. The
only properties of algorithmic knowledge follow from the fact that answers of the
knowledge algorithm depend only on the local state of the agent. This translates
into the following axiom:

X1l Xo=KXop.

It is easy to see that in the presence of K1-5, axiom X1 implies-tdap =
K-X is provable:
1. ~Xo=-KXp (K3, Prop)
2. " KXp=K-KXp (K5)
3. "KXp=-Xyp (X1, Prop)
4. K-KXp=-Xyp) (3,K2)
5. "KXp=K-Xp (2,4, Prop, K1)
6 (1,

“Xo=K-Xp 1,5, Prop, MP).
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Let AX** be the axiomatizatioA X* augmented with X1.

Theorem 2.2. AX** is a sound and complete axiomatization £6t* with respect
to algorithmic knowledge structures.

In general, the most useful knowledge algorithms are those that are “correct”, in
some sense of the word. There are a few notions of correctness that are relevant.
First, it may be the case that the knowledge algorithm is right when it answers
“Yes” or “No”, dismissing “?” answers. Say a knowledge algoritiAinis sound
for an agent in an algorithmic knowledge structuvg if for all ¢ in L** and
all w € W, A(p,V(w)) = “Yes” implies (M,w) = K¢, andA(p,V(w)) =
“No” implies (M,w) = —K¢. Say a knowledge algorithm isompletefor an
algorithmic knowledge structur®/ if it always answers either “Yes” or “No"—it
never answers “?”. Most knowledge algorithms considered in the literature that are
sound are not complete. Intuitively, the soundness guarantees that the algorithm,
when it returns a result, is correct, but the algorithm is not forced to return a result
(which is what captures resource bounds).

The above properties can be naturally relativized to a particular set of formulas
one cares about, or to a particular set of worlds. For example, a knowledge algo-
rithm is sound with respect t8 C LX¥* andW’ C W in M, if for all ¢ in ¥ and
allw e W', A(p, V(w)) = “Yes” implies (M, w) = K¢, andA(p, V(w)) = “No”
implies (M, w) = K.

Unfortunately, soundness and completeness properties of knowledge algorithms
cannot be formalized within the logie**. Intuitively, L¥* cannot distinguish
between a knowledge algorithm answering “No” and a knowledge algorithm an-
swering “?”; both answers result in lack of algorithmic knowledge. Soundness and
completeness require this distinction. This distinction can be captured by intro-
ducing a new operator in the logic. LEE*P(®d) be the language defined just
asLi**(dy), with an additional modal operatd?y that is true if the algorithm is
definiteabouty, that is, if the algorithm answers either “Yes” or “No” (not “?”) to
a queryyp. Semantically, this can be captured by the following rule:

(M, w) |= Dy if Alp, V(w)) € {“Yes”,“No" }.

An alternate approach to using/2p operator to capture the distinction between
“No” and “?” is to introduce an operataK ¢, true if and only if the algorithm
answers “No”. The formul@®¢ can then be taken as an abbreviationXasv X .

The following axioms are the only axioms needed to accountferin the
axiomatization:

X2. Xy = Dep.
X3. Dp = KDep.
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As in the case of axiom X1, in the presence of K1-5, X3 implies thaty =
K-Dy is provable. LetAX"*P be the axiomatizatiot®AX** augmented with
axioms X2 and X3.

Theorem 2.3. AX**P is a sound and complete axiomatization fot*" over
algorithmic knowledge structures.

To capture soundness and completeness of knowledge algorithms in this ex-
tended logic, consider the following axioms:

X4, X = K.
X5, Dp AN —-Xp=-Kop.

Axiom X4 simply says that a knowledge algorithm answering “Yes” is correct,
while axiom X5 says that a knowledge algorithm answering “No” (this is what
Dy N =X p expresses) is also correct.

Theorem 2.4. AX"™*" + {X4,X5} is a sound and complete axiomatization for
L¥XP gver algorithmic knowledge structures with sound algorithms.

Another axiom is needed to account for complete knowledge algorithms. A
complete knowledge algorithm is characterized by the fact that it always answers
either “Yes” or “No”. This is exactly what th® operator is meant to capture:

X6. Dep.

This axiom simply says that for any formufg the algorithm says “Yes” or “No”
when queried forp. This exactly captures completeness of the algorithm.

Theorem 2.5.AX"*P +{X4, X5, X6} is a sound and complete axiomatization for
LXXP gyer algorithmic knowledge structures with sound and complete algorithms.

Itis immediate that for a sound and complete algorithm, the formyta= K¢
holds, meaning that sound and complete algorithms capture implicit knowledge.
This indicates that sound and complete algorithms are hard to come by, and inef-
ficient when they do exist. We will mostly be concerned with sound algorithms,
those that are correct when they return a result. In Chapter 4, we consider knowl-
edge algorithms that are not quite sound, because they have a small probability of
error. Algorithmic knowledge in the presence of sound algorithms can be seen as
an instance of awareness, as defined in Section 2.3.

It is clear that the notion of algorithmic knowledge is quite general. What is not
so clear is that this notion is actually interesting; the risk is thatibdsgeneral.
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There is one sense in which this generality is useful: it allows us to capture particu-
lar forms of explicit knowledge by puttingstrictionson either the form of knowl-
edge algorithms or their properties. Thus, we can get insight into a particular form
of explicit knowledge by examining the corresponding knowledge algorithms. In
the next chapter, for instance, we will see knowledge algorithms that arise out of
deductive systems.

Restricting the form of knowledge algorithms often immediately translates into
axioms that are sound with respect to algorithmic knowledge structures that use
such algorithms. This is hardly surprising, but this fact is used to characterize
classes of knowledge algorithms in Chapter 3. By way of example, consider the
behaviour of a knowledge algorithm with respect to negation. There is of course
nothing in the definition of a knowledge algorithm that says that the answers of the
knowledge algorithm to queries and—¢ need to be related. However, there is a
natural way to define the behaviour of a knowledge algorithm on negated formulas.
A strategy to evaluate;(—, ) is to evaluate; (¢, £), and return the negation of
the result. There is a choice to be made in the case whek tfegurns “?” to the
query forp. One possibility is to return “?” to the query ferp when the query
for ¢ returns “?”; another possibility is to return “Yes” if the query fpreturns
“?”. (Arguably, the former is more intuitive than the latter.) Say that a knowledge
algorithmA weakly respects negatidhfor all local state?,

“Yes” if A(yp, /) = “No”
A(—p,0) = ¢ “No” if A(p,l) = “Yes”
“P i A, ) =

Similarly, say that a knowledge algorithmstrongly respects negatiahfor all
local stated,

“Yes” if A(p,l) # “Yes”
A(—wp,f) = VYanron “ .

No” if A(p,l) ="“Yes”.
Theorem 2.6. Let M = (W,V,x, A) be an algorithmic knowledge structure. If
A weakly respects negation, théd = X¢ = —X-¢. If A strongly respects
negation, thenV/ = Xy < - X—p.

Similarly, say that a knowledge algorithirrespects conjunction if for all local
stated € L and all formulasp € L%, A(pA, ) = “Yes”ifand only if A(p, £) =
“Yes” andA(¢), ¢) = “Yes”. This leads to the valid formuld (pAvY) < XA X1,
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2.5 Multiple Agents

The framework described in the previous sections extends in a straightforward way
to multiple agents. The aim is to reason about the knowledge of different agents
with respect to each other—for instance, we may want to express the fact that
“Bob knows that Alice knows that he sent a message containing 42”. This can be
achieved by adding knowledge operators to the logic that are indexed by agents,
and by providing each agent with a binary relation describing his possible worlds.
The notion of algorithmic knowledge can also be extended to multiple agents by
providing each agent with a knowledge algorithm.

Let the agents be namédd...,n. The epistemic logic for agentsLy (Pg)
is defined just likeL*(®y). The difference is that rather than having a single
operatorK ¢, there is a family of modal operatofs;p, read “agent knowsp".
As usual, takep \ 1, ¢ = 1 andy < 1 as abbreviations. To interpret this logic,
considerepistemic structures far agentsM = (W, X4,...,X,,7), whereWW is
a set of worldsX, ..., X, are binary relations ofi/, one per agent, andis an
interpretation for the primitive propositions at every world. The semantids;of
is given by the obvious generalization of the semantic&™af

To reason about algorithmic knowledge with multiple agents, define the logic
LEX(®() by adding a family of modal operators;y to LX(Py). As expected,
the formulaX;y is read “agent can compute thap is true”. Similarly, the logic
LEXD (D) is obtained by adding the family of modal operatérsp. The formula
D;pis read “agent is definite about”.

Formally, define algorithmic knowledge structure far agents(simply called
an algorithmic knowledge structure when there is no ambiguity) to be a ddple
(W, V1y,...,Vp,m Ay, ..., Ay), WhereW is a set of worldsVy,...,"V, are the
views of each agents, is an interpretation for the primitive propositionsdg, and
Ay, ..., A, are the knowledge algorithms of each agent. As in the single agent case,
each view function induces an equivalence relation on the set of worlds; formally,
wy ~; we if and only if V;(wy) = V;(w2). Hencew; ~; wsy if wy andw; are
indistinguishable for agerit

The satisfaction relatiofV/, w) |= ¢ is defined in the obvious way, by analogy
with the single agent case:

(M,w) [ pif m(w)(p) = true

(M, w) | g if (M, w) | ¢

(M, w) = o A if (M,w) = o and(M, w) ¢

(M,w) E Kipif (M,u) = ¢forallw € W such thaty' ~; w
(M,w) = Xipif A;(p, Vi(w)) = “Yes”.

For LEXP | the following rule is used to interpréd:
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(M, w) k= D if &;(, V;(w)) € {*Yes”,“No” }.

As far as axiomatizations are concerned, it is not hard to see that since the vari-
ous K; and X; operators do not interfere with each other, the axioms compose in
a straightforward way. The results of Section 2.2 can be lifted immediately, by
replacing references tA ¢ in axioms K1-5 byK;p. For instance, K1 becomes
Kip N Ki(p = o) = K;3, for every agent. In a similar way, the axiom X1
simply becomesX;p = K; X;p. We will continue to refer to these axioms as K1-

5 and X1-6, the context making it clear whether we are talking about the single
agent setting or the multiple agents setting. A&E:™ and AX**" be the axioma-
tizations corresponding tAX** and AX**P for multiple agents. The equivalent

of Theorems 2.2, 2.3, 2.4 and 2.5 hold in the multiple agent setting.

Theorem 2.7.

(a) AX}* is a sound and complete axiomatization fgf* with respect to al-
gorithmic knowledge structures faragents.

(b) AX*P is a sound and complete axiomatization fgf*" with respect to
algorithmic knowledge structures faragents.

(c) AX;*P 4 {X4,X5} is a sound and complete axiomatization £gj*" over
algorithmic knowledge structures faragents with sound algorithms.

(d) AXPXP 4+ {X4,X5,X6} is a sound and complete axiomatization £gf*°
over algorithmic knowledge structures faragents with sound and com-
plete algorithms.

Itis interesting to examine some properties of knowledge in the presence of mul-
tiple agents. For instancé&; Ko implies immediately thak; ¢, that is, knowing
that someone else knows something implies knowing that something oneself.

The interaction between the knowledge algorithms of the various agents is es-
pecially interesting. Since we assumed that there is a single algorithm per agent
in the models, in a precise sense, the algorithms used by the agents are common
knowledge. What does this common knowledge indicate? At every point, if an
agent knows the input, he knows the outcome of the algorithm. More precisely,
if agenti uses an algorithm that replies “Yes” to querieswhen ¢ is true, then
K;(p = X;) holds for all agentg. All this says is that there is no uncertainty
on the part of the agents as to the explicit knowledge of other agents once the data
they have is known.

A more general framework would allow agents to have different knowledge al-
gorithms at different worlds. This would permit the modeling of agents that learn
by essentially updating their knowledge algorithms. We focus on the simpler set-
ting, studying static structures with static algorithms. In the second part of this
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dissertation, we extend the framework to dynamic systems, but still consider static
knowledge algorithms.

2.6 Decision Procedures

What is the complexity of the various decision procedures for the logics described

in the previous sections? In a precise sense, the complexity depends on the com-

plexity of the corresponding decision procedures for the logic of knowlédge
Consider first the model-checking problem. Since the structure is given as an

input to the problem, we restrict our attention in this sectioffiride structures.

Given a formulap, let |p| be the the number of symbols needed to write dgwn

The following result is well known:

Theorem 2.8. There is a procedure that runs in time polynomial g} - |W| for
deciding, given an epistemic structure foagentsM = (W, X, ..., %X,,7) and
© € LE, whether(M,w) = ¢.

This results extends almost immediatelydh*. Given a knowledge algorithm
A, let f, be a function representing the running timetoMore precisely, leffy(n)
be the time it takes fok(y, ¢) to execute for any given observatiémand an input
formulay of sizen. (Intuitively, observations are taken to be atomic and sizeless;
the focus is on the complexity of determining the truthyof

Theorem 2.9.There is a procedure that runs in time polynomialgn- |W |- f(|¢])
(wheref(n) = max{ fa,(n) | i € {1,...,n}}) for deciding, given an algorithmic
knowledge structure fon agentsM = (W, Vy,...,V,,m,A1,...,A,) andp €
LEX whether(M, w) E ¢.

A similar result holds foll5*P.
For satisfiability, a similar phenomenon arises. The complexity of the decision
problem forLE satisfiability is again a well known result.

Theorem 2.10.The problem of deciding whether a formylaf L% is satisfiable in
an epistemic structure for agents is NP-completesif = 1 and PSPACE-complete
if n> 1.

Clearly, sincelLk* extendsLY, satisfiability is at least as hard to decide £dy*
asitis forL}. The interesting thing is that without any restriction on the knowledge
algorithms, satisfiability is no harder to decide, since itis trivial to come up with an
algorithm that says “Yes” or “No” for the appropriate subformulas present in the
formula at hand.
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Theorem 2.11.The problem of deciding whether a formuylaof L5 is satisfiable
in an algorithmic knowledge structure fer agents is NP-completeif = 1 and
PSPACE-complete if > 1.

Notes

The model of knowledge based on possible worlds presented here is originally due
to Hintikka [1962]. A modern survey of the use of knowledge and epistemic logic
in computer science, with specific application to distributed system is the work of
Fagin et al. [1995]. See also Meyer and Hoek [1995].

Classical overviews of modal logic include [Hughes and Cresswell 1972; Gold-
blatt 1992]. An approachable but still thorough introduction is [Popkorn 1994].
A technical overview focusing on the proof theoretic aspects of modal logics is
[Blackburn, Rijke, and Venema 2001]. The terminology S5 is introduced and dis-
cussed by Lewis and Langford [1959].

It is of course possible to extend propositional modal logic to first-order, to
yield quantified modal logic (or first-order modal logic) [Garson 1984, Fitting and
Mendelsohn 1998]. Modal logic has also been extended to the higher-order setting,
where it is often known as intensional logic [Gallin 1975].

There are many approaches to providing a semantics for modal logic. The one
we describe, due to Kripke [1963], is the most common. Other approaches include
algebraic semantics [Lemmon 1966a; Lemmon 1966b] and topological semantics
[McKinsey and Tarski 1944].

Axioms P1-2 are given by Popkorn [1994], who proves that, along with Modus
Ponens, they form a sound and complete axiomatization for propositional logic.
The axiomatizatiom\ X" is well-known. A proof of Theorem 2.1 can be found in
[Hughes and Cresswell 1972]. There has been a vast amount of work on studying
the kind of properties that are expressible via modal logic, under the heading of
correspondence theory [Benthem 1984].

The problem of logical omniscience already appears in Hintikka [1962]. The
topic has generated much discussion in the philosophical literature. See Stalnaker
[1991] for one view. The approaches described in Section 2.3 are attempts to
circumvent the problem by modifying the semantics for knowledge. Impossible
worlds are introduced by Cresswell [1973], Rantala [1982], and Hintikka [1975].
Awareness was introduced and studied by Fagin and Halpern [1988], and further
investigated by Huang and Kwast [1991]. Moreno [1998] gives a good overview
of the various approaches for dealing with the logical omniscience problem. The
distinction between the two forms of knowledge we callaglicit knowledgeand
explicit knowledgdnas long been recognized. In the classical approach in artificial
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intelligence known as thimterpreted symbolic structuregpproach, knowledge is
based on information stored in data structures of the agent [Rosenschein 1985];
this can be seen as an instance of explicit knowledge. In contrasittia¢ed au-
tomataapproach, which interprets knowledge based on information carried by the
state of the machine [Rosenschein 1985], can be seen as an instance of implicit
knowledge. Levesque [1984] makes a similar distinction in the context of belief.

The notion of algorithmic knowledge was defined by Halpern, Moses and Vardi
[1994], although the approach in this chapter is more restricted, since we assumed
a single algorithm per agent. An approach similar in spirit was introduced ear-
lier by Parikh [1987], which he callénguistic knowledgeand which essentially
amounts to using sound algorithms. It makes sense to weaken the soundness condi-
tion on knowledge algorithms. Algorithmic knowledge generalizes many other ap-
proaches, such as step logics [Elgot-Drapkin and Perlis 1990], Levesque’s [1984]
system, Konolige’s [1986] deductive model of belief, and the logic of Duc [2001].
Duc also calls his notion algorithmic knowledge, but takes algorithmic knowledge
as being computed over the evolution of a system, rather than being used to exam-
ine the local state of the agents.

Berman, Garay, and Perry [1989] implicitly use a particular form of algorithmic
knowledge in their analysis of Byzantine agreement. Roughly speaking they allow
agents to perform limited tests based on the information they have; agents know
only what follows from these limited tests.

Ramanujam [1999] investigates a particular form of knowledge algorithm, where
essentially the knowledge algorithm is a model-checking procedure for a logic of
implicit knowledge. More specifically, Ramanujam considers, at every world, the
part of the model that a particular agent sees (for instance, an agent in a distributed
system may only be aware of its immediate neighbors with whom he can com-
municate) and takes as knowledge algorithm the model-checking procedure for
epistemic logic, applied to the submodel generated by the visible worlds.

Theorem 2.8 is straightforward; a proof can be found in Halpern and Moses
[Halpern and Moses 1992]. The problem of model checking knowledge is less
trivial in the context of dynamic systems; see [Meyden 1998; Meyden and Shilov
1999]. The case = 1 of Theorem 2.11 is due to Ladner [1977], while the proof
of the general case > 1 can be found in [Halpern and Moses 1992].



3
Deductive Algorithmic Knowledge

HE generality of the algorithmic knowledge approach, which makes it ideal as
T a modeling framework, also means that there are no nontrivial properties of
algorithmic knowledge proper, unless we consider particular classes of knowledge
algorithms. This becomes important when we want to use the framework as a spec-
ification language amenable to automatic verification. In that setting, we would like
a class of knowledge algorithms that can capture the properties of interest, while
still having enough structure to yield a tractable, or at least analyzable, system.
This structure typically reveals itself in a class of properties of the corresponding
algorithmic knowledge operator, which can be used to study the structures purely
deductively.

In this chapter, we study a form of algorithmic knowleddegluctive algorithmic
knowledgewhere the explicit knowledge of agents comes from a logical theory in
which the agents perform their reasoning about the facts they know. Many useful
forms of explicit knowledge can be formalized in such a logical theory for agents.
For instance, Horn theories, which have been used to approximate more general
knowledge bases, fit into this framework particularly nicely. Explicit knowledge
via a logical theory can be viewed as a form of algorithmic knowledge, where
the knowledge algorithm used by an agent is an algorithm that attempts to infer
whether a fact is derivable from the deduction rules provided by the agent’s log-
ical theory. The highly structured presentation of an agent’s logical theory lets
us readily derive properties of explicit knowledge in this context. Intuitively, the
deduction rules of the logical theory directly translate into logical properties of
explicit knowledge.

To motivate the use of logical theories to capture explicit knowledge, consider
the following example, which will be analyzed in more detail in the second part
of this dissertation. As we saw in Section 1.2, security protocols are analyzed in
the presence of an adversary that has a certain number of capabilities to decode
the messages he intercepts. There are of course restrictions on the capabilities of
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a reasonable adversary. For instance, the adversary may not explicitly know that
he has a given message if that message is encrypted using a key that the adversary
does not know, despite the fact that he has intercepted the message. There is a now-
standard description of capabilities of adversaries that captures these restrictions,
due to Danny Dolev and Andrew Yao. Roughly speaking, a Dolev-Yao adversary
can decompose messages, or decipher them if he knows the right keys, but can-
not otherwise “crack” encrypted messages. The adversary can also construct new
messages by concatenating known messages, or encrypting them with a known en-
cryption key. It is natural to formalize a Dolev-Yao adversary using a deductive
system that describes what messages the adversary “has” based on the messages
he has intercepted, and what messages the adversary can construct.

To reason about such examples, we introduce a modal logic that captures both
the implicit knowledge of agents, which is useful for specifications, and the ex-
plicit knowledge of agents formalized as a logical theory. We focus in this chapter
on the technical properties of the resulting logic, such as axiomatization and com-
plexity of the decision problem. This approach shows that it is possible to combine
a standard possible-worlds account of implicit knowledge with a logical theory
representing the explicit knowledge of agents, and to reason about both simulta-
neously. Another advantage is that it is straightforward to extend the framework
with probabilities, by taking, for instance, a probability measure over the possible
worlds.

3.1 Deductive Systems

We start by defining the framework in which to express the logical theories of the
agents, that is, their deductive or inferential powers. Following common practice,
we take logical theories as acting over the terms of some term algebra. More
precisely, assume a fixed finite signatate= (f1,..., f,), where eacly; is an
operation symbol, with arity;. Operation symbols of arit§ are called constants.
Assume a countable sétrs of variables. Define theerm algebraly; as the least
set such thaVars C Ts, and for allf € ¥ of arity n, and for allt4, ... ,t, € Ty,
then f(t1,...,t,) € Tx. Intuitively, T, contains all the terms that can be built
from the variables, constants, and operation&inA term is aground termif
it contains no variables. L&Y be the set of ground terms if;. A ground
substitutiory is a mapping from variables ilfars to ground terms. The application
of a ground substitutiop to a term¢, written p(t), essentially consists of replacing
every variable int with the ground term corresponding toin p. Clearly, the
application of a ground substitution to a term yields a ground term.

A deductive syster® is a subset o, (Tx) x Tx. (We write p(X) for the set
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of subsets ofX, andp;, (X) for the set of finite subsets d€.) A deduction rule
({t1,...,tn},t) of D is typically writtenty, ... ¢, > t, and means thatcan be
immediately deduced from, ..., t,. A deduction oft from a setl” of terms is a
sequence of ground terms . . ., t,,, such that,, = ¢, and every; is either:

(1) Atermp(t’), for some ground substitutignand some term € T;

(2) A termp(t'), for some ground substitutiomand some term’ for which
there is a deduction rulg ..., t; >¢'in D such thap(t; ) = ¢;; for all
Jrandig, ... i <.

We writeI" Fp t if there is a deduction fron’ to ¢ via deduction rules irnD.
Observe that by definition we have-p ¢ for all termst.

We will only be concerned with deductive systems thattweidable that is, for
which the problem of deciding whether a deduction fsbm I" exists is decidable,
for a termt and set of term§. Moreover, it should be clear from the definitions
that deductive systems are monotonic. Formally, if 5 ¢, thenI” +p t when
I’ C I". Finally, observe that there are no restrictions on the formation of terms.
It is possible to assign to each term a sort, and restrict operators to take terms of a
given sort only. The resultingorted term algebraan be used as the starting point
of the theory in this chapter, with little changes.

Example 3.1.The following deductive system DY over the signature
Y. = (recv, has, encr, conc, inv)

captures the Dolev-Yao adversary described at the beginning of this chapter. Here,
recv(m) represents the fact that the adversary has received thertehas(m) rep-
resents the fact that the adversary understands thertgrencr(m, k) represents

the encryption of termn with key &, conc(m, mo) represents the concatenation

of termsm, andmsg, andinv(k) represents the inverse of the Keythat is, the key
needed to decrypt messages encrypted k)ith

recv(m) > has(m)

has(inv(k)), has(encr(m,k)) > has(m)
has(conc(my, mg)) > has(mq)
has(conc(my, mg)) > has(msg)

Assume further thaE contains constants such sk, ko. We can therefore de-
rive:

recv(encr(m, ki)), recv(encr(inv(ky), ko)), recv(inv(kz)) Fpy has(m).

In other words, it is possible for a Dolev-Yao adversary to derive the message
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m if he has receivedn encrypted under a kely;, which inverse he has received
encrypted under a ke, which inverse he has received.

To account for constructing new messages, consider the sigriturigich ex-
tendsX with a unary constructotonstr, whereconstr(m) represents the fact that
the adversary can construct the temm We can account for this new constructor
by adding the following deduction rules to DY:

has(m) © constr(m)
constr(k), constr(m) > constr(encr(m,k))
constr(my ), constr(mg) > constr(conc(my, ma)).

For instance, we have:

recv(encr(m, ky)), recv(inv(ky)), recv(ke) Fpy constr(encr(m, ks)).

3.2 Deductive Algorithmic Knowledge

We now introduce a propositional modal logic for reasoning about the implicit
and explicit knowledge of an agent, where the explicit knowledge is formalized as
a logical theory. In this section, we focus on a single agent. The framework is
extended to multiple agents in Section 3.5.

The syntax of the logic is simply that &**(7¥), as given in chapter 2. The
primitive propositions ard¥, the ground terms over signature In this setting,

X is read as “the agent explicitly knows according to his logical theory”.

Rather than taking a general deductive system over an arbitrary signature, con-
sider a special form of deductive system.K® signatureX is a signature con-
taining a class of constructofsb, true, false, not, and, know, xknow} C ¥ corre-
sponding to the operators in the logic; the constructars andfalse have arity0,
ob, not, know andxknow have arity 1, andnd has arity2. The terms of the form
ob(t) in T3, are called the observations, and wedBts = {ob(t) | t € T} C T3,
denote the set of observations. L#trange over the observations bs. Note
that Obs is a countably infinite set. KD deductive systet is a decidable deduc-
tive system defined over a KD signatute such that no observation arises as the
conclusion of a deduction rule i. Formally, for allob € Obs and for all rules
t1,...,ty>t of D, there does not exist a ground substituticsuch thap(t) = ob.

The intuition is that observations are facts that the agent has directly observed, as
opposed to facts that have been derived by reasoning.

The semantics of the logic follows the standard possible-worlds presentation
given in Chapter 2. Adeductive algorithmic knowledge structusea tupleM =
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(W, m, D), wherelV is a set of worldsr is an interpretation for the primitive propo-
sitions at each world, anfd is a KD deductive system ovet, with observation
set Obs. Every worldw in W is of the form(e, obs), wheree is a state of the
environment (taken from a sét), that captures the general state of the system,
and obs is a set of observations, taken fro@bs, representing the observations
that the agent has made at that world. HenteC E x pg,(0bs).! We abstract
away from the question of how the agent makes those observations, and any tem-
poral relationship between the worlds. A world simply represents a snapshot of the
system under consideration. The interpretatioassociates with every world the
set of primitive propositions that are true at that world, so that for every primitive
propositionp € T¢ and worldw € W, we haver(w)(p) € {true,false}. The
only assumption we make is that the interpretation respects the observations made
at a world, that isir(e, obs)(ob) = true if and only if 0b € obs.

There is a distinction between a fact (represented by atferand an observation
of that fact (represented by a temn(t)). For instance, the fact that Alice holds
an apple might be represented by the térs(alice, apple), which can be true or
not at a world, while the fact that the agent has observed that Alice is holding an
apple is represented by the teot( holds(alice, apple)), which is true if and only
if that observation is in the state of the agent. Of course, the observation can be in
the state of the agent whether or hotds(alice, apple) is true, if the agent makes
unreliable observations.

Let M“*4(X) be the class of all deductive algorithmic knowledge structures with
KD signatureX. For a fixed KD deductive systeif? over, let M9 (X) be the
class of all deductive algorithmic knowledge structures with deductive syBtem

Define a relation- on the worlds that captures the worlds that the agent cannot
distinguish based on the observations. Take- w' if w = (e, 0bs) andw’ =
(€', obs) for somee, ¢/, and set of observationgs. Clearly,~ is an equivalence
relation.

To define the semantics of th¥ operator, we need to invoke the deductive
system. To do this, first define the translation of a formplan L¥*(T¥) into
a termy” in the term algebra, in the completely obvious way: is p (recall
that primitive propositions are just terms i), true” is true, false® is false,
(=) is not(p?), (o Ap) T isand(T, T, (K@) is know(p?), and(X )T is
xknow (™).

Define what it means for a formula to be true at a worldv of M, written
(M, w) E ¢, inductively as follows:

(M, w) = true
L For simplicity, assume that the observations form a set. This implies that repetition of observations and their

order is unimportant. It is easy to model the case where the observations form a sequence, at the cost of
complicating the presentation.
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(M, w) - false

(M,w) [ pif m(w)(p) = true

(M, w) =~ it (M,w) o

(Mw) = o A if (M, w) = o and(M, w) =
(M,w) = Kopif (M,w') | ¢foralw ~w
(M,w) = Xgif w= (e, obs) andobs Fp .

This semantics is the same as that of Section 2.4, except thaf¢heperator is
interpreted via the deductive systdnrather than an explicit knowledge algorithm.
The semantics agree if we notice that to every deductive algorithmic knowledge
structureM = (W, w, D) we can associate an algorithmic knowledge structure
M’ = (W, V,,A) with V((e, obs)) = obs, andA(p, obs) = “Yes” if and only if

obs Fp goT, which is implementable sincP is assumed to be decidable.

Example 3.2.Consider the deductive system DY from Example 3.1, over an aug-
mented signature containing the constructors required to make it a KD deductive
system. This deductive system can be viewed as a KD deductive system by adding
aruleob(t) > ¢ to DY. Intuitively, an observation represents a message intercepted
by the adversary. The subterm relatigron 7%, typically considered in the secu-

rity literature is defined as the smallest relation subject to:

tCt

if t C ¢, thent C conc(t1, t2)
if ¢t C to thent C conc(tq, t2)
if ¢ C thent C encr(tl, tQ).

Consider a structuré/ = (W, 7, DY), where we record at every world all mes-
sages intercepted by the adversary at that world. We restrict the observations at
a world to be of the fornob(recv(t)), for ground termg in which has does not
occur. Letr be an interpretation that respects the observations made at a world,
and such thatr(e, obs)(has(t)) = true if and only if there exists’ € T3, such
thatob(recv(t’)) € obs andt C ¢'. In other wordshas(t) holds at a world ift

is a subterm of a message intercepted by the adversarywLbe a world with
observations

{ob(recv(encr(m,ky))),ob(recv(encr(inv(ky), k2)))},
andws a world with observations
{ob(recv(encr(m,ki))), ob(recv(encr(inv(ky), k2))), ob(recv(inv(ksa)))}.

By definition of 7, (M, w) = K(has(m)) and(M,ws) = K(has(m)), so that at
both worlds, the adversary implicitly knows he has the messagdowever, from
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the results of Example 3.1, we see thaf, wy) = X (has(m)), while (M, w;) E
—X (has(m)). In other words, the adversary explicitly knows he haat worldw,
(where he has intercepted the appropriate terms), but not at werld O

Example 3.3.The following deduction rules can be added to any deductive system
to obtain a deductive system that captures a subset of the inferences that can be
performed in propositional logic:

t > not(not(t)) t,t'>and(t,t)
not(not(t)) >t and(t,t') >t

t > not(and(not(t), not(t'))) and(t,t') >t/
t' > not(and(not(t), not(t'))) t,not(t) > false
not(and(t, not(t'))),t >t false >t

not(and(t, not(t'))),t' > t.

One advantage of these rules, despite the fact that they are incomplete, is that they
can be used to perform very efficient (linear-time) propositional inference. O

Example 3.4. We can easily let the agent explicitly reason about his deductive
algorithmic knowledge by adding a rule

t > xknow(t) (3.1)

to his deductive syster. Thus, if M is a deductive algorithmic knowledge struc-
ture overD, and(M,w) = X, then we havev = (e, obs), with obs Fp 7,

and by the above rule, the deductive syst@roan also derivebs I-p xknow(p?),

so thatobs Fp (X¢)T. Thus,(M,w) | X (X¢), as required. It is possible to
restrict the deductive algorithmic knowledge of an agent with respect to his own
deductive algorithmic knowledge by suitably modifying rule (3.1), restricting it to
a subclass of terms. O

The monotonicity of the deductive systems means that for a strustuveth
worldsw = (e, obs), w' = (¢’, 0bs"), andobs C obs’, we have(M,w) = Xy
implies (M, w") = X . Thus, explicit knowledge of facts is never lost when new
observations are made.

It is natural to consider classes of signatures (and deductive systems) that cap-
ture logical theories dealing with only part of the formulas expressiblesin(73).

For instance, it may make sense to distinguish the notion of a primitive signature,
that does not provide constructors for the propositional and modal connectives. In-
tuitively, a deductive system based on a primitive signature only permits reasoning
about the explicit knowledge of primitive propositio?sy is false for anyp not a
primitive proposition.
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3.3 Axiomatizations

Clearly, for a particular deductive system, the propertieX afepend on that de-
ductive system. Intuitively, we should be able to read off the propertiés fvbm
the deduction rules themselves. This is hardly surprising. Properties of the knowl-
edge algorithms in the framework of algorithmic knowledge immediately translate
to properties of theX operator. For instance, if a knowledge algorithm is sound,
that is, if whenever it answers “Yes” in a worldfor a formulay theny is true at
that world, thenX ¢ = ¢ is valid in a structure using such a knowledge algorithm.
What is interesting in the context of deductive algorithmic knowledge is that we
can completely characterize the propertiesXgfbecause of the structure of the
deductive systems. The remainder of this section aims at making this statement
more precise.

As afirst step, consider an axiomatization for reasoning about deductive systems
in general, independently of the actual deduction rules of the system. For this, we
need axioms capturing propositional reasoning in the logic:

Prop. All instances of propositional tautologies
MP. Fromy andy = 1 infer .

Axiom Prop can be replaced by an axiomatization of propositional tautologies,
as in Section 2.2. The following axioms capture the properties of the knowledge
operator, as in Section 2.2:

Kl. (KN K(p=1)) = Ky
K2. Fromy infer K¢

K3. Kp= o

K. Kp = KKy

K5. =Ky = K-Kep.

Since algorithmic knowledge is interpreted with respect to the observations at
the current state, and that two states are indistinguishable to an agent if the same
observations are made at both states, agents know whether or not they explicitly
know a fact. This is captured by the following axiom:

Xl Xo=KXop

In the presence of K1-5, we saw in Section 2.4 thaty = K—-X is provable
from X1. In addition, all observations are explicitly known. This fact is expressed
by the following axiom:

X2. ob & Xob.



3.3 Axiomatizations 41

Formally, this is a consequence of the definition of deduction in Section 3.1: recall
that for all termg of a deductive systery, we havel Fp t. An easy consequence
of X1-2 is that indistinguishable worlds have exactly the same observations. It is
easy to see that the formulas = K ob and—ob = K—o0b are provable.

Let AX“ consists of the axioms Prop, MP, K1-5, and X1-2. Without fur-
ther assumptions on the deductive systems under consider&fiof, completely
characterizes reasoning about deductive algorithmic knowledge.

Theorem 3.5.The axiomatizatiotAX** is sound and complete f&**(7%) with
respect tdv(**!(X).

If we want to reason about deductive algorithmic knowledge structures equipped
with a specific deductive system, we can say more. We can essentially capture
the reasoning with respect to the specific deductive system within our logic. The
basic idea is to translate deduction rules of the deductive system into formulas of
LKX(Tg). A deduction rule of the formy, . .., ¢, >t in D is translated to a formula
(Xt AL AXtE) = XtE. Define the formula® corresponding to the tertby
induction on the structure af true® is true, false® is false, (not(t))% is —(t?),
(and(t1, 1)) is tf A tE, (Kp)® is know (o), (X )T is xknow(pf), andtf is
t for all other termg. In fact, such a translation yields an axiom scheme, where
we view the variables iy, ..., t,,t as scheme metavariables, to be replaced by
appropriate elements of the term algebrti.is easy to see thdt”)? = ¢ for all
termst. Furthermore, we do not translate KD constructors that appear under non-
KD constructors within a term. (Intuitively, these constructors will never arise out
of the translation of formulas given in Section 3.2.) L&et” be the set of axioms
derived in this way for the KD deductive systah

Note that these axioms cannot be complete¥ty(3), since there are for-
mulas of the formX that cannot be true in any structure;s®(X), namely,

X1 wherey is not derivable from any set of observations using the deductive
systemD. Thus,— X1 is valid for thosey, but the axioms above clearly cannot
prove—X41. In other words, the axioms idz” capture deducibility it p, rather

than non-deducibility. We can however establish completeness with respect to a
more general class of structures, intuitively, those structures using a deductive sys-
tem containingat leastthe deduction rules itD. Let M$E(X) = {M | M €

51(%), D C D'}, i

Theorem 3.6. The axiomatizatiomX®? + { Az”} is sound and complete for
KX (9 i ded

LEX(T5,) with respect taV[5E (2).

2 One needs to be careful when defining this kind of axiom scheme formally. Intuitively, an axiom scheme of

the form above, with metavariables appearing in terms, corresponds to the set of axioms where each primitive
proposition in the axiom is a ground substitution instance of the appropriate term in the axiom scheme.
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3.4 Decision Procedures

In this section, we study the decision problem £8r*(7¥) satisfiability, that is,

the problem of determining, for a given formula, whether it is satisfiable. Since our
logic extends the logi€.* (7%), and since the complexity of the decision problem
for the latter is NP-complete (Theorem 2.10), the difficulty of deciding satisfiability
for L¥*(T{) is at least as hard.

We measure complexity in terms of the size of the formulas, as well as the size
of the models. Define the sizg of a termt to be the number of symbols required
to write ¢, where each operation symbol is counted as a single symbél.isifa
set of terms, theil'| is just the sum of the sizes of the termslin Similarly, the
size|p| of a formula is defined to be the number of symbols required to wrjte
where again each operation symbol is counted as a single symbol. Thé/siné
amodelM € My4(X) (that is, for a specific deductive syste) is taken to be
the sum of the sizes of the states, where the size of a stafeb,, ..., obs}) is
14 |oby| 4 -+ |oby].

It is known that the decision problem f&¥ satisfiability is NP-complete (Theo-
rem 2.10). Adding deductive algorithmic knowledge does not add to the complex-
ity if we do not require a fixed deductive system. Intuitively, for satisfiability, we
can simply take as a deductive system one with specific deduction rules sufficient
to satisfy the subformula& ¢ appearing in the formula.

Theorem 3.7.The problem of deciding whether a formyteof L¥*(T¥) is satis-
fiable in a structure iMvt*?(¥) is NP-complete.

What happens if we fix a particular deductive system, and want to establish
whether a formulg is satisfiable in a structure over that particular deductive sys-
tem? The difficulty of this problem depends intrinsically on the difficulty of decid-
ing whether a deductioli -p t exists inD. Since this problem may be arbitrarily
difficult for certain deductive systen, reasoning in our logic can be arbitrarily
difficult over those deductive systems. On the other hand, if the deductive system
is decidable in polynomial time (i.e., if the problem of deciding whether a deduc-
tionT' p t exists inD can be solved in time polynomial i'| and|t|), then the
decision problem for our logic remains relatively easy.

Theorem 3.8. For any given propositional deductive systépthat is decidable
in polynomial time, the problem of deciding whether a formplaf L**(T¥) is
satisfiable in a structure iV 5*(3) is NP-complete.

There is a class of deductive systems that can be efficiently decided, and thus
by Theorem 3.8 lead to a reasonable complexity36r (7). Say a deductive
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systemD is local if wheneverT' +p ¢ there exists a local deduction bfrom I

A deduction is local if every proper subterm of a term in the deduction is either a
proper subterm of, a proper subterm of a member Iof or appears as a subterm

of a deduction rule irD. One can show that, for any deductive systBimwvhether

a local deduction of from I" exists in time polynomial ifl"| and|¢|. If D is local,

so that the existence of a deduction ensures the existence of a local deduction, then
the deduction relatiok p is polynomial-time decidable. The deductive system in
Example 3.1 is local, while adding the deduction rules in Example 3.3 to any local
deductive system yields a local deductive system.

Corollary 3.9. For any local KD deductive systeid, the problem of deciding
whether a formulap of LXX(TY)) is satisfiable in a structure ivM{5*(X) is NP-
complete.

3.5 Multiple Agents

The framework we have described extends to multiple agents in a straightforward
way. We simply need to equip every agent with a deductive system. A priori, there
is no difficulty in modeling this using what has been already done. Unfortunately,
this does not let an agent explicitly reason about another agent’s knowledge. In
order to do this, it is necessary to modify and extend the framework. The syntax
of the logic is justLE*(T3,), as expected, where we taketo be a KD signature
for n agents. AKD signature forn agentsis a signature containing the operation
symbolstrue, false, not, and, as well as the operation symboeols;, know;, xknow;,
fori € {1,...,n}, wheretrue, false have arity0, ob;, not, know;, xknow; have
arity 1, andand has arity2. The terms of the formob;(¢) in 7% are called the
observations for agerit and we letObs; = {ob;(¢) | t € T¢} C T¥ denote the
set of observations for agentWe typically letob range over observations. KD
deductive system fot agentsD is a decidable deductive system defined over a
KD signatureX for n agents, with the restriction that no observation arises as the
conclusion of a deduction rule iR. Formally, for allz, for all ob € Obs; and for
all rulesty, ..., t, >t of D, there does not exist a ground substitutipsuch that
p(t) = ob.

The models are a straightforward generalization of those used in the single-
agent case. Aleductive algorithmic knowledge structure feragentsis a tuple
M = (W,n,Dy,...,D,), whereW is a set of worldsz is an interpretation for
the primitive propositions, anfd; is a KD deductive system for agents ovek..
Every worldw in W is of the form(e, obsy, ..., 0bs,), wheree is a state of the
environment that captures the general state of the systemyiands a finite set
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of observations fronDbs;, representing the observations that agehas made

at that world. The interpretatiom associates with every world the set of primi-
tive propositions true at that world, so that for all primitive propositior 7%,

and all worldsw € W, we haver(w)(p) € {true,false}. The only assumption

on the interpretation is that it respects the observations made at a world, that is,
7(e, obs1, ..., 0bs,)(ob;(t)) = true if and only if ob;(¢) € obs;.

Let M*!(X) be the set of all deductive algorithmic knowledge structures with
KD signature fom agentsE. For fixed KD deductive systens,, ..., D, overy,
let M35e  p, () be the set of all deductive algorithmic knowledge structures for
n agents with deductive systemy;, . .., D, (thatis, where agerituses deductive
systembD;).

The remaining definitions generalize in a similar way. Define, for each agent,
a relation on the worlds that captures the worlds that the agent cannot distinguish,
based on his observations. More precisely, take; w' if w = (e, 0bs1, ..., 0bsy)
andw’ = (¢/, obs), ..., obs)), forsomee, ¢/, 0bs1, . .., obsy, obs], ..., obs.,, with
obs; = obs,. Again, each~; is an equivalence relation.

The translation of a formula into a termy’’ of the deductive system now takes
into account the name of the agents. As expected, wepthke p, truel is true,
falseT isfalse, (—)T isnot(p?), (eA) T isand(p?, 7)), (Kip)T is know; (1),
and(X;)7 is xknow; (o).

The semantics is just like that of Section 3.2, except with the following rules for
KZ'(,O andXigo:

(M,w) E K;ipif (M,w'") E ¢forallw ~; w
(M,w) = X;pif w= (e, 0bs1,. .., 0bs,) andobs; Fp, ¢T.

Example 3.10. The phenomenon afimulative inferencarises when, roughly
speaking, an agent can reconstruct the reasoning of another agent. It is possible
to capture this by making suitable assumptions on an agent’s deductive system. A
deductive systenD; for agenti permits simulative inference of agenwith D;

if D; contains a ruleob;(t) > xknow;(ob;(t)), and for every rulet, ... t; >t

of D;, there is a corresponding ruknow;(t1), . . ., xknow;(t;) > xknow;(t) in

D;. Itis then easy to check that if we hay®/, w) = X;¢ for some worldw =

(€, 0bs1, ..., 0bsy) with {0b1, ..., 0bx} C obsj, and(M,w) = X;(obi) A... A
Xi(oby), then(M, w) = X;X;p. Note that this derivation assumes that the agent

1 can explicitly determine that agejihas observedbq, . .. oby. O

As far as axiomatizations are concerned, we can essentially lift the results of
Section 3.3. It suffices to consider an axiomatization where K1-5 now ref€y to
rather than jusk. For instance, K1 becomds;p A K;(¢ = ¥) = K;1, for ev-
ery agent. In a similar way, the axiom X1 simply becom&syp = K; X;p. For
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X2, we need to further restrict the observations to be those of the agent under con-
sideration:ob < X;ob (if ob € Obs;). Let AX*® be the resulting axiomatization.
The following result is obtained in a straightforward way:

Theorem 3.11. The axiomatizatioMX:** is sound and complete fat;*(7¥)
with respect tav(3*? ().

As in the single agent case, we can capture the reasoning with respect to specific
deductive systems (one per agent) within our logic. Again, we translate deduction
rules of the deductive systems into formulasigf*(7¢,). Consider the deductive
systemD; for agenti. A deduction rule of the form, ..., t,>tin D, is translated
to a formula(X;tft A ... A XitE) = X;tF. Define the formula’ corresponding
to the term¢ by induction on the structure af true® is true, false® is false,
(not())F is —(tf), (and(t1,t2)) R is tf A ¢, (Kjp)® is know; (o), (X;0) % is
xknowj(wR), andtt is t for all other termg. (As in Section 3.3, such a translation
yields an axiom scheme, where we view the variables jn..,t,,t as scheme
metavariables, to be replaced by appropriate elements of the term algebra.) Let
AzDi be the set of axioms derived in this way for the KD deductive sysigm
of agenti. As in the single agent case, we cannot capture exactly the reasoning in
structures where agenis using deductive system;, since we cannot capture non-
deducibility within the logic. Therefore, completeness is established with respect
to a wider class of structures. L®t55! 5 ~(¥) ={M [ M € M‘be;jmm, D, C
D',...,D, C D}

Theorem 3.12. The axiomatizatiomXdd + {AzP1 ... AzDPn} is sound and
complete foill 3 (X) with respect taVys! (3.

The complexity of the decision problem in the case of multiple agents reflects
the complexity of the decision problem of the modal logic of knowledge for mul-
tiple agents. LX*(TY) extends the logiL¥, and it is known that the decision
problem for the latter is PSPACE-complete (Theorem 2.10). As in the single agent
case, adding deductive algorithmic knowledge does not affect the complexity of
the decision problem if we do not require a fixed deductive system.

Theorem 3.13.If n > 2, the problem of deciding whether a formuytaf LX* (T%)
is satisfiable in a structure iv((!(3) is PSPACE-complete.

There is no clear candidate for an equivalent of Theorem 3.8 in the multiple
agents context. Assuming every agent uses a tractable deductive system yields an
easy EXPTIME upper bound on the decision problemd$i (7%), while the best
lower bound we obtain is the same as the one in Theorem 3.13, that is, the problem
is PSPACE-hard.
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Notes

The work in this chapter appeared in a preliminary form in [Pucella 2004].

There has been a fair amount of work on developing models for agents reason-
ing via logical theories; see, for instance, the approaches of Konolige [1986] and
Giunchiglia et al. [1993]), which reason completely within the logical theories
while assuming a global logical theory for the world. In contrast, the logic in this
chapter is based on a standard possible-worlds semantics.

The use of Horn theories to approximate knowledge bases is described by Sel-
man and Kautz [1996]. The Dolev-Yao adversary is due to Dolev and Yao [1983],
and it is now standard in the field of security protocol analysis. Imposing a prob-
ability distribution on the set of possible worlds is explored by Fagin and Halpern
[1994].

The notion of term algebra is usually studied in universal algebra [Burris and
Sankappanavar 1981], although it is also often used in term rewriting systems
[Baader and Nipkow 1998]. Sorted term algebras are described by Higgins [1963].

The incomplete inference rules for propositional reasoning used in Example 3.3
are taken from McAllester [1993]. The notion of a local deductive system is ex-
plored in detail by McAllester [1993]. It generalizes a particularly well-known
fact that ensures that a deductive system can be efficiently searched for deductions,
namely that one need only consider subformulas of a formula one is attempting to
derive.

Simulative inference, as described in Example 3.10, was studied by Kaplan and
Schubert [2000]. They work in a slightly different setting than the one in this
chapter. They assume that the inference engine is explicitly told formulas. Thus,
they essentially work in a setting similar to that of belief revision [Alchoarr
Gardenfors, and Makinson 1985]. They also implicitly make the assumption that
agents are aware of the observation of other agents, since they study simulative
inference in a context where all the agents make the same observations.
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Probabilistic Algorithmic Knowledge

LL the examples of algorithm knowledge appearing in the literatursused
knowledge algorithms: although the algorithm may not give an answer under
all circumstances, when it says “Yes” on inputthe agent really does knowin
the standard possible-worlds sense. Although soundness is not required in the basic
definition, it does seem to be useful in many applications.

Our interest in this chapter is knowledge algorithms that may use some ran-
domization. There are numerous examples of natural randomized knowledge algo-
rithms. With randomization, whether or not the knowledge algorithm says “Yes”
may depend on the outcome of coin tosses. This poses a slight difficulty in even
giving semantics to algorithmic knowledge, since the standard semantics makes
sense only for deterministic algorithms. One solution to this problem is to make
the algorithms deterministic by supplying them an extra argument (intuitively, the
outcome of a sequence of coin tosses) to “derandomize” them. We show that this
approach provides a natural extension of the deterministic case.

Having defined the framework, we try to characterize the information obtained
by getting a “Yes” answer to a query far. If the knowledge algorithm is sound,
then a “Yes” answer guarantees thds true. However, the randomized algorithms
of most interest to us give wrong answers with positive probability, so are not
sound. Nevertheless, it certainly seems that if the probability that the algorithm
gives the wrong answer is low, it provides very useful information when it says
“Yes” to a queryy. This intuition appears in the randomized algorithms literature,
where a “Yes” answer from a highly reliable randomized algorithm, that is, one
with a low probability of being wrong, is deemed “good enough”. In what sense
is this true? One contribution of this chapter is to provide a formal answer to that
guestion. It may seem that a “Yes” answer to a querfrom a highly reliable
randomized knowledge algorithm should make the probability ¢gha true be
high but, as we show, this is not necessarily true. Rather, the information should

47
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be viewed a®videncehaty is true; the probability thap is true also depends in
part on the prior probability op.

Evidence has been widely studied in the literature on inductive logic. Evidence
for a particular hypothesis can be accumulated from different sources, and it is pos-
sible to combine the evidence provided by knowledge algorithms with other kind
of evidence already accumulated for a formula, obtained for example by running
other kinds of tests, and look at the combined evidence. We do not consider ev-
idence in such a general setting in this chapter; rather, we focus on the evidence
contributed specifically by a randomized knowledge algorithm. Chapter 5 provides
a treatment of evidence in a more general setting.

4.1 Randomized Knowledge Algorithms

Randomizednowledge algorithms arise frequently in the literature (although they
have typically not been viewed as knowledge algorithms). In order to deal with
randomized algorithms in the algorithmic knowledge framework, we need to ad-
dress a technical question. Randomized algorithms are possibly nondeterministic;
they may not yield the same result on every invocation with the same arguments.
Since X;p holds at a worldw if the knowledge algorithm answers “Yes” at that
world, this means that, with the semantics of Section X.4; would not be well
defined. Whether it holds at a given world depends on the outcome of random
choices made by the algorithm. However, the semantics should unambiguously
declare a formula either true or false.

Before we describe the chosen solution to the problem, consider another poten-
tial solution, which is to define the satisfaction relation probabilistically. That is,
rather than associating a truth value with each formula at each world, we associate
a probabilityPr(w, ¢) with each formulap at each worldv. The standard seman-
tics can be viewed as a special case of this semantics, where the probabilities are
always either 0 or 1. Under this approach, it seems reasonable t&tékep) to
be either 0 or 1, depending on whether primitive proposititsitrue at statev, and
to takePr(w, X;) to be the probability thats knowledge algorithm returns “Yes”
given inputsp andV; (w). However, it is not then clear how to defiRe(w, o A).

Taking it to bePr(w, ¢)Pr(w, ¢) implicitly treatse andy> as independent, which

is clearly inappropriate if) is —p. Even ignoring this problem, it is not clear how
to definePr(w, X;p A X;1), since again there might be correlations between the
output of the knowledge algorithm on inpt, V;(w)) and input ¢, V;(w)).

Rather than use probabilistic semantics here, we deal with the problem by adding
information to the semantic model to resolve the uncertainty about the truth value
of formulas of the formX;p. Observe that if the knowledge algorithimis ran-
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domized, then the answer thagives on input(y, ¢) will depend on the outcome

of coin tosses (or whatever other randomizing device is useiy.bWe thus turn

the randomized algorithm into a deterministic algorithm by supplying it with an
appropriate argument. For example, we supply an algorithm that makes random
choices by tossing coins a sequence of outcomes of coin tosses. We can now in-
terpret a knowledge algorithm answering “Yes” with probabilityat a world by
considering the probability of those sequences of coin tosses at the state that make
the algorithm answer “Yes”.

Formally, start with (possibly randomized) knowledge algorithags. . ., A,,.

For simplicity, assume that the randomness in the knowledge algorithms comes
from tossing coins. Alerandomizers a tuplev = (vy, ..., v,) such that for every
agenti, v; is a sequence of outcomes of coin tosses (heads and tails). There is a
separate sequence of coin tosses for each agent rather than just a single sequence
of coin tosses, since we do not want to assume that all agents use the same coin.
Let V' be the set of all such derandomizers. To every randomized algotithm
associate a derandomized algoritifnwhich takes as input not just the quepy

and local staté, but also the sequeneg of i’s coin tosses, taken from a deran-
domizer(vy,...,v,). A probabilistic algorithmic knowledge structuis a tuple

N = (W, Vq,...,V,m A% ... A% V), wherev is a probability distribution oV’

andAf is the derandomized version pf. (Note that in a probabilistic algorithmic
knowledge structure the knowledge algorithms are in fact deterministic.)

The only assumption on the distributionis that it does not assign zero prob-
ability to the nonempty sets of sequences of coin tosses that determine the result
of the knowledge algorithm. More precisely, assume that for all agefasmulas
¢, and local state$ of agenti, {v | A%(¢, ¢, v;) = “Yes’} # o if and only if
v({v | Ad(p, ¢,v;) = “Yes"}) > 0, and similarly for “No” and “?” answers. Note
that this property is met, for instance,ifassigns nonzero probability to every
sequence of coin tosses. There are no other restrictioms dn particular, it is
not required that the coin be fair or that the tosses be independent. We can capture
correlation between the agents’ coins by using an appropriate distribution

The truth of a formula is now determined relative to a gairv) consisting of
a world w and a derandomizar. We abuse notation and continue to call these
pairs worlds. The semantics of formulas in a probabilistic algorithmic knowledge
structure is a straightforward extension of their semantics in algorithmic knowledge
structures. The semantics of primitive propositions is giver bgonjunctions and
negations are interpreted as usual; for knowledge and algorithmic knowledge, we
have

(N,w,v) E K;p if (N,uw',v") = ¢ forallv' € V and allw’ € W such that

w o~ w
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(N,w,v) | X;pif Ad(p, Vi(w),v;) = “Yes”, wherev = (v1,...,vy).

Here,A? getsy; as part of its inputA?(p, £, v;) is interpreted as the output af

given thaw; describes the outcomes of the coin tosses. Having the sequence of coin
tosses as part of the input allows us to talk about the probabilityighatgorithm
answers “Yes” to the query at a local staté. Itis simply v({v | A%(¢, ¢, v;) =
“Yes”}). To capture this in the language, extend the languageéfto allow
formulas of the formPr(¢) > «, read “the probability ofy is at leasta”. The
semantics of such formulas is straightforward:

(N w,v) = Pr(p) = aif v({e/ | (N,w,0) = ¢}) > a

Note that the truth oPr(¢) > « at a world(w, v) is independent of. Thus,
we can abuse notation and writ&, w) = Pr(¢) > «. In particular,(N,w) =

Pr(X;¢) < « (or, equivalently( N, w) = Pr(—=X;p) > 1—«) if the probability of
the knowledge algorithm returning “Yes” on a quesys less than, given agent
i's local state at worldw.

If all the knowledge algorithms used are deterministic, then this semantics agrees
with the semantics given in Section 2.4. To make this precise, note thasif
deterministic, them?(p, ¢,v;) = A%(yp, £, v}) for all v,»’ € V. In this case, we
abuse notation and writ(¢, ¢).

Theorem 4.1. Let N = (W, Vy,...,V,,mA¢,... A2 v) be a probabilistic al-
gorithmic knowledge structure, wherg, ..., A, are deterministic. LetM =
(W,Vy,...,Vp,m Ay, ..., A,). If there are no occurrences &fr in ¢, then for
allwe Wandallv e V, (N,w,v) |= ¢ ifand only if (M, w) = ¢.

Thus, derandomizers are not needed to interpreftheperators if the knowl-
edge algorithms are all deterministic. Moreover, in general, derandomizers are
necessary only to interpret tfie and X; operators.

Theorem 4.2. Let N = (W, V1,...,V,, 7, A%, ... A% v) be a probabilistic al-
gorithmic knowledge structure, and 18f = (W,Vy,...,V,, 7, A},...,A)) be
an algorithmic knowledge structure whet#, . .., A’ are arbitrary deterministic
knowledge algorithms. If there are no occurrencesgfand Pr in ¢, then for all
we Wandallv e V, (N,w,v) = ¢ifand only if (M, w) = ¢.

Theorems 4.1 and 4.2 justify the decision to “factor out” the randomization of
the knowledge algorithms into semantic objects that are distinct from the worlds;
the semantics of formulas that do not depend on the randomized choices do not in
fact depend on those additional semantic objects.
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4.2 Measures of Confirmation and Evidence

We are often interested in randomized knowledge algorithms that may sometimes
make mistakes. For example, suppose that Alice has in her local state a number
n > 2. Let prime be a proposition true at world if and only if the numbemn

in Alice’s local state is prime. Clearly, Alice either (implicitly) knowgime or
knows—prime. However, this is implicit knowledge. Suppose that Alice uses the
following randomized primality-testing algorithm to testifis prime. That algo-

rithm uses a (polynomial-time computable) predic&fe:, a) with the following
properties, for a natural numberandl < a <n — 1:

(1) P(n,a) €{0,1},
(2) if nis composite P(n,a) = 1 for at leasts choices ofa,
(3) if nis prime,P(n,a) = 0 for all a.

Thus, Alice uses the following randomized knowledge algorithg..: when
gueried abouprime, the algorithm picks a numberat random betweef and the
numbern in Alice’s local state; ifP(n,a) = 1, it says “No” and ifP(n,a) = 0,

it says “Yes”. (Itis irrelevant for the purpose of this example what the algorithm
does on other queries.)

It is not hard to check that i has the following properties: If the number
n in Alice’s local state is prime, thefyicc answers “Yes” to a quergrime with
probability 1 (and hence “No” to the same query with probabilily If » is com-
posite,Aajice @answers “Yes” to a quergrime with probability < % and “No” with
probability > % Thus, ifn is composite, there is a chance that;.. will make a
mistake, although we can make the probability of error arbitrarily small by apply-
ing the algorithm repeatedly.

Randomized knowledge algorithms like this are quite common in the literature.
They are not sound, but are “almost sound”. The question is what we can learn
from such an “almost sound” algorithm. Note that we know the probability that
Atice SAYS “Yes” given that is prime; what we are interested in is the probability
thatn is prime given that o5, says “Yes”. (Of coursen is either prime or not.
However, if Alice has to make decisions based on whether prime, it seems
reasonable for her to ascribe a subjective probability’sdbeing prime. It is this
subjective probability that we are referring to here.)

Bayes' rule tells us that

Pr(n is prime| Aajice Says “Yes) =
Pr(Aajice Says “Yes”| n is prime@Pr(n is prime)
Pr(Aajice Says “Yes)) '

(4.1)
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The only information in this equation we havels(A s 5. Says “Yes”| n is prime).

If we hadPr(n is prime), we could derivePr(Aajice Says “Yes’). However, we do

not have that information, since there is no probability distribution on the number
in Alice’s local state. Although we do not have the information needed to compute
Pr(n is prime| Axjice Says “Yes'), there is still a strong intuition that iX; o holds,

this tells us something about whether the number is prime or not. How can this be
formalized?

Intuitively, the fact thatX; holds provides “evidence” that holds. But what is
evidence? Evidence has been studied in depth in the philosophical literature, under
the name ofconfirmation theory Confirmation theory aims at determining and
measuring the support a piece of evidence provides a hypothesis. As we mentioned
in the introduction, many different measures of confirmation have been proposed
in the literature. Typically, a proposal has been judged on the degree to which it
satisfies various properties that are considered appropriate for confirmation. For
example, it may be required that a piece of evidea@®nfirms a hypothesia
if and only if e makesh more probable.  We will not enter the debate as to
which class of measures of confirmation is more appropriate. For our purposes,
most confirmation functions are useless: they assume that there is a prior on the
space of hypotheses and observations. By marginalization, this gives a prior on
hypotheses, which is exactly the information we do not have and do not want to
assume. One exception is measures of evidence that use the log-likelihood ratio,
provided that there are only two hypotheses. In this case, rather than a prior on the
space of hypotheses and observations, it suffices that, for each hypaéthtbsise
is a probability;;, on observations, where, intuitively, (ob) is the probability of
observingob whenh holds. Given an observatior, the degree of confirmation
that it provides for a hypothesisis

o (22,

whereh represents the hypothesis other tita(recall that this approach applies
only if there are two hypotheses). Thus, the degree of confirmation is the ratio
between these two probabilities. The use of the logarithm is not critical here. Using
it ensures that the likelihood is positive if and only if the observation confirms the
hypothesis!

One problem with the log-likelihood ratio measui@s we have defined it is that
it can be used only to reason about evidence discriminating between two competing
hypotheses, namely between an hypothést®lding and the hypothesis not
holding. We would like a measure of confirmation along the lines of the log-

L In the literature, confirmation is usually taken with respect to some background knowledge. For ease of
exposition, we ignore background knowledge here, although it can easily be incorporated into the framework.



4.2 Measures of Confirmation and Evidence 53

likelihood ratio measure, but that can handle multiple competing hypotheses. One
such generalization was developed in the context of the Dempster-Shafer theory of
evidence based on belief functions

Start with a finite sefH of mutually exclusive and exhaustive hypotheses; thus,
exactly one hypothesis holds at any given time. Qdde the set of possible obser-
vations (or pieces of evidence). For simplicity, assume(hiatfinite. Just as in the
case of log-likelihood, assume that, for each hypothésesH, there is a probabil-
ity measureu;, on O such thatu, (ob) is the probability ofob if hypothesish holds.
Define an evidence space (o¥randO) to be a tuple€ = (H, O, {uy | h € H}).

Given an evidence space define the weight that the observatioh lends to
hypothesisi, writtenwe (0b, h), as

_ n(od)
we(ob, h) = S o i (08) (4.2)

The weight of evidencev¢ is not defined by Equation (4.2) for an observation
ob suchthad , 4. pun(0b) = 0. Intuitively, this means that the observatiob is
impossible. In the literature on confirmation theory it is typically assumed that this
case never arises. More precisely, it is assumed that all observations are possible,
so that for every observatiosb, there is an hypothesis such thatu,(ob) > 0.
In the present case, making this assumption is unnatural. We want to view the
answers given by knowledge algorithms as observations, and it seems perfectly
reasonable to have a knowledge algorithm that never returns “?”, for instance. As
we shall see below, the fact that the weight of evidence is undefined in the case
that ", .5 un(0b) = 0 is not a problem, thanks to the assumption thatoes
not assign zero probability to the nonempty sets of sequences of coin tosses that
determine the result of the knowledge algorithm.

For a set of hypothesed, definewe(ob, H) as simply the sum ofvg(0b, h)
for h € H. This definition makesuve(0b, -) a probability measure on hypothe-
ses, for each fixed observatian for which », 4 5 (0b) > 0. Intuitively, if
we(ob, h) = 1, thenob fully confirmsh (i.e., h is certainly true ifob is observed),
while if wg(ob,h) = 0, thenob disconfirmsh (i.e., h is certainly false ifob is
observed). Intuitively, the weighbe(0b, h) is the probability that: is the right
hypothesis in the light of observatian.2 The advantages af¢ over other known
measures of confirmation are that (a) it is applicable when there is no prior proba-
bility distribution on the hypotheses, (b) it is applicable when there are more than
two competing hypotheses, and (c) it has a fairly intuitive probabilistic interpreta-
tion.

2 We could have taken the log of the ratio to make more in line with the log-likelihood ratibdefined earlier,
but there are technical advantages in having the weight of evidence be a number between 0 and 1.
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Note that if}{ = {h1, ho}, thenwe in some sense generalizes the log-likelihood
ratio measurée. More precisely, for a fixed observatiar, we(ob, -) induces the
same relative order on hypotheses(@®, -), and for a fixed hypothesis we(-, h)
induces the same relative order on observatiori§- ais).

Theorem 4.3. For all ob, we havewg(ob, h;) > we(ob,ha—;) if and only if
I(ob, h;) > 1(ob, ha—;), fori = 1,2, and for allh, ob, andod’, we haveve (ob, h) >
we(ob’, h) if and only ifl(ob, h) > 1(ob', ).

Althoughwe(ob, -) behaves like a probability measure on hypotheses for every
observatiorvb (for which) ", -4 s (0b) > 0), itis perhaps best not to think of it as
a probability. Rather, it is an encoding of evidence. (We will see an interpretation
of evidence in the next chapter.)

Example 4.4. For the primality example, the s&t of hypotheses i§prime, —prime}.
The observation®) are simply the possible outputs of the knowledge algorithm
Ajice ON the formulgprime, namely,{“Yes”, “No” }. From the discussion follow-
ing the description of the example, it follows that

Hprime(“YeS”) — 1 /J,prime(“NO”) — 0
1

Mﬂprime(“YeS") < /Lﬁprime(“Non) >

[\

1
2
(There is a drastic simplifying assumption here, namely, that the probability that
the knowledge algorithm answers “Yes” to whether or not the number in Alice’s
local state is prime is the same for all values of the number. In reality, this is
not the case. All we are really given is bounds on the probabiljtigg,. and
L-prime; the actual probabilities vary with the actual prime number to which the
knowledge algorithm is applied. For the remainder of this chapter, we assume
that the probability associated with the answer of the knowledge algorithm for the
primality example is the same for all numbers. Most knowledge algorithms will
have that property.)

Let & = ({prime, ~prime}, {*Yes”,“NO" }, { ttprime, ti—prime ) D€ the evidence

3 Another representation that has similar characteristics is the following original representation of evidence via
belief functions, defined as

maxpe g pr(0b)

s
wg (ob, H) = .
¢ maxpegc pn(0b)
This measure is known in statistical hypothesis testing age¢heralized likelihood-ratio statistidt is another
generalization of the log-likelihood ratio measureAt this point, one may well ask what could help decide
which weight function to use. In the casewf andwg, their main difference is in how they behave when
one considers the combination of evidence. It can be arguedsthéiehaves better in this case.
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space capturing this situation. We can compute that

2
we(“Yes”, prime) > 3

and

Wl

we(“Yes”, —prime) <

Intuitively, a “Yes” answer to the quemtime provides more evidence for the hy-
pothesisprime than the hypothesisprime. Similarly, w(“No”, prime) = 0 and
w(“*No”, —prime) = 1. Thus, an output of “No” to the quenyrime indicates that
the hypothesis.prime must hold. O

We can extend the definition of weight of evidencestdsof observations. If
obs C O is a set of observations, define

ph(0bs)
we(obs, h) S e (0b5)”
Roughly speakingwe(obs, h) can be viewed as the weight of evidence provided
by an observation that is compatible with all of the observatior$irand no other
observations. For example, in an evidence sgaceo, s, p15), the weight of
evidence tha® provides for botth andhy is 1/2, meaning that simply making an
observation without any indication of the actual observation made does not provide
support for one hypothesis more than to the other, as expected.

4.3 Reliable Randomized Knowledge Algorithms

What does a “Yes” answer to a quepygiven by an “almost sound” knowledge
algorithm tell us aboup? To make this precise, we need to first characterize how
reliable the knowledge algorithm is. A randomized knowledge algorithns

(a, B)-reliable for ¢ in N (for agenti) if a, 8 € [0, 1] and for all worldsw and
derandomizers,

— (N, w,v) = ¢ impliesv({v' | A4(p, Vi(w),v]) = “Yes"}) > q,
— (N, w,v) = ~¢ impliesv({v' | A%(p, Vi(w),v]) = “Yes"}) < 3.

These conditions are equivalen{ti, w, v) = ¢ implying (N, w, v) = Pr(X;¢) >
a and (N, w,v) E —¢ implying (N, w,v) = Pr(X;p) < . In other words, if
¢ Is true at worldw, then an(a, 3)-reliable algorithm says “Yes” tg at w with
probability at leastx (and hence is right when it answers “Yes” to queryvith
probability at leastv); on the other hand, if is false, it says “Yes” with probability
at most3 (and hence is wrong when it answer “Yes” to querwith probability at
most3). The primality testing knowledge algorithm i, %)-reliable forprime.
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The intuition here is thafx, 3)-reliability is a way to bound the probability that
the knowledge algorithm is wrong. The knowledge algorithm can be wrong in two
ways: it can answer “No” or “?” to a query wheny is true, and it can answer
“Yes” to a queryy whene is not true. If a knowledge algorithm {g, 3)-reliable,
then the probability that it answers “No” or “?” when the answer should be “Yes”
is at mostl — «: the probability that it answers “Yes” when it should not is at most
G.

We now associate an evidence space over the hypotfigses } with a knowl-
edge algorithm; and a local staté for agenti. Let

8Az‘7907£ = ({QO7 _‘90}7 {“YeS", “No” ) e }7 Mol ,U/—Mp,é)-

Roughly speakingy.,, ((“Yes”) (resp., i, ¢(“NO”); 1y, ((“?")) is the probability
that A; says “Yes” (resp., “No”; “?") to a query at worlds where agent has
local statel/ and p is true, whiles—, o(“Yes”) (resp., -y ¢(“NO”); fi—pe(“?"))
is the probability that; answers “Yes” (respectively, “No”; “?") to the query
at worlds where agent has local stat¢ and — is true. More precisely, for
the given agent, defineW,, = {(w,v) | Vi(w) = ¢, (N,w,v) | ¢} and
Wop o = {(w,v) | Vi(w) =¢,(N,w,v) = ~¢}, and take

v({v' | A(p, £, v)) = “Yes” if W, %)
M%g(“YeS") — { ({ | (A (SO ) }) CP,E ;A

1 otherwise

v({v' | A%(p, 0,0)) =“No"}) if W, # @
M@7Z(“NO’,) — { ({ | (A (SO ) }) Spyg #

0 otherwise

/ch’g(“?") — 1 _ /,LSD7£(“YeS,,) _ IU,SO’£(“N0” ).

Similarly, take

v({v' | Ad(p,£,v}) = “Yes” if W, %)
'u,ﬁ%g(“YeS") — ({ | (1 (SO ) }) 807€ #

0 otherwise

v({v' | A%(p, €,0)) = “No”}) if W, @
/,L“QD’g(“NOH) — { ({ | (A (SO ) }) 9076 ;é

1 otherwise

M—,SD’K(“?”) — 1 _ LL-,SD’ﬁ(“YeS”) _ /,L_\LP7E(HN0” ).

If A; is (o, B)-reliable fory in N, thenp, ,(“Yes”) > «, p, ({“"N0",*?"}) <
1 —a, pipe("Yes”) < B, andu—, ({“N0”,“?"}) > 1 — 3, for all local state’ for
agenti.

To be able to talk about evidence within the logic, we introduce an operator to
capture the evidence provided by the knowledge algorithm of agént (), read
“the weight of evidence thatwould get forp if he were to query the knowledge
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algorithm abouty”. There is a subtlety here, due to the asymmetry in the definition
of reliability. Reliability talks only about the probability that the algorithm returns
“Yes”, and thus does not distinguish between the algorithm returning “No” or “?”.
In order to establish a link between reliability and evidence, it is convenient to
identify the answers “No” and “?”, using the notationb ' to represent which of
the setq“Yes”} and{“No”,“?"} the observatiomb belongs to. Formally, define

queSnj — {“Yes”}
|—HNO11 | — {HNOH ) u?n}
|—u?u | — {HNOH ) u?n }.

We can now give the semantics of tRe; operator:

(N,w,v) F Evi(p) > aif we, ., (TAT (9, Vi(w),v:)7, ¢) > a.

We can similarly definé N, w, v) = Ev;(¢) < a. Thus, thelv; operator captures

the evidence forp given by the answer afs knowledge algorithm to a query.
Ev;(y) is always defined, despite the weight of evidence not being defined in the
case wherg, o(0b) + pi—,¢(0b) = 0.

Theorem 4.5.For all probabilistic algorithmic knowledge structurég, worldsw
of NV, and derandomizers € V, we, ., (., (TA%(p, Vi(w),v;) 7, ) is defined.

Intuitively, since the knolwedge algorithatf (¢, V;(w), v;) returns a resulbb at
world w, our restriction onv guarantees that the probability of observisigmust
be nonzero.

This definition of evidence has a number of interesting properties. For instance,
full evidence in support of a formula essentially corresponds to knowledgeof
as the following result show.

Theorem 4.6.For all probabilistic algorithmic knowledge structurég, we have
N E Evi(p) =1= K;p.
The following theorem captures the relationship between reliable knowledge al-
gorithms and evidence.

Theorem 4.7.1f A; is («, 3)-reliable for ¢ in N then

(a) N ): Xigp = Evi((p) > QLW if (Oé,ﬁ) 7& (070);

(b) N E Xip = Evi(p) = 1if (o, B) = (0,0);

(C) N ): —Xip = EVZ’(‘/D) < 2_1(;3(.5) if (aaﬁ) 7é (17 1);
(d) N k= ~Xip = Bvi(g) = 0 f (0, 5) = (1,1).
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In other words, if a randomized knowledge algorithm says “Yes”, then that pro-
vides evidence fop being true. The weight of evidence depends on the reliability.
Similarly, if the randomized knowledge algorithm says “No”, there is less evidence
in favor of ¢ being true.

Theorem 4.7 becomes interesting in the context of well-known classes of ran-
domized algorithms. ARP (random polynomial-time) algorithm is a polynomial-
time randomized algorithm that (g, 0)-reliable. It thus follows from Theorem 4.7
that if A; is anRP algorithm, thenX;» = Ev;(¢) = 1 and—X;p = Ev;(¢) < %
are both valid inN. By Theorem 4.6 Ev;(¢) = K;p is valid, and thus we
have X;p = K;p, as expected. Similarly, BPP (bounded-error probabilis-
tic polynomial-time) algorithm is a polynomial-time randomized algorithm that
is (2, 1)-reliable. Thus, by Theorem 4.7, if is a BPP algorithm, thenX;p =
Ev;(p) > 3 and—X;p = Ev;(y) < 1 are both valid inV.

Notice that Proposition 4.7 talks about the evidence that the knowledge algo-
rithm provides fory. Intuitively, we might expect some kind of relationship be-
tween the evidence fas and the evidence forp. A plausible relationship would
be that high evidence fap implies low evidence for, and low evidence fop
implies high evidence fory. Unfortunately, given the definitions in this section,
this is not the case. Evidence fgris completely unrelated to evidence foerp.
Roughly speaking, this is because evidencedas measured by looking at the
results of the knowledge algorithm when queried ¢orand evidence for is
measured by looking at the results of the knowledge algorithm when queried for
—. However, there is nothing in the definition of a knowledge algorithm that says
that the answers of the knowledge algorithm to quepriasd—y need to be related
in any way.

A relationship between evidence fgrand evidence fory can be established
by considering knowledge algorithms that are “well-behaved” with respect to nega-
tion. We already saw special classes of knowledge algorithms in terms of how they
behave with respect to negation in Section 2.4. We can adapt these notions to the
randomized knowledge algorithm case, in the obvious way. Say that a random-
ized knowledge algorithm weakly respects negatighfor all local states? and
derandomizers:

“Yes” if A%(p, £, v;) = “No”
A (=, £, 0;) = { “No” if A%(p, L, v;) = “Yes”
u?u |f Ad(g@,g, Ui) — u?n.
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Similarly, say that a randomized knowledge algorithistrongly respects negation
if for all local states and derandomizers

A (=, £, 07) “Yes” if A%(p, 0, v;) # “Yes”
Y, L) = .
4 “No” if A%(p, £, v;) = “Yes”.

The following result shows that for knowledge algorithms that respect negation,
reliability for ¢ is related to reliability for-:

Theorem 4.8.1f A; weakly respects negation angdis («, 3)-reliable for ¢ in N,
thena; is (0,1 — «)-reliable for -y in N. If A; strongly respects negation, then
is («a, B)-reliable for ¢ in N if and only ifA; is (1 — 3,1 — «)-reliable for ¢ in
N.

It is not hard to construct examples showing that the reliability assessments in
Proposition 4.8 in the case wheke weakly respects negation are tight; for in-
stance, we can exhibit a knowledge algorithm weakly respecting negation that is
(a, B)-reliable forp in N and that is note;, 1 — 3 — e)-reliable for—¢ in N,
for anye;,eo > 0. Adapting the proof of Theorem 2.6, it is easy to check that if
A; weakly respects negation, théfjp = —X;— is a valid formula. Similarly, if
A; strongly respects negation, théhy < —X;—y is a valid formula. Combined
with Theorem 4.7, this yields the following results.

Theorem 4.9.1f A; is («, 3)-reliable for ¢ in N and A; weakly respects negation,
then

@ N = Xip = (Bvilp) > 385 A Evi(—) < gl ) If (@ B) # (0,0);

(b) N | Xip = Evi(p) = 1if (a, 3) = (0,0);

(€) N E X;—¢ = Evi(p) < 1;‘)‘@ if a #1;

(d) N | Xi~p = (Evi(-p) =

| N

(ot
I1ANEvi(p)=0)ifa=1.

Theorem 4.10.If 4; is («, 3)-reliable forp in N andA; strongly respects negation,
then
(8) N k= Xip = (Evi(p) 2 525 ABvi(~9) < 325 if (0, 8) #
(b) N = Xip = (Evi(p) = 1AEvl(ﬁ ) =0)if ( )= (0,0);
© N X = (Bvi(-p) = AEBvilp) < 5205 ) i (a
(1,1);

(@) N = Xiog = (Bvi(~g) > 3 ABvi(g) < ) if (0, 8) = (1,1).

One goal of this chapter was to understand what the evidence provided by a
knowledge algorithm tells us. To take an example from security, consider an en-
forcement mechanism used to detect and react to intrusions in a system. Such an

(0,0);

= 2- (a+ﬂ)
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enforcement mechanism uses algorithms that analyze the behaviour of users and
attempt to recognize intruders. While the algorithms may sometimes be wrong,
they are typically reliable, with some associated probabilities. Clearly the mech-
anism wants to make sensible decisions based on this information, How should it
do this? What actions should the system take based on a report that a user is an
intruder? Resolving this asks for an interpretation of evidence, which we attempt
to provide in the next chapter.

Notes

The work in this chapter first appeared in [Halpern and Pucella 2003c].

Suitable introductions to probability theory include [Feller 1957; Billingsley
1995]. A good overview of the theory of randomized algorithms is [Motwani and
Raghavan 1995], where the clas§&2 andBPP are described in details. Rabin’s
probabilistic procedure is developed in [Rabin 1980]

Much of the work on evidence in philosophy arises in philosophy of science,
specificallyconfirmation theorywhere the concern has been historically to assess
the support that evidence obtained through experimentation lends to various scien-
tific theories [Carnap 1962; Popper 1959]. Kyburg [1983] gives a good survey of
the various approaches. The definition of weight of evidence we use in this chapter,
we, was introduced by Shafer [1982], in the context of the Dempster-Shafer theory
of evidence based on belief functions [Shafer 1976]; it was further studied by Wal-
ley [1987]. Our description is taken mostly from [Halpern and Fagin 1992]. The
alternativewg is Shafer’s original measure [Shafer 1976]. A comparison between
we andwy can be found in [Walley 1987; Halpern and Fagin 1992].

Other classes of confirmation measures, that do assume a prior probability, in-
clude the difference measures of Jeffrey [1992]. Another class, the log ratio mea-
sures, has been advocated, among others, by Milne [1996]. The log-likelihood
ratio measures have been advocated, among others, by Good [1950, 1960]. It can
be shown that those functions aralinally distinct that is, they will support dif-
ferent hypotheses given the same hypotheses and evidence [Fitelson 1999].



5
Reasoning about Evidence

ONSIDER the following situation. A coin is tossed, which is either fair or

double-headed. The coin lands heads. How likely is it that the coin is double-
headed? What if the coin is tossed 20 times and it lands heads each time? Intu-
itively, it is much more likely that the coin is double-headed in the latter case than
in the former. But how should the likelihood be measured? A straightforward ap-
plication of probability theory is not possible here. We cannot compute the proba-
bility of the coin being double-headed; assigning a probability to that event requires
that we have a prior probability on the coin being double-headed. For example, if
the coin was chosen at random from a barrel with one billion fair coins and one
double-headed coin, it is still overwhelmingly likely that the coin is fair, and that
the sequence of 20 heads is just unlucky. However, in the problem statement, there
is no prior probability mentioned. We could of course posit a prior probability and
see how the posterior probability behaves when we change the prior, but the point
is that our intuition does not seem to rely on such a posited prior.

The main feature of this situation is that it involves a combination of probabilis-
tic outcomes (e.g., the coin tosses) and nonprobabilistic outcomes (e.g., the choice
of the coin). There has been a great deal of work on reasoning about systems that
combine both probabilistic and nondeterministic choices. However, the observa-
tions above suggest that if we attempt to formally analyze this situation in one of
those frameworks, which essentially permit only the modeling of probabilities, we
will not be able to directly capture this intuition about increasing likelihood. To
see how this plays out, consider a formal analysis of the situation in the framework
due to Joseph Halpern and Mark Tuttle. Suppose that Alice nonprobabilistically
chooses one of two coins: a fair coin with probability2 of landing heads, or a
double-headed coin with probabilityof landing heads. Alice tosses this coin re-
peatedly. Letp, be a formula stating: “thé&th coin toss lands heads”. What is the
probability of o, according to Bob, who does not know which coin Alice chose?

61
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According to the Halpern-Tuttle framework, this can be modeled by considering
the set of runs describing the states of the system at each point in time, and parti-
tioning this set into two subsets, one for each coin used. In the set of runs where the
fair coin is used, the probability af is 1/2; in the set of runs where the double-
headed coin is used, the probability,gf is 1. In this setting, the only conclusion
that can be drawn i6Prg(pr) = 1/2) V (Prg(pr) = 1). (This is of course the
probability from Bob’s point of view; Alice presumably knows which coin she is
using.) Intuitively, this seems reasonable: if the fair coin is chosen, the probability
that thekth coin toss lands heads, according to Boh, /ig; if the double-headed
coin is chosen, the probability is Since Bob does not know which of the coins is
being used, that is all that can be said.

But now suppose that, before the 101st coin toss, Bob learns the result of the
first 100 tosses. Suppose, moreover, that all of these landed heads. What is the
probability that the 101st coin toss lands heads? By the same analysis, it is still
either1/2 or 1, depending on which coin is used.

This is hardly useful. To make matters worse, no matter how many coin tosses
Bob witnesses, the probability that the next toss lands heads remains unchanged.
But this answer misses out on some important information. And this information
is exactly the kind of information provided by reliable knowledge algorithms in
the last chapter. The fact that all of the first 100 coin tosses are heads is very
strongevidencehat the coin is in fact double-headed. Indeed, a straightforward
computation using Bayes’ Rule shows that if the prior probability of the coin being
double-headed ig, then after observing that all of the 100 tosses land heads, the
probability of the coin being double-headed becomes

o 21004,
a+27100(1 —q)  210q 4 (1 —qa)

However, note that it is not possible to determine the posterior probability that
the coin is double-headed (or that the 101st coin toss is heads) without the prior
probability «.. After all, if Alice chooses the double-headed coin with probability
only 107190 then it is still overwhelmingly likely that the coin used is in fact fair,

and that Bob was just very unlucky to see such a nonrepresentative sequence of
coin tosses.

We am not aware of any logical framework for reasoning about nondetermin-
ism and probability that takes the issue of evidence into account. On the other
hand, as we saw in the last chapter, evidence has been discussed extensively in the
philosophical literature.

In this chapter, we introduce a logic for reasoning about evidence that extends
existing logics for reasoning about likelihood expressed as either probability or be-
lief. The logic has first-order quantification over the reals (so includes the theory
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of real closed fields), for reasons that will shortly become clear. By adding obser-
vations to the states, it is possible to refine the language to talk about both the prior
probability of hypotheses and the posterior probability of hypotheses, taking into
consideration the observation at the states. We provide an additional operator to
talk about the evidence provided by particular observations. This lets us write for-
mulas that talk about the relationship between the prior probabilities, the posterior
probabilities, and the evidence provided by the observations.

We then provide a sound and complete axiomatization for the logic. To ob-
tain such an axiomatization, first-order quantification appears necessary. Roughly
speaking, this is because ensuring that the evidence operator has the appropriate
properties requires us to assert the existence of suitable probability measures. It
does not seem possible to do this without existential quantification. Finally, we
consider the complexity of the satisfiability problem. The complexity problem for
the full language requires exponential space, since it incorporates the theory of real
closed fields, for which an exponential space lower bound is known. However, we
show that the satisfiability problem for a propositional fragment of the language,
which is still strong enough to allow us to express many properties of interest, is
NP-complete.

5.1 Evidence and Probability Updates

In order to develop a logic for reasoning about evidence, we need to first formalize
an appropriate notion of evidence. We described a particular form of evidence in
Section 4.2, and this is the notion that we take as underlying our logic. But what is
evidence? Evidence can be thought of &srectionmapping a prior probability on

the hypotheses to a posterior probability, based on the piece of evidence witnessed.
There is a precise sense in whigly can be viewed as a function that maps a
prior probability ;1o on the hypothese¥( to a posterior probability:,, based on
observingob, by applying Dempster’s Rule of Combination. That is,

Hob :MO@wE(Oba')a (51)

where @ combines two probability distributions di to get a new probability
distribution onH defined as follows:

_ > ner M (h)p2(h)
Zhej—c p1(h)pa(h)

Bayes’' Rule is the standard way of updating a prior probability based on an
observation, but it is only applicable when we have a joint probability distribution
on both the hypotheses and the observations, something which we did not assume
we had. Dempster's Rule of Combination essentially “simulates” the effects of

(1 © p2)(H)
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Bayes's rule. The relationship between Dempster’s Rule and Bayes’ Rule is made
precise by the following well-known theorem.

Theorem 5.1.LetE = (H, O, {un | h € H}) be an evidence space. Suppose that
P is a probability onF x O such thatP(H x {ob}|{h} x O) = un(ob) for all

h € H and all ob € O. Letyuy be the probability orfH induced by marginalizing
P; thatis, uo(h) = P({h} x 0). For ob € O, let u,, = po ® we(ob,-). Then
ton(h) = Pr({h} x O|H x {ob}).

In other words, when we do have a joint probability on the hypotheses and ob-
servations, then Dempster's Rule of Combination gives us the same result as a
straightforward application of Bayes’ Rule.

Example 5.2.To get a feel for how this measure of evidence can be used, consider

a variation of the two-coins example in the introduction. Assume that the coin
chosen by Alice is either double-headed or fair, and consider sequences of hundred
tosses of that coin. L&) = {m | 0 < m < 100} (the number of heads observed),

and letH = {F, D}, whereF' is “the coin is fair”, andD is “the coin is double-
headed”. The probability spaces associated with the hypotheses are generated by
the following probabilities for simple observations

{ 1 if m=100

) =g () () =
AT = 5100 HDU =90 otherwise.

m
(We extend by additivity to the whole spa®e) Take& = (3, O, {ur, up}). For
any observatiom # 100, the weight in favor off” is given by

o (%)

m

we(m,F) = O—i—%(loo)
2

m

=1,

which means that the support of is unconditionally provided td’; indeed, any
such sequence of tosses cannot appear with the double-headed coin. #hus, if
0, we get that

0

m

we(m, D) =0.

What happens when the hundred coin tosses are all heads? It is straightforward to
check that
PI 1 1

= we (100, D) = = ;
1+ by 1+ 2100 el ) 1+ ohy 1+ 2100

2100
we (100, F) =

this time there is overwhelmingly more evidence in favorothan F'.
Note that we have not assumed any prior probability on the hypotheses. Thus,
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we cannot talk about the probability that the coin is fair or double-headed. What we
have is a quantitative assessment of the evidence in favor of one of the hypotheses.
However, if we assume a prior probabiliyon the coin being fair anth heads are
observed after 100 tosses, then the probability that the coin is fair i E4f100;

if m = 100 then, applying the rule of combination, the posterior probability of the
coin being fair iso/ (o + (1 — a)21%0). O

Can we characterize weight functions using a small number of properties? More
precisely, given set${ and O, and a functionf from O x X to [0, 1], are there
properties off that ensure that there are probability measymes | h € H}
such thatf = we? As we saw earlier, for a fixed observatiob, f acts like a
probability measure ofi{. However, this is not sufficient to guarantee tifais
a weight function. Consider the following example, with= {ob1, obs} and
H= {hl, ho, hg}Z

f(Obl,hl) = 1/4 f(ObQ,hl) = 1/4
f(ob1,h2) = 1/4 f(ObQ,hg) = 1/2
f(obla h3) = 1/2 f(ob% h3) = 1/4

It is straightforward to check that(ob1, -) and f (obs, -) are probability measures
on X, but that there is no evidence spate= (3, O, {in,, thy, ths }) SUCh that
[ = we. Indeed, assume that we do have sugh, (i, , 1n,. By the definition
of weight of evidence, and the fact thatis that weight of evidence, we get the
following system of equations:

#hy (0b1) _ oy (0b2) _
By (0b1)+ping (001)+ptng (0b1) 1/4 By (0b2)+iny (0b2)+ping (0b2) 1/4
lth2(0b1) _ 1/4 .U‘hQ(ObQ) _ 1/2
Bhy (001)+1ny (0b1)+phg(0b1) tihy (002)Fping (0b2)+ping (0b2)
.U‘hg(Obl) _ 1/2 .U‘h3(0b2) _ 1/4
Phy (0b1)+pny (0b1)+png(0b1) thy (0b2)+1ny (0b2)+png (0b2) )

It is now immediate that there exist anda, such thatu,, (ob;) = «; f(0bj, hi),
1,2.

fori = 1,2,3. Indeed,aj = uhl(obj) + /LhQ(Ob]‘) + ,uhs(obj), for j =
Moreover, sinceuy,, is a probability measure, we must have that

pn;(0b1) + pp, (0b2) = a1 f(oby, hi) + az f(oba, hy) = 1,
fori =1,2,3. Thus,
041/4—1—052/4 = 051/4+ 042/2 = 041/2 + 044/4 =1.

These constraints are easily seen to be unsatisfiable.

This argument generalizes to arbitrary functighghus, a necessary condition
for f to be a weight function is that there existsfor each observationb; such
thatuy, (ob;) = a; f(0b;, h) for each hypothesis is a probability measure, that is,
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ayf(oby,h) + -+ axf(oby, h) = 1. In fact, when combined with the constraint
that f(ob, -) is a probability measure for a fixegh, this condition turns out to be
sufficient, as the following theorem establishes.

Theorem 5.3. LetH = {hy,...,hp} andO = {oby,...,0b,}, and letf be a
real-valued function with domaifd x 3 such thatf(ob, h) € [0,1]. Then there
exists an evidence spaée= (H, O, up,, - - ., fin,,) Such thatf = we if and only
if f satisfies the following properties:

WF1. For everyob € O, f(o0b,-) is a probability measure ofi.
WF2. There exists,...,z, > 0suchthat, forallh € H, > " | f(ob;, h)z; =
1.

This characterization is fundamental to the completeness of the axiomatization
of the logic we introduce in the next section.

5.2 Reasoning about Evidence

We introduce a logici.7 ¥ for reasoning about evidence. The logic has both
propositional features and first-order features. It takes the probability of proposi-
tions, and views evidence as a proposition. On the other hand, it allows first-order
guantification over numerical quantities, such as probabilities and evidence. The
logic essentially considers two time periods, which can be thought of as the time
before an observation is made and the time after an observation is made. For sim-
plicity, assume that exactly one observation is made. Thus, we can talk of the
probability of a formulay before an observation is made, denofa&(go), the
probability of ¢ after the observation, denot&d (), and the evidence provided

by the observationb for a hypothesig, denotedw(ob, h). Of course, we want to

be able to use the logic to relate all these quantities.

Formally, start with two sets of primitive propositions, = {h1, ..., hy, } rep-
resenting the hypotheses, abgl= {0b1, ..., 0b,, } representing the observations.

Let L1, (®y) be the propositional sublanguagelgfpothesis formulasbtained by
taking primitive propositions i, and closing off under negation and conjunction;
we usep to range over formulas of that sublanguage.

A basic termhas the fornP1%(p), Pr(p), or w(ob, p), wherep is an hypothesis
formula, andob is an observation. Aolynomial termhas the fornt; + - - - + ¢,
where each termy is a product of integers, basic terms, and variables (which range
over the reals). Apolynomial inequality formuldas the formp > ¢, wherep
is a polynomial term and is an integer. LeL./°"¢’(®,,, ®,) be the language ob-
tained by starting out with the primitive propositions®p and®, and polynomial
inequality formulas, and closing off under conjunction, negation, and first-order
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guantification. Letrue be an abbreviation for an arbitrary propositional tautology
involving only hypotheses, such AgVv—h1; let false be an abbreviation fortrue.

With this definition, true and false can be considered as part of the sublanguage
Ln(Pp).

It should be clear that while only integers coefficients are allowed to appear in
polynomial terms, it is possible in fact to express polynomial terms with rational
coefficients by crossmultiplying. For instanckPr(p) + $Pr(p’) > 1 can be
represented by the polynomial inequality form@Rr(p) + 3Pr(p’) > 6. While
there is no difficulty in giving a semantics to polynomial terms that use arbitrary
real coefficients, the restriction to integers is necessary in order to make use of
results from the theory of real closed fields in both the axiomatization of Section 5.3
and the complexity results of Section 5.4.

We use obvious abbreviations where needed, sugtvasfor —(—pA—v), ¢ =
Y for = V), Jzp for -V (—yp), Pr(p) —Pr(y) > cfor Pr(¢)+(—1)Pr(¢) > ¢,

Pr(¢) > Pr(y) for Pr(¢) — Pr(y) > 0, Pr(yp) < cfor —Pr(¢) > —¢, Pr(¢) < c
for =(Pr(¢) > ¢), andPr(p) = ¢ for (Pr(¢) > ¢) A (Pr(p) < ¢) (and analogous

abbreviations for inequalities involvirigr® andw).

Example 5.4. Consider again the situation given in Example 5.2. {gt the
observations, consist of primitive propositions of the fdreads[m], wherem is
an integer with0 < m < 100, indicating thatm heads out of 100 tosses have
appeared. Leb, consist of the two primitive propositiorfsir anddoubleheaded.
The computations in Example 5.2 can be written as follows:

w(heads[100], fair) = 1/(1 4 2199
w(heads[100], doubleheaded) = 2!%0 /(1 4 2199).

We can also capture the fact that the weight of evidence of an observation maps a
prior probability into a posterior probability by Dempster’'s Rule of Combination.
For example, the following formula captures the update of the prior probadility

of the hypothesisair upon observation of a hundred coin tosses landing heads:

P10(fair) = o A w(heads[100], fair) = 1/(1 + 2'%) =
Pr(fair) = a/(a + (1 — )2'%).
We develop a deductive system to derive such conclusions in the next section.

Now we consider the semantics. As usual, a model is a set of possible worlds.
A world describes which hypothesis is true and which observation was made (re-
call that we have assumed that exactly one hypothesis is true, and exactly one
observation is made), together with a probability distribution describing the prior
probability, which is used to interpr&:". Thus, a world has the forith, ob, ),
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whereh is a hypothesisyb is an observation, andis a probability distribution on
d;,. In addition, to interpretv, we need an evidence space o¥grand®,, which
gives a probability measure, on @, for each hypothesis € ®,. Thus, take an
evidential structurel/ to be a tuplg S x P, £), whereS C &, x &,, P is a set of
probability distributions on ®,,, and€ is an evidence space ovéf, and®,. Note
that the states of the structure are required to be only a subdgt of®,. This
allows us to rule out particular combinations of hypothesis and observation.
To interpret propositional formulas i, (®y), associate with each hypothesis

formulap a set]p] of hypotheses, by induction on the structureypf

[A] = {n}
[=e] = @n— [l
[p1 Ap2] = [pa] N [p2l-

To interpret first-order formulas that may contain variables, we need a valuation
v that assigns a real number to every variable. Given a valuati@n eviden-
tial structureM = (S x P, ), and a worldw = (h, ob, 1), we can assign to a
polynomial termp a real numbefp]™*=* in a straightforward way:

] = o(a)
[a] 0 = a
Pr(p) = u(lpl)
[Pr(p)]* = (u®we(ob,-))([p])
[w(ob', p)]M = we(ob', [p])
[tato] 00 = [l [t M
)

Mwow [pl]M,w,v_'_[pz]M,w,v.

Note that, to interpre®r(p), the posterior probability gf after having observedb
(the observation at world), we use Equation (5.1), which says that the posterior
is obtained by combining the prior probabiligywith we(0b, -).
We define what it means for a formulato be true (or satisfied) at a world of
an evidential structurd/ = (S x P, £) under valuatiorv, written (M, w,v) | ¢,
as follows:

(M, w,v) E hif w= (h, ob, u) for someob, u
(M, w,v) = ob if w=(h, ob, u) for someh, u
(M, w,v) | —pif (M,w,v) & ¢
1 We allow sets of probability distributions for generality, despite the fact that our logic does not have the
expressive power to reason about them. It is straightforward to extend the logic with a knowledge operator

K¢ as in Section 2.2, true at a worlddf is true at all worlds with the same observation, that would capture
formally the uncertainty about the prior probability.
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(M, w,v) o Apif (M, w,0) = and(M,w,v) o
(M,w,v) | p = cif [p}M,w,v >c

(M,w,v) = Vzpif (M,w,v") | ¢ for all v’ that agree with) on all variables
but x.

If (M,w,v) = ¢ is true for allv, we simply write(M,w) | ¢. Itis easy
to check that ify is a closed formula (that is, one with no free variables), then
(M,w,v) | ¢ if and only if (M,w,v") = ¢, for all v,7v'. Therefore, given a
closed formulap, if (M, w,v) = ¢, then in fact(M,w) = ¢. We will typically
be concerned only with closed formulas. (If/, w) | ¢ for all worlds w, then
we write M = ¢ and say thap is valid in M. Finally, if M = ¢ for all eviden-
tial structuresiM, we write = ¢ and say thatp is valid. In the next section, we
characterize axiomatically all the valid formulas of the logic.

5.3 Axiomatizing Evidence

In this section we present a sound and complete axiomatizAfH™ " (®y,, @)
for our logic.

The axioms can be divided into four parts. The first set of axioms accounts for
first-order reasoning:

Taut. All instances of valid formulas of first-order logic with equality.
MP. Fromy andy = 1 infer ¢.

Instances of Taut include, for example, all formulas of the fgrm -, wherep
is an arbitrary formula of the logic. It also includes formulas sucfvas) < ¢
if x is not free inp. In particular,(Vz(h)) < h for hypotheses iy, and similarly
for observations inb,. Axiom Taut can be replaced by a sound and complete
axiomatization for first-order logic with equality.

The second set of axioms accounts for reasoning about polynomial inequalities,
by relying on the theory of real closed fields:

RCF. Allinstances of formulas valid in real closed fields (and, thus, true about
the reals), with nonlogical symbols, -, <,0,1, —-1,2,-2,3, -3, ....

Formulas that are valid in real closed fields include, for example, the fact that
addition on the reals is associative;VyVz((z + y) + z = = + (y + 2)), thatl
is the identity for multiplicationyz(x - 1 = z), and formulas relating the constant
symbols, suchag=1+---+1 (ktimes) and-1+ 1 = 0. As for Taut, we could
replace RCF by a sound and complete axiomatization for real closed fields.

The third set of axioms essentially captures the fact that there is a single hypoth-
esis and a single observation that holds per state.
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H1. Ay V.-V Ay, .
O1. 0by V---V oby,
02. Obi:>ﬂobj IfZ;éj

These axioms illustrate a subtlety of our logic. Like most propositional logics, ours
is parametrized by primitive propositions, in this cadgand®,. However, while
axiomatizations for propositional logics typically do not depend on the exact set of
primitive propositions, ours does. Clearly, axiom H1 is sound only if the hypothesis
primitives are exactlyy, ..., hy, . Similarly, axiom O1 is sound only if the obser-
vation primitives are exactlyby, ..., ob,,. Itis therefore important to identify the
primitive propositions when talking about the axiomatizatio)/® ¢ (®y,, @,).

The last set of axioms concerns reasoning about probabilities and evidence proper.

Pri. Pr® (true)

Pr2. Pr%(p) >

Pr3. Pr%(p; A pg) +Pr2(p1 A —=p2) = PrO(py).

Pra. Pr¥(py) = Pr%(ps) if p1 < po is a propositional tautology.

Axiom Prl simply say that the evenitue has probabilityl. Axiom Pr2 says that
probability is nonnegative. Axiom Pr3 captures finite additivity. It is not possible
to express countable additivity in our logic. On the other hand, we do not need
an axiom for countable additivity. Roughly speaking, as we establish in the next
section, if a formula is satisfiable at all, it is satisfiable in a finite structure. Similar
axioms capture posterior probability formulas:

Pol. Pr(true) = 1.

Po2. Pr(p) > 0.

P03. Pr(p1 A p2) + Pr(p1 A —p2) = Pr(p1).

Po4. Pr(p1) = Pr(p2) if p1 < po is a propositional tautology.

Finally, we need axioms to account for the behaviour of the evidence operator
What are these properties? For one thing, the weight function acts like a probability
on hypotheses, for each fixed observation. This gives the following four axioms,
which are the obvious analogues of Pr1—4:

E1l. w(ob, true) = 1.

E2. w(ob, p) > 0.

E3. w(ob, p1 A p2) + w(ob, p1 A —p2) = w(ob, p1).

E4. w(ob, p1) = w(ob, p2) if p1 < p2 is a propositional tautology.

Second, evidence connects the prior and posterior beliefs via Dempster's Rule
of Combination, as in (5.1). This is captured by the following axiom. (Note that,
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since there is no division in the language, crossmultiplication is used to clear the
denominator.)

E5. ob = (Pr(h)w(ob, h) =
Pr(h)PrY(h1)w(ob, hi) + - - - + Pr(h)PrO(hy, )w(ob, hy, ).

This is not quite enough. As we saw in Section 5.1, property WF2 in Theo-
rem 5.3 is required for a function to be an evidence function. The following axiom
captures WF2 in our logic:

E6. 31 ... 3z, (21 > 0A - Axy, > 0A
W(Obl, h1)$1 + -+ W(Obnoa hl)xno = 1A
e /\W(Ob17hnh>‘r1 + e +W(0bno7 hnh)xno - 1)

Note that axiom E6 is the only axiom that requires quantification. Moreover, ax-
ioms E5 and E6 both depend dnp and®,.

Theorem 5.5. AX/*™*(d,,, ®,) is a sound and complete axiomatization for the
logic L/°7¢¥ (®},, ®,) with respect to evidential structures.

As usual, soundness is straightforward, and to prove completeness, it suffices
to show that if a formulap is consistent withAX/*" ¢ (®,,, ®,), it is satisfiable
in an evidential structure. However, the usual approach for proving completeness
in modal logic, which involves considering maximal consistent sets and canonical
structures does not work. The problem is that there are maximal consistent sets
of formulas that are not satisfiable. For example, there is a maximal consistent set
of formulas that include®r(p) > 0 andPr(p) < 1/nforn = 1,2,.... Thisis
clearly unsatisfiable.

To express axiom E6, we needed to have quantification in the logic. An interest-
ing question is whether it is possible to give a sound and complete axiomatization
to the propositional fragment of our logic (without quantification or variables). To
do this, we need to give quantifier-free axioms to replace axiom E6. This amounts
to asking whether there is a simpler property than WF2 in Theorem 5.3 that char-
acterizes weight of evidence functions. This remains an open question.

5.4 Decision Procedures

In this section, we consider the decision problem&ét <’ (®y,, ®,), that is, the
problem of deciding whether a given formujais satisfiable. In order to state
the problem precisely, however, we need to deal carefully with the fact that the
logic is parameterized by the sdtg and®,, of primitive propositions representing
hypotheses and observations. In most logics, the choice of underlying primitive
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propositions is essentially irrelevant. For example, if a propositional formula
that contains only primitive propositions in some gets true with respect to all
truth assignments té, then it remains true with respect to all truth assignments to
any setd’ O ®. This monotonicity property does not hold here. For example, as
we have already observed, axiom H1 clearly depends on the set of hypotheses and
observations; it is no longer valid if the set is changed. The same is true for O1,
E5, and E6.

This means that we have to be careful, when stating decision problems, about
the role of®,, and®, in the algorithm. A straightforward way to deal with this is
to assume that the satisfiability algorithm gets as inpyt®,, and a formulay €
Lfomev(py,, ®,). Becausel/ ¢ (dy,, ®,) contains the full theory of real closed
field, it is unsurprisingly difficult to decide. For our decision procedure, we can
use an existing exponential space algorithm to decide the satisfiability of real closed
field formulas. Define the lengtlp| of ¢ to be the number of symbols required to
write ¢, where we count the length of each coefficient aSimilarly, defing||¢||
to be the length of the longest coefficient appearing,imwhen written in binary.

Theorem 5.6.There is a procedure that runs in space exponentiabin ||| for
deciding, giverb, and®,, whether a formula of L7 (®y,, ®,,) is satisfiable in
an evidential structure.

This is essentially the best we can do, as the decision problem for the real closed
fields is complete for exponential space, d{d ’(®y,, ®,) contains the full lan-
guage of real closed fields.

While Theorem 5.6 assumed that the algorithm takes as input the set of primitive
propositionsd,, and®,, this does not really affect the complexity of the algorithm.
More precisely, if we are given a formujain £/°"¢” over some set of hypotheses
and observations, we can still decide whethés satisfiable, that is, whether there
are setsb,, and®, of primitive propositions containing all the primitive proposi-
tions iny and an evidential structur® that satisfies.

Theorem 5.7.There is a procedure that runs in space exponentiabin ||| for
deciding whether there exists sets of primitive propositibpsand ®, such that
@ € LIo7ev(dy,, @,) and is satisfiable in an evidential structure.

The main culprit for the exponential-space complexity is the theory of real closed
fields, which we had to add to the logic to be able to even write down axiom
E6 of the axiomatizatio X/°™¢"(®,,, ®,).2 However, if we are not interested in
2 Recall that axiom E6 requires quantification. Observe however that it requires a single quantifier alternation;

thus, we can restrict to the sublanguage consisting of formulas with at most one quantifier alternation. The
satisfiability problem may be easier for this fragment.
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axiomatizations, but simply in verifying properties of probabilities and weights of
evidence, we can consider the following propositional (quantifier-free) fragment
of our logic. As before, start with setl, and ®, of hypothesis and observation
primitives, and form the sublanguagg of hypothesis formulas. Basic terms have
the formP1’(p), Pr(p), andw(ob, p), wherep is an hypothesis formula angh

is an observation. A quantifier-free linear term has the faimy + - - - + a,ty,,
where eachy; is an integer, and eadh is a basic term. A quantifier-free linear
inequality formula has the form > ¢, wherep is a quantifier-free linear term, and

c is an integer. For instance, a quantifier-free linear inequality formula takes the
form Pr%(p) + 3w(ob, p) + 5Pr(p’) > 7.

Let L (®y, D,) be the language obtained by starting out with the primitive
propositions ind, and®, and quantifier-free linear inequality formulas, and clos-
ing off under conjunction and negation. Since quantifier-free linear inequality
formulas are polynomial inequality formula&,®’(®y,, ®,) is a sublanguage of
Lfomev (@, @,). The logicLe (®y,, ®,) is sufficiently expressive to express many
properties of interest; for instance, it can certainly express the relationship between
prior probability and posterior probability through the weight of evidence of a par-
ticular observation, as shown in Example 5.4. Reasoning about the propositional
fragment of our logicL ¢’ (®y,, ®,) is easier than the full language:

Theorem 5.8.The problem of deciding, giveh, and ®,, whether a formula of
Lev(dy, @,) is satisfiable in an evidential structure is NP-complete.

As in the general case, the complexity is unaffected by whether or not the deci-
sion problem takes as input the sésand®,, of primitive propositions.

Theorem 5.9.The problem of deciding, for a formula, whether there exists sets
of primitive propositiong, and®, such thatp € L (®y,, ®,) andy is satisfiable
in an evidential structure is NP-complete.

SinceL’(®y, @,) allows only quantifier-free linear inequalities, it cannot ex-
press the general connection between priors, posteriors, and evidence captured
by axiom E5. It is possible to extend® to allow multiplication of probability
terms. LetleV > (P, §,) be defined ag ¢’ (Py,, D, ), except that instead of using
quantifier-free linear terms, we allow quantifier-free polynomial terms, of the form
a1ty + - -+ + anty, Where eachy; is an integer, and eadh is a productof basic
terms. Clearly, E5 can be expressedift>* (®y, ®,). Furthermore, this sublan-
guage ofL/"¢"(®;,, ®,) can be decided in polynomial space, using an existing
procedure for deciding the validity of quantifier-free formulas in the theory of real
closed fields.



74 5 Reasoning about Evidence

5.5 Evidence in Dynamic Systems

The evidential structures we have considered until now are essentially static, in
that they model only the situation where a single observation is made. Even in
Example 5.2, where we consider sequences of coin tosses, these are viewed as a
single observations. Doing this lets us focus on the relationship between the prior
and posterior probabilities on hypotheses and the weight of evidence of a single
observation. In the last chapter, we studied evidence in the context of random-
ized algorithms; evidence was used to characterize the information provided by,
for example, a randomized algorithm for primality when it says that a number is
prime. The framework in that chapter is dynamic; sequences of observations are
made over time. In this section, we discuss combining evidence from sequences of
observation, and extend our logic to reason about such combination of evidence.

5.5.1 Combining Evidence

In Section 4.2, we considered the weight of evidence of a single observation. This
generalizes in a straightforward way to the case where there are sequences of ob-
servations. Le€ = (H, O, {u | h € H}) be an evidence space. L@t be the

set of sequence®by, ..., ob,) over 0. Assume that the observations are inde-
pendent, that is, for each basic hypothdsiassume that; ((ob1, ..., 0b,)), the
probability of observing a particular sequence of observations given hypothesis

iS pup(0b1) - - - up(0by,), the product of the probability of making each observation

in the sequence. Leét* = (3, 0%, {u; | H}). With this assumption, it is well
known that Dempster’s Rule of Combination can be used to combine evidence;
that is,

wex((0b1, ..., 0bk),") = we(oby,:) B - D we(ob, ).

It is an easy exercise to check that the weight provided by the sequence of obser-
vations(oby, ..., ob,) can be expressed in terms of the weight of the individual
observations:

wex(0b1, h) - - wex(0by, h)
«({ob1,. .., 0by),h) = '
Wwe (<0 1 y 0 > ) Zh/eﬁwg*(()bl’h/).”wg*(()bmh,)

If we let 110 be a prior probability on the hypotheses, ang;, .. 5, be the prob-
ability on the hypotheses after observing, . . ., obg, we can verify that

(5.2)

H{oby,...,0b,) = Mo D wex((0b1, ..., 0bg), ).

Example 5.10.Consider a variant of Example 5.2, where we take the coin tosses
as individual observations, rather than the number of heads that turn up in one
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hundred coin tosses. As before, assume that the coin chosen by Alice is either
double-headed or fair. L&t = { H, T'}, the result of an individual coin toss, where
H is “the coin landed heads” aril is “the coin landed tails”. Le{ = {F, D},
where F' is “the coin is fair”, andD is “the coin is double-headed”. L&t* =
(F, 0%, {un | h € H}). The probability spaces associated with the hypotheses are
generated by the following probabilities for simple observations:
pe(H) =3 up(H)=1.

For example, we haver((H,H,T,H)) = 1/16, pp((H,H,H)) = 1, and
pa((H,H,T,H)) = 0.

We can now easily verify results similar to those that were obtained in Exam-
ple 5.2. For instance, the weight of observifign favor of F' is given by

1
2
wex (T, F) = O+% =1,
which again indicates that observifg provides unconditional support t&; a
double-headed coin cannot land tails.
How about sequences of observations? The weight provided by the sequence

(0by, ..., oby,) for hypothesig: is given by Equation (5.2). If = (H,...,H), a
sequence of a hundred coin tosses, we can check that

(. F) = 2 = (H,D) = —* 2

’u)g* i1, = = U)E* i1, = = .
1_’_21% 1+2100 1_+_21% 1+2100

Unsurprisingly, this is the same result as in Example 5.2. O

There are subtleties involved in trying to find an appropriate logic for reasoning
about situations like that in Example 5.10. The most important one is the relation-
ship between observations and time. By way of illustration, consider the following
example. Bob is expecting an email from Alice stating where a rendezvous is to
take place. Calm under pressure, Bob is reading while he waits. Assume that Bob
is not concerned with the time. For the purposes of this example, one of three
things can occur at any given point in time:

(1) Bob does not check if he has received email;
(2) Bob checks if he has received email, and notices he has not received an
email from Alice;

(3) Bob checks if he has received email, and notices he has received an email
from Alice.
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How is Bob's view of the world affected by these events? In (1), it should be clear
that, all things being equal, Bob’s view of the world does not change: no observa-
tion is made. Contrast this with (2) and (3). In (2), Bob does make an observation,
namely that he has not yet received Alice’s email. The fact that he checks indicates
that he wants to observe a result. In (3), he also makes an observation, namely that
he received an email from Alice. In both of these cases, the check yields an obser-
vation, that he can use to update his view of the world. In case (2), he essentially
observed that “nothing” happened, but we emphasize again that this is an obser-
vation, to be distinguished from the case where Bob does not even check whether
email has arrived. This “nothing” observation should be taken into account in the
evidence space under consideration.

This discussion motivates the models that we introduce in the next section. We
characterize an agent’s state by the observations that she has made, including pos-
sibly the “nothing” observation. Although we do not explicitly model time, it is
easy to incorporate time in the framework, since the agent can observe times or
clock ticks.

5.5.2 Reasoning about the Evidence of Sequences of Observations

We extend the framework of Section 5.2 to the dynamic setting. Rather than just
considering worlds, we now consider sequences of worlds (which wewsa),
representing the evolution of the system over time. The models are now sets of
runs, with a set of prior probabilities on the hypotheses that hold in the runs. Itis
straightforward to modify our logic to express properties of evidence in this more
dynamic setting.

In some ways, considering a dynamic setting simplifies things. Rather than talk-
ing about the prior and posterior probability using different operators, we need only
a single probability operator that represents the probability of an hypothesis at the
current time. To express the analogue of axiom E5 in this logic, we need to be able
to talk about the probability at the next time step. This can be done by adding the
“next-time” operatoiO to the logic, wherg)y holds at the current time if holds
at the next time step. The logic is further extended to talk about the weight of
evidence of a sequence of observations.

Define the Iogiolf;z;f” as follows. As in Section 5.2, start with a set of primitive
propositionsb,, and®,, respectively representing the hypotheses and the observa-
tions. Again, letCy, (®y) be the propositional sublanguage of hypotheses formulas

3 Following the discussion at the end of Section 5.5.1, time steps are associated with new observations. Thus,
Oy means thap is true at the next time step, that is, after the next observation. This simplifies the presen-
tation of the logic.
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obtained by taking primitive propositions @), and closing off under negation and
conjunction; we use to range over formulas of that sublanguage.

A basic term now has the forir(p), or w(ob, p), wherep is an hypothesis
formula andob = (o0by,...,0b,) is a nonempty sequence of observations. (If
ob = (ob1), we writew(oby, p) rather thanw((ob1), p).) As before, a polyno-
mial term has the formy, + --- + t,,, where each termy is a product of integers,
basic terms, and variables (which intuitively range over the reals). A polynomial
inequality formula has the form > ¢, wherep is a polynomial term and is an
integer. Let&é@f”(@h, ®,) be the language obtained by starting out with the prim-
itive propositions in®, and ®, and polynomial inequality formulas, and closing
off under conjunction, negation, first-order quantification, and application ghthe
operator. The same abbreviations as in Section 5.2 are used.

The semantics of this logic now involves models that have dynamic behaviour.
More precisely, a model is a set of infinite runs, where each run describes a possible
dynamic evolution of the system. As before, each run records the observations
being made, as well as the hypothesis that is true and a probability distribution
describing the prior probability of the hypothesis at the initial state of the system.
An evidence space ovdr, and®, is necessary to interpret, as in Section 5.2.
Define anevidential systeni to be a tuplegR x P, £*) whereR is a set of runs,

P is a set of probability measures dq, andE* is an evidence space ovef, and

®*. Arunr is a map from the natural numbers (representing time) to histories of
the system up to that time. The history records, at timthe hypothesis that is

true in that run, and at subsequent times, the observation made at each time step.
Hence, a history has the forth, 0b1, ..., ob,). Assume that(0) = (h) for some

h, while r(m) = (h, oby, ..., ob,,) for m > 0. Define a point of the system to be
atriple (r, m, ) consisting of a rum, timem, and probability distribution..

Associate with each propositional formylan L, (®y,) a set[p] of hypotheses,
just as was done in Section 5.2.

In order to ascribe a semantics to first-order formulas that may contain vari-
ables, we need a valuatioerthat assigns a real number to every variable. Given a
valuationwv, an evidential systenh = (R x P, £*), and a point(r, m, u), where
r(m) = (h, oby,...,0by), we can assign to a polynomial tepra real number
[p]L-rm1v using essentially the same approach as in Section 5.2:

[x]l,r,m,,u,v — U(l‘)
[a]l,r,m,u,v = a
[Pr(p)] """ = (@ we-({0b1, ..., 0bm), ) ([p])
wherer(m) = (h, oby,..., 0by,)

[w(ob, p)]""" Y = we- (b, [p])
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{tltﬂ[,r,m,u,v _ [tl]l,r,m,u,v % [tQ]I’T’m’“vv

[pl_i_pQ]I,r,m,u,v — [pﬂ],r,m,u,v+[p2]l,r,m,u,v‘

Define what it means for a formulato be true (or satisfied) at a poifit m, x)
of an evidential systerh = (R x P, £*) under valuatiow, written (I, r, m, p, v) =
©, again using essentially the same approach as in Section 5.2:

( v) Ehifr(m)=(h,...)

( v) E obif r(m) = (h,..., ob)

(I,r,m,p,v) E —if (I,r,m,p,v) @

(I,r,m,pu,v) EeAYif (I,r,m,u,v) Epand(l,r,m,u,v) = ¢
( v)

( v)

(

Ia’r)m’:ua
Ia’r’m’:ua

I,r,m, p,v) = p > cif [p]lmmme > ¢

F Opif (I,r,m+1,p,v) ¢

Ir,m,p,v) EVeeif (I,r,m,u,v") | ¢ for all valuationsy’ that agree with
v on all variables bug.

I,r,m,,u,

If (I,r,m,u,v) = ¢ is true for allv, we simply write (I,r,m,u) = ¢. If
(I,r,m,u) | ¢ for all points (r, m, ), then we write/ = ¢ and say thatp
is valid in I. Finally, if I = ¢ for all evidential system$, we write = ¢ and say
thaty is valid.

5.5.3 Axiomatization

Itis rather straightforward to axiomatize this new logic. This axiomatization shows
that we can capture the combination of evidence directly in the logic, a pleasant
property. Most of the axioms from Section 5.2 carry over immediately. Let the ax-
iomatizationAXf;‘;:” (P, ®,) consists of the following axioms: first-order reason-
ing (Taut, MP), reasoning about polynomial inequalities (RCF), reasoning about
hypotheses and observations (H1,H2,01,02), reasoning about probabilities (Pol-
4 only, since we do not haver” in the language), and reasoning about weights of
evidence (E1-4, E6), as well as new axioms we now present.

Basically, the only axiom that needs replacing is E5, which links prior and pos-
terior probabilities, since this now needs to be expressed using)tbeerator.
Moreover, we need an axiom to relate the weight of evidence of a sequence of
observation to the weight of evidence of the individual observations, as given by
Equation (5.2).

E7. 0b = Vx(O(Pr(h) = z) =
Pr(h)w(ob, h) = xPr(hi1)w(ob, h1)+
e _|_
xPr(hy, )w(ob, hy,)).
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E8. w(ob1,h)- - w(obn, h) =
w({0b1,...,0b,),h)w(oby,hy)---w(0by, hi)+
w((ob1,...,0by), h)w(obi, hy,) - w(0by, hp,).

To get a complete axiomatization, we also need axioms that capture the proper-
ties of the temporal operatgn. These axioms also capture the fact that the truth
of hypotheses as well as the value of polynomial terms not containing occurrences
of Pr is time-independent.

T1. O A O(p = 1) = Ov.

T2. O—p < Op.

T3. Fromey infer Oep.

T4. Op & p.

T5. O(p > ¢) & p > cif p does not contain an occurrenceltf
T6. O(Vzp) < Ve(Op).

Theorem 5.11. AXJ;‘;?(CI)h,(I)o) is a sound and complete axiomatization for

U;Z'Tf“(@h, ®,) with respect to evidential systems.

Notes

The work in this chapter first appeared in [Halpern and Pucella 2003a].

The situation at the beginning of the chapter is essentially taken from [Halpern
and Tuttle 1993; Fagin and Halpern 1994]. As we mentioned, there has been a
great deal of work on reasoning about systems that combine both probabilistic and
nondeterministic choices [Vardi 1985; Fischer and Zuck 1988; Halpern, Moses,
and Tuttle 1988; Halpern and Tuttle 1993; de Alfaro 1998; He, Seidel, and Mclver
1997]. The framework described at the beginning of the chapter is due to Halpern
and Tuttle [1993].

The view of evidence as a function mapping a prior probability on hypotheses to
a posterior probability is developed by Halpern and Fagin [1992]. Dempster’s Rule
of Combination arises in Shafer’s [1976] theory of belief functions. Theorem 5.1
is proved in [Halpern and Fagin 1992]

The logic £f~¢ was inspired by a logic introduced by Fagin, Halpern, and
Megiddo [1990] for reasoning about likelihood expressed as either probability of
belief. Sound and complete axiomatizations for first-order logic with equality are
given, for instance, in Shoenfield [1967] or Enderton [1972]. The sound and com-
plete axiomatization for RCF is due to Tarski [1951] and can also be found in
[Fagin, Halpern, and Megiddo 1990; Shoenfield 1967]. The axioms for proba-
bility (Pr1-4, Pol-4) are taken from [Fagin, Halpern, and Megiddo 1990]. The
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techniques for proving Theorem 5.5 and 5.11 follow those developed by Fagin,
Halpern, and Megiddo [1990].

The exponential space algorithm used in Section 5.4 to decide the satisfiabil-
ity of real closed field formulas is due to Ben-Or, Kozen, and Reif [1986]. They
also give corresponding lower bound for deciding the satisfiability of real closed
field formulas. In the literature, a number of different lower bounds are given for
problems that are related, which makes reading a bit confusing. For instance, a
doubly-exponential algorithm (and corresponding lower bound) is known for the
problem of quantifier elimination in real closed fields [Renegar 1992; Basu 1999;
Weispfenning 1988], which implies a satisfaction algorithm that solves the satisi-
fiability problem. However, there are satisfaction algorithms that are not based
on quantifier elimination that do not fall within the restrictions of the bound. The
polynomial space algorithm to decide the validity of quantifier-free formulas in the
theory of real closed fields is due to Canny [1988].

The fact that Dempster’s Rule of Combination can be used to combine evidence
under the assumption that the observations are independent can be found, for ex-
ample, in [Halpern and Fagin 1992, Theorem 4.3].
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6
Security Protocols

I N the second part of this dissertation, we consider the problem of analyzing

security protocols, using the framework developed in the first part. Roughly
speaking, a security protocol is simply a communication protocol between multi-
ple agents that guarantees some security properties of the communication. These
properties can include:

— message confidentiality: only the authorized recipient should be able to extract
the contents of the message, possibly including statistical information;

— message integrity: the recipient should be able to determine if the message has
been altered during transmission;

— sender authentication: the recipient should be able to identify the sender, and
verify that the purported sender actually did send the message;

— sender non-repudiation: the sender should not be able to deny sending the mes-
sage;
— sender anonymity: the recipient should not be able to identify the sender.

More properties are possible, and many are used in conjunction with others.
A security protocol achieving authentication, for instance, is a protocol for two
or more agents to communicate in such a way that they can be given guarantees
as to whom they are communicating with, often by relying on the confidentiality
of a piece of data, such as a shared cryptographic key. In this dissertation, we
mostly concentrate on authentication protocols, and consider confidentiality and
authentication properties.

This chapter is a review of the basic concepts of security protocol analysis, in-
cluding symbolic cryptography, adversary models, and security properties. We
also review existing approaches to analyzing security protocols, and point out their
limitations.

83
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6.1 Protocols and Cryptography

A protocol describes the behaviour of multiple agents that seek to achieve a com-
mon goal, for example, exchanging a value. Security protocols additionally impose
some security guarantees, for instance, that the value exchanged by the agents can-
not be “read” by any other agent in the system. Protocols can involve an arbitrary
number of agents, and also a number of trusted servers. For simplicity, we focus on
two-agent protocols, possibly with a single trusted server; everything generalizes
to multiple parties in the obvious way.

To enforce the security guarantees, security protocols generally rely on some
form of cryptography. Intuitively, cryptography permits the encoding of informa-
tion in such a way that only a select and controllable few can decode it. Much
of the current research in security concerns the development of new cryptographic
techniques, and new encryption schemes. In this dissertation, we are interested in
establishing properties of protocatelependentlyf the details of the encryption
scheme. The typical way to do this in the literature is to analyze protocols in the
presence of perfect cryptography. This leads to a form of protocol analysis often
calledsymbolic protocol analysis(In constrast ta&omputational protocol analy-
sis where the computational properties of the cryptography are taken into account;
see Chapter 10 for more detail.)

To model perfect cryptography, define thanbolic encryption schergenerated
by the setP of plaintexts (the original values to be encrypted, such as English
strings) and the sét of keys to be the sétl of messages given by the grammar

mu=plk|{m}x| (mi,ma)

wherem, m1, mo are generic elements &, p is a generic element &¢, andk

is a generic element d. The notation{m }; represents the encryption of mes-
sagem with the keyk, while (m1, m9) represents the pairing (or concatenation)
of my; andms. We omit parentheses for pairing when there is no confusion, so
that {(m1, m2)}i can be written agmi, ma};. We also write(my, ..., m,,) for

(ma, (oo oy (Mp—1,mp) ...)).

It is useful to assume that the $e0f plaintexts contains a representation of the
names of the agents in the system (so that names of agents can be sent encrypted as
part of messages), as well as a distinguishedset values to be used as nonces.
Assume that the set, X, andP — N are pairwise disjoint, and that values in
each set can be distinguished. Assume further that encrypted messages can be
distinguished from unencrypted ones.

Assume the sel of keys is closed under inverses, that iskife X, then
k' € K. If k= = k, the key is asymmetric keyotherwise, it is armasymmetric
key We sometimes writdm[},, when wanting to emphasize the fact that message
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m is encrypted using an asymmetric kkey An asymmetric key is used to model
public-key cryptography, while a symmetric key is used to model shared-key cryp-
tography. The decryption of a messajge}. requires the key:~*, the inverse of

key k. We make the standard assumption that there is enough redundancy in the
encrypted message that it is possible to recognize when decrypting whether the
decryption was successful. If a decryption is unsuccessful, the special plaintext
null is returned. Projections; andr, are used to decompose a pairimg; , ms).

Again, applyingr; andm, to messages that are not pairs results in the valué

Having cryptography, unfortunately, is often not sufficient for two or more agents
to communicate securely. For example, to communicate using symmetric keys,
these keys need to be distributed and agreed upon before an interaction. Moreover,
it is not always clear how to exchange messages so that secrecy is preserved across
interactions between the agents. To get this right, one needs to develop communi-
cation protocols.

Historically, and rather unfortunately, protocols are presented by giving a se-
guence of messages exchanged between the agents in a good execution of the
protocol. As a simple example, consider the following two-agent protoeaibS
SHARED, which is the simplest possible protocol for sending a messadse-
curely” from one agent to another:

1. A—B : A{m}li,,-

This protocol represents the sending of messageom A to B, where the mes-

sage is encrypted using a symmetric keys shared betweed andB. AgentA

needs to send her name along with the message, unless the receiver knows who will
be sending the message. (Whether or not the receiver kagsisri who will be
sending the message is part of the assumptions made when designing or analyzing
the protocol.) Intuitively, upon receiving the message and decryptirigy kinows

that the message came fromA, since onlyA could have encrypted it, assuming
only A and B share the key: 4. Moreover,m is kept secret throughout the ex-
change. Intuitively, the fact that the message is encrypted ésipds evidence to

B that the message is fror;, the fact thatn itself is encrypted is only useful th

is meant to be kept secret.

The notation above, which at first seems quite reasonable, leaves a number of
very important issues completely unspecified. This is a consequence of the nota-
tion essentially representing a trace of the protocol, rather than the protocol itself.
For instance, the notation does not specify what actions the agents perform on the
values they received. To illustrate this, consider the following exchange between
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Alice, Bob, and Charlie:

1. A—B : {m}i,,
2. B—C  {{m}rptkpc

wherek 4 is a key shared between Alice and Bob angt is a key shared be-
tween Bob and Charlie. When receive messagdoes Bob attempt to decrypt
{m},, to make sure that the value is really a value that was sent by Alice? The
notation simply does not carry this information. This could be important if the pro-
tocol is not meant to proceed unless Bob is convinced that message 1 was encrypted
using a key shared with Alice. A more precise notation is to actually consider a
program that each principal runs to execute the protocol. Two-agent protocols are
typically made up of two programs, one describing the behaviour ohttiator of

the interaction, and one describing the behaviour ofrtisponderof the interac-

tion. For instance, the program for the initiator part of ttENSSHARED protocol

is straightforward:

SENDSHARED (7, j, m, k) = send j (i, {m}(;))-

This program is parametrized by variable@he name of the agent running this

program),j (the name of the agent to whom to send a messagé)he message

to send), and: (a map from agents to keys shared betweamd those agents).

The mapk could be replaced by a list of keys. (We remain informal as far as

interpreting programs in this chapter, relying on the reader’s intuition. we give a

formal syntax and semantics to this little programming language in Chapter 7.)
The program for the responder is equally simple:

SENDSHAREDR(, k) = recv m;
message — decrypt(me(m), k(m1(m))).

This program is parametrized by a map from agents to keys shared between
the responder and those agents. Roughly, it awaits to receive a message
attempts to decrypt it using the key corresponding to the agent named as the first
component of the received message.

The protocol above is suitable if two agents share a key, but what if they do not?
This becomes an issue when there are a lot of agents in the system: if there are
agents in the system, then we needshared keys to allow every agent to com-
municate with every other agent. A standard approach to lessen the key burden is
to use a central trusted server. Roughly, every agent need only share a key with
the server, which mediates the communication by decrypting data on demand. As
an example of such a protocol, consider the following two-agent protaeebS
SERVER. Here,S is a trusted server, and agentsand B both share a key witly,
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denotedk 45 andkpg, respectively:

1. A—B : A{m}y,,
2. B—S : B,{A, {m}kAs}kBs
3. S — B {m}kBs'

Intuitively, this protocol is meant to send an authenticated messafem A
to B. Agent A start the interaction wittB by sending the message encrypted
with the key she shares with the trusted server. Upon receiving this med3age,
forwards it (encrypted with the key he shares with the trusted servé) stating
that it comes fromA. The servelS receives this message, decrypts it twice (using
kps andk 4¢) to extractm, and encrypts this value again witlzs before sending
it back toB. The idea is that whef receives this last message, he knows that
was able to decrypt the message that was originally sent by the agent who claimed
to be A, and thus valuen was indeed fromA.

Here are the programs corresponding the above protocol. Since this is a two-
agent protocol with a trusted server, not only is there a program for the initiator
and a program for the responder, but there is also a program for the trusted server.
The initiator program is essentially the same as that fENISSHARED:

SENDSERVER; (%, j, m, k) = send j (i, {m}).

SENDSERVER; is parametrized like SNDSHARED;, except thak here holds the
key that the initiator shares with the trusted server. The responder program com-
municates twice with the server:

SENDSERVERg(i, k) = recv m;
send s (i, {m});
recv m;
message «— decrypt(m, k).

This program is parametrized byholding the name of the agent running this pro-
gram, andz, holding the key that agenshares with the trusted server. Finally, the
server program is a loop that repeatedly decrypts data formatted in the appropriate
way, and sends back the results:

SENDSERVERg(k) = while true do
recv m;
receiver «— m(m);
messagel «— decrypt(ma(m), k(receiver));
sender «— m1(messagel );
message2 «— decrypt(ma(message?2), k(sender));
send receiver {message2 }(receiver)-
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The server program is parametrized bymapping agents to the key shared be-
tween the server and the agents.

We will exclusively consider protocols that aim at exchanging messages securely
between two agents over an untrusted network. Most of the issues concerning
the formalization of properties arise in that simple setting. Some protocols are
designed to work in a more restricted environment, with more assumptions on the
communication network. For instance, we may have a secure connection between
machines, and the question is to ascertain the identity of the party at the other end
of the connection. We return to this in Section 6.3, where we consider the problem
of specifying security properties. Other assumptions on the network considered in
the literature include whether the communication is broadcast, or channel-based,
and whether the system is closed or open, with new agents joining in and out.

6.2 Adversaries

One of the most interesting aspects of security protocol analysis is that the analysis
is performed in an adversarial context, that is, under the assumption that there is
one or more adversaries that attempt to subvert the protocol. Deciding whether or
not a protocol is secure depends partly on the kind of adversary we assume.

From the point of view of the analysis methods described later in the chapter,
there are two important aspects about adversaries:

(1) the capabilities of the adversary, that is, the information an adversary can
extract from the messages he intercepts, as well as the messages he can
construct;

(2) the status of the adversary, that is, the kind of presence the adversary has
in the system, if he is known to the other agents or not, if other agents can
start protocol interactions with him.

For the capabilities, the standard assumptions made in the literature are due to
Danny Dolev and Andrew Yao, and go hand in hand with the symbolic encryp-
tion scheme described in Section 6.1. Roughly speaking, a Dolev-Yao adversary
can compose messages, replay them, or decipher them if he knows the right keys,
but cannot otherwise “crack” encrypted messages. These capabilities can be for-
malized using the following inference rules. The idea is to define a relatign
whereH 5, m is interpreted as saying that the adversary can infer message
from a setd of message (intuitively, messages he has intercepted). This relation is
defined using the inference rules

m € H Hbpy {mpr Hlbpy k71
HbFpym HbEFpym
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HbFpy (mlamQ) H Fpy (mlamQ)
H l_DY ma H I_DY ma

(This is essentially the system described in Example 3.1.) Thus, for instance, if an
adversary intercepts the messafes ., , {k; ' }x,, andk; ', he can deriven using
these inference rules, since

{{m}]ﬂ’ {kfl}k27 kil} Fpy m.

There are, of course, limitations to the Dolev-Yao adversary model. Among
other things, the model does not consider the information the adversary may infer
from properties of messages and knowledge about the protocol that is being used.
To give an extreme example, due to John Mitchell, consider what we will refer
to as theDuck-Duck-Goosgrotocol: an agent has amnbit key and, according
to her protocol, sends the bits that make up her key one by one. Of course, after
intercepting these messages, an adversary will know the key. However, there is no
way for a Dolev-Yao adversary to recognize that, at this point, he actually has the
key. Much more can be said about adversary capabilities. We return to this topic
in Chapter 8.

The second important aspect about adversaries is their role in the context of
the protocol. At first blush, an important characteristic is whether the adversary
is a passiveadversary, also known as aavesdroppingdversary, that only gets
to listen in on the messages exchanged between agents. Passive adversaries can
breach confidentiality, but do not send messages (and so cannot pretend to be some
other agent).

In contrast, amctiveadversary can attempt to reroute traffic, initiate interactions
with other agents, and so on. We can distinguish two forms of active adversaries.
An active adversary can Hasider. Otherwise, it is aroutsider An insider is
recognized as an agent by the other agents, who will accept communications from
him, share keys with him, attempt to initiate sessions with him, and so on. Insider
adversaries are sometimes caltedrupt, dishonestor subvertecagents.

Establishing security in the presence of active adversaries is complicated by the
fact that it is sometimes difficult to determine if a particular scenario is an attack
or not. For the remainder of this section, we illustrate some of the issues that arise,
and motivate the use of nonces in security protocols. To start off, consider the
SENDSHARED protocol of the last section. Despite its simplicity, it is subject to
the followingreplay attack where an active adversary, having intercepted the first
message sent from to B, will simply replay this message at his leisure:

A—B : A{m}y,,
X(A)— B : A {m}m,,-

The notationX (A) indicates that the adversagy is masquerading ad. One
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guestion that is worth asking is if this is really an attack. Clearly, this depends on
the message, and on the context in which this protocol is used. For example, if the
timeliness of the messageis important, or if the message should only be received
once, or if the message is meant to indicate that agems in fact on the system
at the time whenmn was received, then a replay attack is problematic. Note that the
confidentiality ofm is not compromised in these scenarios.

If replays are indeed a problem, we can amend the protocol to make them im-
possible. The idea is to use a challenge to all®wo recognize whether a message
is a replay or not. Before sending her messagg,td first asksB for a challenge,
a unigue messageg (typically called anoncg. She then encrypts not only her
messagen, but also the nonce g before sending it. Upon receiving the message,
B can check that the nonce correspond to the one that he sent before, and that it
has not been used before. If the nonce is recognized as having been used before,
then this particular interaction may be a replay attack, and the message can simply
be dropped. Here is the amended protocSSHAREDNONCE:

1. A—-DB : A
2. B—A : ng
3. A—B : A{m,npli,,-

The program for the initiator protocol is straightforward:

SENDSHAREDNONCE (i, j,m, k) = send j i;
recv n;
send J (Zv {m7 n}k(j))
For the responder protocol, we need a nonce to send to the agent. For simplicity,
assume that the nonce is a parameter of the program:

SENDSHAREDNONCER(7, k,n) = recv i;
send j n;
recv m;
content «— decrypt(ma(m), k(m1(m)));
nb «— ma(content);
if n = nb then
message < 71 (content)
else
message «— null.

Note the explicit check to see if the nonce received with the message is the one
that was sent out. Having the nonce as a parameter to the protocol is of course not
ideal, although we can simply imagine the principal running a number of copies of
this program, one per nonce. Another way of doing this would be to introduce a
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new functionnewnonce() that creates a new nonce. Dealing with nonces created
in this way, although central to many of the symbolic approaches we discuss later
in this section, is problematic. We return to this topic in Chapter 9.

One nice property of the ENDSHAREDNONCE protocol is thatB, upon re-
ception of the last message, knows that it is meant for him, sihcsed a key
she shares with him to send the message. That property does not hold in gen-
eral, even with symmetric cryptography. Consider the following “problems” with
SENDSERVER. First off, SENDSERVER s vulnerable to the same replay attack as
SENDSHARED, so we can amend the protocol as we deNSSHARED, by adding
an initial nonce handshake, and add the nonce to the megsageds taB. This
yields the following protocol:

1. A—-B : A

B—A : np

A—B : A{m,np}li,,

B—S : B {4/ {m, nB}kAS}kBS
S—B : {m,npliys-

ANl o

But even with this correction, there are two potential problems if the adversary is
an insider; first,B cannot be certain that the message he receives actually came
from A, and secondB cannot be sure that the message he receives was sent to
him. As in the case of replay attacks, whether these are security problems or not
depends on the context of use of the protocol. We now simply indicate what goes
wrong, and how to correct it.

Assume thafX, the active adversary, is an insider in the system, so that he shares
a key kxg with the trusted server. To illustrate the first problei,can send a
messagen to B and makeB believe that the message was sent byA, another
agent known taB, but possibly offline at the moment of the attack. This scenario
involves X starting two interactions witl, one as himself, and one masquerading
asA. Atrace of the attack is presented in Figure 6.1, where the first column reports
the messages exchanged betwé&eand B, while the second column reports the
messages exchanged betweémmasquerading ad, and B. In that interaction,

m’ is the result of decryptingm, n/; }1 ., With key k45. (Thus, this attack relies
on the decryption operation to return a meaningful value, even when decrypting
a message with the wrong key. This is a property common to many encryption
schemes.) While two protocol interactions are initiatedXyonly one of them
succeeds, buB believes that he has been senby A, since the message bundles
the nonce g, which was sent tal, as far asB is concerned.

Similarly, the second problem higlights that there is no assuranékttmt the
message he receives presumably frdiwas actually meant for him, even if it was
actually sent byd. A trace of this attack is presented in Figure 6.2. Whether or not
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X — B
B—X
X(A)— B
B — X(A)
X —B
B— S
S — X(B)
X(A)— B
B— S
S — X(B)
X(S)— B

Figure 6.1.

X
np

np

X, Am,nB brys

37 {X7 {m7 nB}k?XS}kBS

m, nB}kns
Av {Tna n%;}kxs
B7 {A7 {m? n/B}kXS}kBS
m' kps
{ma nB}kBs'

First attack on amended M SERVER protocol

A— X
X(A)— B
B — X(A)

X—A

A— X
X(A)— B

B— S

S — B

np
np
A, {mv nB}kAs
A {m,np e,
B, {Av {mv nB}kAs }kss
{m> nB}kBS'

Figure 6.2. Second attack on amendehSSERVER protocol

this is actually an attack is debatable. The key point appears in the first message
sent, whered initiate an interaction withX', not X masquerading aB. If the fact

that the message is meant f&r(and notB) is important to the context in which

this protocol is used, then the above can meaningfully be called an attack. It is not
a question of the origin of the message, since the message originally camd from

in this trace.

One way to handle these (potential) problems is to add to every message the
identity of the sender and that of the intended receiver; this information should be
checked by the appropriate agents. Here is the amended protegoISERVER-

NONCE:
1. A— B A
2. B— A ng
3. A— B A {A, B,m,nply,q
4. B— S B, {A,{A,B,m,nB} ks thps
5. S—B {A, B,m,np}k,s-
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Note that the identity of the sended) as well as the intended receivaB) are
bundled withm andn g in message (3). The programs for the protocol correspond
to those for ENDSERVER, updated in the obvious way:

SENDSERVERNONCE; (i, j,m, k) = send j i;
recv n;
send .] (Za {iv.jv m, n}k)

The program for the responder now needs to check that he is indeed the intended
target of the final message:

SENDSERVERNONCER(i, k) = recv j;

send j n;

recv m;

send s (i, {j,m}x);

recv m;

mi — mi(ma(decrypt(m, k)));

mm — my (ma(ma(decrypt (m, k))));

mn « ma(ma(ma2(decrypt(m, k))));

if mn=nAmi=1¢ Amj =jthen
message «— mm

else
message «— null.

Upon receiving the last message, the responder checks that the nonces agree, that
he is the intended receivem{ = ¢) and that the sender is the claimed sender.
(This is where the trace notation is not specific enough. Clearly, it is not sufficient
to have the information present in the messages; we also need to verify that the
information is correct.)

The program for the server is unchanged:

SENDSERVERNONCEg(k) = while true do
recv m;
receiver «— m1(m);
ml1 «— decrypt(ma(m), k(receiver));
sender «— m1(m1);
m2 « decrypt(ma(m1), k(sender));
send receiver {m2 }j(receiver)-

It is straightforward to check that the attack traces above are not valid protocol
traces for the above programs. Of course, that these attacks cannot be carried out
as above does not mean that no such attach can be carried out at all, perhaps in a
more convoluted way; hence the need for formal verification of protocols.
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6.3 Security Properties

We saw a number of scenarios in the last section that could be seen as being attacks
or not, depending on the context of use of the protocol. The context of use can be
captured by specifyingropertiesthat we would like the protocols to satisfy. There

are a number of security properties that have been identified in the literature, and
that we now review.

The most basic security property studied in the literature is thedofidential-
ity, or secrecy It is also in some sense the easiest to define, at least at the level
of symbolic approaches to analyze protocols. Intuitivelyis a secret between
andB if only A andB knowm. (This generalizes in the obvious way to more than
two agents.) We can recast many properties of protocols as preserving or exchang-
ing a secret between parties. Depending on the framework, and the assumptions
made about the system, the interpretation of the term “know” in the definition of
confidentiality vary. The typical definition found in the literature on symbolic ap-
proaches to security protocol analysis takes the statement “the adversaryrkhows
as meaning that the adversary can, based on the messages he has intercepted and
his capabilities, derive the message Thus, confidentiality ofn is taken to mean
“the adversary cannot derive”.

Confidentiality is relatively easy to define. Most other properties do not have
such a clear definition. A typical property found in the literature is thahof
thentication We often talk about authentication protocols, that is, protocols whose
purpose it is to convince one agent of the identity of another agent. The literature
is fairly divided as to what authentication actually means, and the general consen-
sus on this point is that authentication as it is commonly used refers to at least two
different notions. We consider the two main ones in this sectivessage authenti-
cation where an agent is attempting to establish the source of a particular message,
andagent authenticatignwhere an agent is attempting to determine the identity of
another agent on the network.

The intuition for message authentication is simple. An agent receives a message
m, and wants to ascertain that it originated from agBntThis property can of-
ten be reduced to the confidentiality of a piece of data. For instana@ay be
cryptographically bound to some secret known onlyitand B. (The key itself is
often the secret, in a symmetric-key setting.) In this casejust have come from
A and B, assuming the protocol did not leak the secret. Thus, authentication and
confidentiality are not completely independent properties.

Agent authentication is a more difficult property to characterize. Roughly, it
concerns the identity of a peer in a connection, or during a particular interaction.
Formalizing this property depends intrinsically on what we take to be the definition
of a connection, or an interaction. Often, this property makes the most sense when
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there is an implicit notion of connection in the system being studied, for instance,
if communication is via secure private channels. Another setting in which this

property arises is when a protocol is first run to establish a secret key used to
define what may best be called a “virtual connection” between two agents, after
which this property can be used to actually identify the agent on either end of the
virtual connection.

A common way to establish both kind of authentications is to considéren-
ticating events Say that an evenk in a system authenticates another eveht
if the occurrence of2 guarantees that evet’ occurred. These events are often
events of the protocol. Consider for example a way to establish that the message
m received byB in protocol SNDSHAREDNONCE actually came fromA. The
reception of{m,np}x,, should authenticate the sending{of., ng}x,, by A.
Intuitively, if B receives{m,ng}y,, from A, thenB should know thatd was the
sender, since the sending event must have happened.

Artificial events can also be introduced for the purpose of analysis. For in-
stance, it is common to introduce evemtgin and end (perhaps parametrized)
performed by agents to define points of interest in the protocol. We can modify
SENDSHAREDNONCE, for instance, as follows:

A ¢ begin(m, A, B)
A—-B : A
B—A : np

A—B : A{m,np}li,,
B : end(m,A,B).

SANEE O

The property can be recast as: evemi (m, A, B) authenticatesegin(m, A, B),

that is, if B performs an end event with values, A, B, then A must have per-
formed a begin event with values, A, B. This separates the specification of the
protocol from the actual messages being exchanged in the protocol. The events
begin and end are typically called assertions, and verifying that these assertions
match involve checking the correspondence of these assertions; hence the name
correspondence assertians

6.4 Symbolic Approaches to Security Protocol Analysis

The study of security protocols is not a recent trend, and many methods have been
developed. In this section, we give a quick overview of classes of commonly used
approaches. (The classification is somewhat arbitrary, but still useful.) We describe
symbolic approaches exclusively; these are characterized by reasoning about the
“combinatorial” properties of protocols, that is, properties that depend on which
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messages can be derived and constructed from existing messages. In contrast, com-
putational approaches put a greater emphasis on the computational aspects of the
encryption, such as the probability of extracting bits of information from encrypted
messages. We return to this view briefly in Chapter 10.

6.4.1 Model-Based Approaches

The class of model-based approaches to security protocol analysis is broad, and
includes all the approaches that rely on modeling a protocol using techniques often
used in the verification community. The idea is simply that we can think of a proto-
col executing in an environment as a software system like any other, characterized
by a set of states, and where evolution of the system corresponds to transitions
between states, triggered by actions performed by the agents, or the system itself.

To construct a model of a protocol, we first need to specify the set of states that
arise during a protocol interaction. A state captures all the information relevant to
the analysis of the system, for instance, the keys in possession of all the agents,
the messages in transit between agents, the messages intercepted by the adversary,
and so on. Transitions between states correspond to actions taken by the agents,
such as an agent sending a message, or the network delivering a message to an
agent. Adversary actions can also give rise to transitions between states, such as
the adversary constructing a new message before sending it. Generally, a model
is generated implicitly from a set of initial states and a transition relation between
states; the model of the protocol corresponds to all the states reachable from the
initial states following transitions.

Specifications in model-based approaches generally take the form of asserting
that certain “bad states” cannot be reached from the initial states. A bad state
can be, for example, a state where the adversary knows a message that was meant
to remain secret, or a state where authentication has failed, perhaps because the
adversary managed to end an interaction with an agent convincing him or her that
some other agent has initiated the interaction. Note that these approaches force
the verifier to specify the bad things that should not happen, rather than the good
things that must. The task of verifying that a protocol satifisties the specification is
therefore the task of checking that bad states cannot be reached,

As a representative of this class of approaches, we consider MSR, a framework
based on a form of term rewriting calledultiset rewriting In MSR, the state
of the system is represented as a multiset of facts, where each fact is an atomic
formula of the formP(¢4,...,t;) for variable-free termg,, ..., t; taken from a
term algebra over a given signature. (See Section 3.1 for an overview of term
algebras.) The signature provides at least encryption and pairing constructors, of
the kind used in Example 3.1. The notatiB(¢) is often used foP(t1, ..., t;). A
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multiset is just like a set, except that it allows repetition of elements; for example,
the multiseta, b, b, ¢ is different from the multiset, a, b, b, ¢, since the number of
as in each multiset differ. Predicates are used to record the state of each agent
in the system, the messages on the network that have not yet been delivered, the
messages intercepted and derived by the adversary, and so on.

Transitions between states are specified using rewrite rules. A rewrite rule has
the form

Pi(t1), ..., Poltm) — Jo1 ... 32,.Q1(£]), ..., Qu(t])

where the atomic formula® (t1), ..., P (t,) on the left-hand side of the rule
may have free variables, while all the variableﬂf(ﬁl), ..., Qu(t") must either
appear on the left-hand side, or be onegf. .., z;. A rule is applicable in a state

if each atomic formula on the left-hand side of the rule matches a distinct atomic
formula in the state. (Two atomic formulas match if they are the same predicates,
applied to terms that match; two terms match is one is a substitution instance of the
other.) Moreover, applying a rule in a state involves identifying the matched atomic
formulas Py (t1), ..., P,(ty) in the state, keeping track of the term matched by
each variable in the matched formulas, removing the matched atomic formulas
from the state, and forming the new state by addfmgtz’), .., Qu(t"), where
Qi(tf) is obtained froeri(tZ) by replacing every variable appearing on the left-
hand side of the rule by the term it matched, and replacing the variahles. , ;.

by new constants that do not occur in the state or in any of the rules. It is this
existential quantification that makes this framework usable for protocol analysis,
as it can be used to model nonce generation.

Representing protocols in MSR is relatively straightforward. As an example,
consider the following implementation of the SODSHAREDNONCE protocol. The
atomic formulaN (x) indicates that the messages on the network, that is, it has
been sent by an agent, but has not been received by any agent. Clearly, there can
be many messages in the network at the same time. Protocols are described by
giving rewrite rules corresponding to the initiator and the responder. The rules for
the initiator, in this casel, are straightforward:

Ao(m,kap) — N(A), Ai(m,kaB)
Al(m» kAB)v N(nB) — AQ(m) kAB)v N(Aa {m’ nB}kAB)‘

(As this example shows, it is often necessary to have predicates that take a variable
number of arguments. Rather than using a family of predicates, each of a different

arity, we use a single predicate, overloaded at all appropriate arities.) Executing

a step of the protocol corresponds to applying one of these rewrite rules. The

predicatesd, A1, and A, capture the states of the agent: the initial state, after the
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first message has been sent, after the second message has been sent, respectively.
The first transition rule says that in the initial state, represented by the atomic
formulaAy(m, k4 p) indicating that the message he wants to semd &nd the key
to use isk 4 g, the protocol can execute by putting the messdagm the network,
and moving the agent to statl (m, k45). The second transition rule says that
when the agent is in staté; (m, k4p), and if a valuenp appears on the network,
then the protocol can execute by receiving the valuge putting the message
(A, {m,np}k,,) on the network, and moving the agent to statg¢m, k4p).
The transition rules for the responder are similar:

B()(k?AB),N(A> — HHB.Bl(kAB,TLB),N(nB)
Bl(kKABanB)7N(A7 {m>nB}k’AB) — BQ(kABanBam)'

The first transition rule uses existential quantification to create a fresh nonce. More
precisely, the first rule says that if the responder is in his initial 98gté& 4 5) and

a messagel appears on the network, then the protocol can execute by creating
a fresh nonce:, putting it on the network viav(np), and moving the agent to
state B1(kap,np), which also records the nonce. The second transition rule is
straightforward.

To specify the initial states of the system, an initialization rule is necessary. The
following rule creates a shared key betwedrand B, and initializesA to the
initiator’s first state, and3 to the responder’s first state, both states recording the
created shared key.

— 3kap.Ao(kaB), Bo(kas)-

How do we represent the adversary? There are a number of ways of defining an
adversary. Consider the following simple definitions, which represents a Dolev-
Yao adversary using symmetric keys. The idea is to model the knowledge of the
adversary using a predicaté (for memory; the atomic formula/ (m) represents
the fact that the adversary was able to derive the messagkhe following tran-
sition rules describing the adversary reflect the inference rules definingsthe
relation in Section 6.2:

N(x

N(z,y

M(z,y
M({z}x), M(k

— M()

— M(z,y)

— M(x), M(y)
— M(z), M (k).

~— — — ~—

(The first two rules say that the adversary can intercept any message on the net-
work.) In order to send messages to other agents, we need to describe the messages
that the adversary can construct. The predicate used to denote those messages
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that the adversary can construct. The following translation rules describe them:

Intuitively, any message that the adversary was able to derive can be constructed,
as well as encryptions thereof, and pairings. Moreover, the last transition rule says
that the adversary can generate fresh messages.

Confidentiality properties are straightforward to express in this framework. Fol-
lowing the discussion in Section 6.3, the confidentiality of a messagenounts
to ensuring that the adversary is not able to deriveSince the predicat&! repre-
sents the messages derivable by the adversargmains confidential if the atomic
formula M (m) does not occur in any state reachable by transitions from the initial
state of the system.

Authentication can be captured using the notion of authenticating events, as we
saw in Section 6.3. Here, the events are the states of the various agents. Consider
specifying that the sending of’s first message authenticates the receptiof’sf
last message. Formally, this means that for any sequence of transitions from the
initial state that leads to a state containing an atomic forniilg: 4 5, n, m) for
somen, then the transitions must first go through a state containing an atomic
formuladg(kap, m).

6.4.2 Process-Based Approaches

Process calculi are formal systems developped in the context of concurrency theory
as a way to provide a foundation for concurrent computation, in much the same
way that the\ calculus can be viewed as a foundation for sequential computation.
While the main primitive feature of the calculus is function application, the main
primitive for process calculi is that of the “interaction” of concurrent processes.
Process calculi share the view that a process is a set of concurrently executing
sequential processes that communicate (or interact) via shared information.

We model the system to be analyzed as a process in the syntax of the calculus.
This process represents the protocols executed by all the agents, as well as the
system behaviour as a whole, and possibly the adversary as well. This yields a
syntactic representation of the system. The semantics of the calculus provides a
description of the behaviour of the system. One advantage of using a calculus is
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that we need not always compute this behaviour, but can often simply reason at the
level of the syntactic process that represents the system. For instance, there may be
a set of proof rules available to derive properties of processes by induction on the
structure of the processes.

Specifying properties in process calculi is done in one of two ways. One pos-
sibility is to analyze the transitions given by the operational semantics of the pro-
cess calculus, and specify properties of these transition in terms of reachability,
as in the model-based approaches. The other possibility, more in the spirit of the
process calculus tradition, is to use processes themselves as specifications. The
intuition is straightforward: we write down a description in the calculus of an ideal
system that clearly has the desired behaviour, and prove either that the original pro-
cess “behaves the same” as the ideal process, or that every behaviour of the original
process is a behaviour of the specification process; which approach to take depends
on the kind of specification one is trying to establish.

The process calculus we now describe is CSP, the calculasrofmunicating
sequential processe€SP is a notation for describing sequences of events happen-
ing in a distributed system. Roughly speaking, an event in CSP is an occurrence
in the system that can be caused by agents, and on which occurrence other agents
can synchronize. An example of an event is an agent sending a message. Another
agent can synchronize on the message being sent, and thus basically receive it. The
basic CSP processes aftvp, which is the process that immediately terminates,
processes of the forevent — P (a process that performsent, and then behaves
as proces$’), and processes of the forhavent — P (a process that awaits for an
event, and once matched, behaves as praégsklore complicated processes can
be constructed from choices, so tia ) represents a process that behaves either
asP or asQ. Finally, processes can execute in parallel, whejie?]|Q represents
P and(@ executing in parallel, synchronizing on the events in théidgthile every
other event happens independentl{JSP allows parametrized events, of the form
x.y.z, which is an event parametrized by valugsandz. The matching notation
is extended to allow for matching part of the event exactly, and allowing variables.
The common use of such a notation is to have events of thedérnwhich can be
understood as send valt@en channet, which can be matched by an event of the
form ¢?5, which matcheg exactly, and binds to the received value, hebe Here
is the process corresponding to the initiator in the proto@N$SHAREDNONCE
given above, for agerntsending to agent, with messagen:

INIT (i, 5, m, k) = trans.iljli —

L Full CSP allows other constructs. For instance, parallel execution can synchronize on events, and there is a
nondeterministic choice, representing the system choosing rather than the process. Processes are also definable
by recursion, or by mutually recursive process definitions.
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rec.i.jing —
trans.iljlil{m, np by —

Stop.

The parameterization of the process is similar to that in Section 6.2.
The responder process is similar:

RESP(i,k,n) = rec.i?j?i —
trans.i.j.n —
rec.i.j?j{m, n}y;y —
Stop.

The semantics of a proceBscan be given in a number of ways, depending on what
one wants to observe about a process. The simplest semantics, and the one used by
most security protocol analysis work in CSP, is the trace model. Roughly speaking,
the semantics associate to every prodéssset of tracegraces(P), representing
the sequence of events performed by the process. In the case of parallel processes,
traces(P) is an interleaving of the traces of the subprocessé3. of

How do we use CSP to reason about security protocols? The first step is to
model the system. This is done by creating a process representing the system.
This process includes a process describing the program of each agent in the system
(including trusted servers) and a process describing the behaviour of the adversary.
Thus, a system has the form:

SYS = (|||jeacAGENT}) |[trans, rec]| ADV,

wheretrans andrec are events corresponding to the sending and reception of mes-
sages. As an example, consider the systeriy for the SENDSHAREDNONCE
protocol. Assume a set of agems>. We can represent the agents’ behaviour by
the processes:

AGENT;(m,n, k) = Ojeaq (INIT(i, j,m, k) O RESP (i, k, n)).

The adversary is specified by encoding a Dolev-Yao adversary, usingsthe
relation of Section 6.2. The process is recursive, and parameterized by aket
intercepted messages.

ADV(S) = trans?i?j?m — ADV (S U {m})
O(Ojca6,srpymrec.iljlm — ADV(S)).

(This could be written up completely in CSP, rather than relying on-therela-
tion.)

How do we specify properties of processes? The basic way, given the semantics
above, is to specify a property of the getces(P). First, consider confidentiality.
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Intuitively, a termt¢ is secret if the adversary cannot deduce it. How do we specify
this in CSP? One approach is to change the code of the adversary to add a new
channelknows and have the adversary nondeterministically send any message he
can derive to that channel. Thu$DV (S) can be written:

ADV(S) = trans?i?j?7m — ADV (S U {m})
O(0jecac.s-pymrec.iljlm — ADV(S))
O (Osk pymknows!m — ADV(S)).

Following the discussion in Section 6.3, a messagés confidential if the ad-
versary cannot derive:. Since every message that the adversary can derive can
be sent to the channéhows, m is confidential if the adversary cannot semd

on channelknows. This can be formalized by saying that for every tracec
traces(SYS), knows.m does not appear itr. Using the notatiorir | H (where

H is a set of events) to represent the subtrace @bnsisting only of events from

H, and using() to represent the empty trace, confidentialityddfcan be written

tr | knows.m = () for all tr € traces(SYS).

What about authentication? Again, we can use authenticating eventse RDr S
SHAREDNONCE, one authentication properties says that the sending of the ini-
tiator’s first message authenticates the reception of the responder’s last message.
Formally, this means that for all agents B, and any tracér in traces(SYS),
if trans.A.B.A.{m,n}y,, appears inr, thentrans.A.B.A appears inr. For-
mally, this can be written astr | trans.A.B.A{m,n}y,, # () implies¢r |
trans.A.B.A # (), forall A, B, ksp,n, and for allir € traces(SYS).

There is another approach to specification in CSP. A praPasfinesa process
Q, written P C Q, if traces(P) C traces(Q). If we view @ as a specification
denoting a set of "good” traces, andifC (), thenP can be seen as an implemen-
tation that satisfie§), in the sense that every trace Bfis a good trace. (This of
course relies on being able to characterize the set of good traces as a pyoaeds
on being able to characterize goodness as a property of traces.) Refinement permits
the use of the process language itself as a specification language. Moreover, writ-
ing specifications in the form of a refinement property enables the use of tools that
have been developed to automatically establish refinement relation between CSP
processes.

6.4.3 Logic-Based Approaches

What distinguishes the last class of approaches is the emphasis on the specification
of properties. More precisely, they focus on developing a formal language in which
to write down the properties of the protocols that one intends to verify.

The main formalisms for logic-based verification split across two distinct lines.
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On one side, there are first-order and higher-logic logic approaches, and on the
other there are modal logic approaches (often propositional). An expressive lan-
guage such as higher-order logic allows us to model the protocol directly in the
logic (in the form of formulas that characterize the behaviour of the model). We
can then establish that a protocol satisfies a specification by showing that the spec-
ification logically follows from the logical description of the protocol. These ap-
proaches naturally lead to theorem-proving systems, often partially automated.
One advantage of this approach is that infinite systems can be proved correct, by
using inductive techniques. Alternatively, augmented with the appropriate support
for cryptography and adversaries, modal-logic approaches lead to specification lan-
guages in many ways compatible with the model-based approaches to protocol
analysis. While less expressive than approaches based higher-order logic, modal
logics often are decidable, and often support efficient model-checking procedures.
As anillustration of logic-based approach to reason about protocols, we describe
what is historically the most important modal logic for security protocol analysis.
BAN logic (named after the researchers who introduced it, Mike Burrows, Roger
Needham, and Madrt Abadi) is a modal logic of belief that provides primitives
for reasoning about protocols in a cryptographic setting. Contrary to the model-
theoretic approach to logic that we have considered until now in this dissertation,
BAN logic was essentially developed axiomatically, by giving axioms and infer-
ence rules for deriving new beliefs from old beliefs. BAN logic has formulas that
say thatk is a good key for communicating between agefisnd B (a shared key
known only toA and B), written A & B, thatm is a secret betweeA and B,
written A — B, that agentA believes the formuld’, written A believes F, that
agentA controls the truth of formul&’, written A controls F', that agentd sent a
message meaningj, written A said F, that agentd received a message (and was
able to read it, perhaps by decrypting it if it was encrypted and she had the right
decryption key) meaning’, written A sees F', that the message is fresh, that
is, has never been used before, writfeesh(m). A sample BAN logic inference
rule is

Abelieves A &> B Asees {F!}, 1# A
A believes B said F' 7

which intuitively says that if agent believes that is a good key between herself

andB, and she receives a message encrypted wittkkbgt did not originate with

her, then she believes th&t sent the original message. More inference rules are

given in Figure 9.1. We will have much more to say about BAN logic in Chap-

ter 9, including a more careful interpretation of formulas. In the remainder of this

section, we illustrate how BAN logic can be used to prove properties of protocols.
One difference between BAN logic and the other approaches we described ear-
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lier in this section is that BAN logic does not attempt to model the protocol di-
rectly. Approaches such as MSR and CSP model the protocol using essentially
a state-based transition system, either explicitly in the case of MSR, or implicitly
through the semantics in the case of CSP. In BAN logic, the reasoning occurs di-
rectly on the trace of the protocol. However, because the trace of the protocol does
not quite carry enough information to permit the kind of reasoning advocated by
BAN logic, a process known adealizationneeds to be performed on the protocol.
Roughly speaking, idealization consists of replacing the messages in the protocol
by formulas of BAN logic that capture the “meaning” of the message exchanged
by the agents. For instance, if an agensends a key: to an agentB, with the
intention of sharing a key that considers good, then a suitable idealization of this
protocol step is to havel send the formulad < B to B. Much of the difficul-

ties in reasoning about protocols using BAN logic reside in this idealization phase.
Here is a possible idealizaiton of the protoc@iN®SHAREDNONCE

2. B—A : np
3/. A— B : {AéBanB}kAB-

Message (1) in the original protocol carries no information that BAN logic can
use, so it has been removed from the idealized protocol. Message (2’) is unchanged
from the original. Message (3’) is the idealization of agdrdendingn packages
with np to B; this idealization consists ol sending the formulad Z Bto B,
indicating that4 considersn to be a secret at that point.

Reasoning about the idealized protocol consists of laying out the initial belief of
the agents, and deriving new beliefs from those and from the messages exchanged
between the agents using the inference rules of the logic. ESIDSHARED-
NONCE, consider the following reasonable initial beliefs. First, both agents should
believe that the key they sharg 4(3) is a key that has not been compromised.
These beliefs are captured by the BAN logic formulas

A believes A &8 B
B believes A AP B.

Another assumption is that the nonce tiatses has not already been used, that
is, the nonce is fresh. This belief is captured by the BAN logic formula

B believes fresh(npg).

Finally, the message thatwants to send t@ should initially be secret (in order to
prove that this message remains secret after a protocol run). This belief is captured
by the BAN logic formula

A believes A — B.
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We can now derive new beliefs from these initial beliefs, and the messages ex-
changed by the agents. After an idealized protocol step of the form B : F,
B receives a message meanifig and thus the formul& sees F' can be used
to updateB’s beliefs. In the idealized protocol forESIDSHAREDNONCE, after
having received message (3"), the BAN formula

Bsees {A = B,ngti,,

holds. Combined with the initial belieB believes A ‘4% B, one of the BAN
logic inference rules (rule R1) allows us to derive

B believes A said (4 = B, np). (6.1)

From the initial beliefB believes fresh(np), it is clear thatB should believe
any message combined with; to be fresh as well. This is captured by one of the
BAN logic inference rules (rule R9), which lets us derive

B believes fresh(A = B,np).

Finally, from this last formula and formula (6.1), applying one of the BAN logic
inference rules (rule R3) lets us derive

B believes A believes A = B. (6.2)

Thus, after protocol interactio} believes thatd believes thatn is a secret be-
tweenA andB. We can say something stronger if we make the additional assump-
tion that B initially believes that the secrecy of is completely up to agent,

that is, if B believes thatd controls the truth oA — B. From this initial belief

B believes A controls A = B and formula (6.2), we can apply one of the BAN
logic inference rules (rule R4) to derive

B believes A — B.

This simple example illustrates the kind of axiomatic reasoning that can be per-
formed using BAN logic.

One consequence of the decision to reason directly about the protocol text is
that the adversary is not modeled directly within the BAN logic framework, but is
rather implicit in the valid inference rules of the logic. This makes it difficult to
see what is happening operationally, or change the system to accomodate different
adversaries.

BAN logics seems a reasonable specification language, as far as attempting to
capture the right concepts for security protocol analysis. However, BAN logic has
been the subject of many criticisms. The two main criticisms affect BAN logic
both as a specification language and as an approach to protocol verification. First,
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the logic has a multitude of operators, but no semantics to speakrbg main
consequence of not having an independently motivated semantics is that it is not
clear exactly what one is proving when a “proof” of security is exhibited for a
protocol. In general, when a BAN-style analysis manages to exhibit a bug in a
protocol, chances are good there is indeed a bug, but a proof of security does not
guarantee much. Attempts have been made to supply a more adequate semantics
for BAN-style logics, but without simplifying the logic. Second, therification
methodassociated with the logic, that is, how to use the logic to verify protocols,
itself relies on a dubious idealization process that, among other things, is insensitive
to the order of protocol steps.

6.4.4 Discussion

The above classes of approaches represent the most common ones. (A number
of approaches do not fit so cleanly in that classification; we examine one such,
strand spaces, in more detail in Chapter 7.) They each have their advantages and
disadvantages with respect to the three aspects of interest, namely, how protocols
are modeled, how security properties are specified, and how security properties are
verified.

— For model-based approaches, the emphasis is on the models:

(a) protocols are modeled explicitly via state-based transition systems: a set
of states, with distinguished initial states, and a transition function from
states to states indicating the evolution of the system;

(b) a specification is a predicate on states, often indicating which states are
bad states;

(c) verification is performed by proving that no bad state is reachable from
the initial states.

Thus, the specifications are restricted, often a simple language of description of
states, with perhaps some extensions ot deal with the temporal evolution of the
states.

— For process-based calculi, compositionality of the modeling process is central:

(a) protocols are described programmatically; this description is composi-
tional, and generally higher-level than other approaches;

(b) specifications are often described using either the properties of the pro-
grams, or as other programs (in the former case, they resemble specifi-
cations of the form for model-based approaches, in the latrer, they are
“idealized” programs);

2 The original semantics merely encodes the inference rules of the logic. Arguably, the Hoare-style presentation
of the logic does provide some hints as to the meaning of the BAN logic operators, but this is far from being
a satisfactory semantics.
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(c) the verification is either performed by hand, or by proof systems.
— Finally, logic-based approaches put the focus on the specifications:

(a) protocols are generally modeled as in the model-based approaches, by
specifying transition systems;

(b) specifications are written in a logical language, perhaps with security-
specific primitives;

(c) verification varies, from model-checking for approaches based on modal
logic, to theorem-proving for more expressive logics.

From the point of view of specification, the most flexible approach is certainly
the logic-based approaches, especially those approaches like BAN logic that are
explicitly geared towards expressing security properties. (There are some ques-
tions pertaining to the foundation of those primitives; we will come back to these
in Chapter 9. For the time being, they can be taken for granted.) However, the
verification procedure for BAN-style logics, based on idealization, is very prob-
lematic. There are logics with more straightforward verification mechanisms, such
as temporal logic, epistemic logic, and higher-order logic, but they tend to be more
generic and often do not support the kind of primitives that permit the natural ex-
pression of security properties.

Moreover, the adversary model in logic-based approaches generally cannot be
significantly altered, and thus does not really provide the flexibility needed to ad-
dress some of the issues discussed in Section 6.2. The process-based approaches
can support different adversary models, as witnessed by the CSP examples in Sec-
tion 6.4.2. However, the specification language for process-based approaches does
not seem easily expressible as a standard specification language augmented with
security primitives.

In the next chapters, we develop a framework to try and get the best of all these
worlds, from the point of view of modeling and specifications. Specifically, our
goal is to get a framework that:

— models protocols using a general framework that can capture the knowledge of
agents;

— supports deriving models from a protocol notation that is compositional,

— represents adversary capabilities in a natural and flexible way;

— supports a logical specification language that is expressive enough to capture
useful security primitives;

— relates specifications of properties to the models of protocols in an intuitive way.

While we will not talk about automatic verification in this dissertation, it should be
clear that a further desideratum is to have the framework support effective verifica-
tion procedures.
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Notes

Cryptography is a field with a long history. Stinson [1995] and Schneier [1996]
give excellent overviews of the practice of cryptography. Goldreich [2001] gives
an excellent account of the theoretical side of modern cryptography.

The symbolic approach to security protocol analysis goes back to Needham and
Schroeder [1978], who were among the first to point out the fact that some attacks
on protocols are essentially independent of the encryption scheme. Dolev and Yao
[1983] first formalized such attacks using their now standard model of the adver-
sary.

Protocol $NDSERVERIs a value-passing variant of a protocol by Woo and Lam
[1992]. The first attack presented in Section 6.2 is an adaptation of the attack due to
Abadi and Needham [1996] on the original Woo-Lam protocol. The second attack
is an adaptation of the attack due to Anderson and Needham [1995]. Clark and
Jacob [1997] offer an excellent literature review on security protocols.

Abadi [2000] gives a general overview of security properties for protocols. Con-
fidentiality is the cornerstone of security properties. A more general notion of
confidentiality is studied in the context of information flow. See McLean [1994]
for an overview. Such a general notion of confidentiality is studied by Halpern and
O’Neill [2002].

Gollmann [1996] gives a typical analysis of the various notions of authentica-
tion. He describes peer-entity authentication (what we called agent authentica-
tion) versus data-origin authentication (what we called message authentication).
Authenticating events were used by Schneider [1996] in CSP. Begin and end as-
sertions were first studied by Woo and Lam [1993]. Lowe [1997] gives a taxon-
omy of authentication properties in CSP using correspondence assertions. Most
current frameworks for analyzing protocols use correspondence assertions in one
form or another to specify authentication properties. Gollmann [2003] provides an
overview and critique of this technique.

Roscoe [1996] advocates intensional specifications, which essentially say that a
protocol works exactly as intended. They are meant to be protocol-dependent spec-
ifications. In contrast, extensional properties are meant to be protocol-independent.
Boyd [1997] attempts a classification of security properties along the intensional
and extensional specification lines. In a sense, correspondence assertions with be-
gin and end events are extensional versions of authenticating events.

The multiset rewriting approach MSR is described in [Cervesato, Durgin, Lin-
coln, Mitchell, and Scedrov 1999]. It is strongly related to linear logic [Girard
1987]. MSR has been used to analyze, among others, version 5 of the Kerberos
protocol [Butler, Cervesato, Jaggard, and Scedrov 2002]. It was also used to es-
tablish some of the first decidability and undecidability results for the symbolic
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analysis of security protocols [Cervesato, Durgin, Lincoln, Mitchell, and Scedrov
1999]. Other model-based approaches include the NRL protocol analyzer [Mead-
ows 1996], derived from an earlier tool, the Interrogator [Millen, Clark, and Freed-
man 1987]. NRL is based on a logic-programming engine, and works by specify-
ing an insecure state and attempting to construct a path to that state from an initial
state, or proving that the state is unreachable. Meadows [1990] describes an ap-
proach that can accomodate partial knowledge of messages in NRL. Another logic
programming tool is the protocol verifier of Blanchet [2001, 2002]. It has been
used to verify an email protocol [Abadi and Blanchet 2003a], and forms the basis
of a verification tool for Web Services [Bhargavan, Fournet, Gordon, and Pucella
2004].

The process calculus CSP is due to Hoare [1985]; Roscoe [1997] gives a modern
account. An overview of the use of CSP for security protocol analysis is given
by Ryan and Schneider [2000]. Rank functions [Schneider 1998] can be used in
CSP to prove properties of infinite systems. FQRoscoe 1994] can be used to
automatically establist® C . FDR works by explicitly enumerating and then
exploring the state space of the system. Thus, it can only deal with finite state
systems. Casper [Lowe 1998] is a compiler that takes a message-passing style
representation of protocols and produces a CSP process representing the protocol;
the compiler invokes FDR for checking the built-in properties that can be specified
along with the protocol.

Another popular process calculus framework for analyzing security protocols is
the spi calculus of Abadi and Gordon [1999]. The spi calculus is based an the
calculus of Milner [1999] (see also Sangiorgi and Walker [2001]), an extension of
CCS [Milner 1989] with communication channels. The main feature here is name
hiding, where the name of a channel can be hidden from other processes. The spi
calculus further extends thecalculus with cryptographic primitives. A specifica-
tion in the spi calculus is simply a spi process that is “obviously” correct, perhaps
because it relies on a private channel for communication. A process satisfies a
specification if it “behaves the same” in all contexts. Making this precise requires
a notion of observational equivalence. Intuitively, two processemdp, are ob-
servationally equivalent if no context[-], that is, a process calculus term with a
hole, can distinguislp; andp. in terms of what can be observed. Thus(ifp],
that is, the context’ where the hole is “plugged” by, deadlocks, bu€[ps] does
not, thenC[-] can distinguistp; andp.. Different notions of observational equiv-
alence for the spi calculus can be defined [Abadi and Gordon 1999; Abadi and
Gordon 1998; Boreale, de Nicola, and Pugliese 2001]. Focardi, Gorrieri, and Mar-

3 Failure-Divergence Refinement, a product of Formal Systems (Europe) Ltd.
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tinelli [2003] study various notions of authentication properties via observational
equivalence.

The key feature of the spi calculus is that it does not require an explicit descrip-
tion of the adversary. Rather, by consider arbitrary contexts, the idea is that we get
to reason about any adversary that can be expressed as a process in the spi calculus.
Thus, we get automatic quantification over all attackers expressible in the system.
Other process calculi can be extended with cryptography, in the spirit of the spi
calculus. For instance, the sjoin calculus extends the join calculus [Fournet and
Gonthier 1996], and was used by Abadi, Fournet and Gonthier [2002] to analyze
secure channels.

It is sometimes possible to recast process-based specifications into a more con-
ventional form of specification. Behavioural equivalence, for instance, can some-
times be characterized logically, in the sense that there exists a modal logic over
process such tha® and () are behaviourally equivalent if and only if they sat-
isfy the same formulas of the logic [Hennessy and Milner 1985; Milner, Parrow,
and Walker 1993]. CSP refinement can be similarly characterized [Stirling 2001].
Frendrup et al. [2002] discuss such a logic for the spi calculus.

Another approach to reasoning about protocols using the spi calculus is to intro-
duce a type system. Abadi [1999] and Abadi and Blanchet [2003b] develop type
systems for the spi calculus that captures a form of secrecy. Recently, Gordon and
Jeffrey [2001, 2002a, 2002b] have extended the type system of Abadi to essentially
prove within a type system correspondence assertions between different entities in
a communication protocol. This type system is a form of effects system [Tofte and
Talpin 1997].

One of the most successful modern approaches to logic-based analysis of proto-
cols is theinductive assertionmethod [Paulson 1998], formalized in higher-order
logic [Andrews 1986], and proved using the higher-oder logic interactive theorem
prover Isabelle [Paulson 1994]. TAPS [Cohen 2000; Cohen 2002] is a verifier
based on first-order logic, and uses similar ideas. There has been a fair amount of
work on applying temporal logic to the problem of reasoning about security pro-
tocol analysis; see for example [Gray and McLean 1995; Mitchell, Mitchell, and
Stern 1997; Clarke, Jha, and Marrero 1998]. Some approaches reminiscent of Dy-
namic Logic [Harel, Kozen, and Tiuryn 2000] have also recently emerged [Durgin,
Mitchell, and Pavlovic 2001].

BAN logic was introduced by Burrows, Abadi, and Needham [1990a]. A vast
literature, starting with Abadi and Tuttle [1991], has emerged to follow up on their
work, extend the logic, and attempt to supply it with a more adequate semantics
[Gong, Needham, and Yahalom 1990; Syverson and Oorschot 1994; Stubblebine
and Wright 1996; Wedel and Kessler 1996]. Syverson and Cervesato [2001] pro-
vide a good overview. The main problem with some of those approaches is that
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semantics of the logic (to the extent that one is provided) is typically not tied to
protocol executions or attacks. As a result, protocols are analyzed in an ideal-
ized form, and this idealization is itself error-prone and difficult to formalize [Mao
1995]. Snekkenes [1991] showed that because BAN idealization was insensitive to
the order of protocol steps, some protocols are deemed correct by BAN when they
are in fact flawed. Syverson [1990] and Bieber [1990] consider approaches based
on logics of knowledge that do not suffer from those particular problems.






.
Modeling Security Protocols

0 analyze protocols, we need a way to represent them and model the aspects
that are relevant for the properties that we want to prove. As we saw in the
previous chapter, there are many frameworks for representing and reasoning about
security protocols. In this chapter, We present a general framework for modeling
security protocols that is amenable to the kind of knowledge-based logical analysis
performed later in the dissertation. The models used are adapted from models
typically used in distributed computing.
After presenting the general framework and defining security systems, we present
a few ways to generate such security systems from descriptions of protocols. The
first is to derive systems from programs of the kind used in Chapter 6 to describe
protocols. In essence, the semantics of the programs are given in terms of security
systems. Since the language is related to process calculi, this highlights the rela-
tionship between security systems and the models underlying process calculi. The
second way of generating systems is to derive them from other representations of
protocols. By way of illustration, we show how to do this starting from a popular
representation based strand spaces
Note that the framework in this chapter does not deal with the adversary. Mod-
eling adversaries is discussed in Chapter 8.

7.1 Security Systems

The multiagent systems framework provides a model for knowledge that has the
advantage of also providing a discipline for modeling executions of protocols. A
multiagent system consists afagents, each of which is in some local state at a
given point in time. Assume that an agent’s local state encapsulates all the informa-
tion to which the agent has access. In the security setting, the local state of an agent
might include some initial information regarding keys, the messages she has sent
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and received, and perhaps the reading of a clock. In a poker game, a player’s local
state might consist of the cards he currently holds, the bets made by other players,
any other cards he has seen, and any information he may have about the strategies
of the other players (for example, Bob may know that Alice likes to bluff, while
Charlie tends to bet conservatively). The basic framework makes no assumptions
about the precise nature of the local state.

We can then view the whole system as being in some global state, which is a
tuple consisting of each agent’s local state, together with the state of the environ-
ment, where the environment consists of everything that is relevant to the system
that is not contained in the state of the agents. Thus, a global state has the form
(Se,s1,---,5n), Wheres, is the state of the environment argis agenti’s state,
fori =1,...,n. The actual form of the agents’ local states and the environment’s
state depends on the application. For definitenesgdgtbe the set of local state
for agent;, including Loc. for the environment.

A system is not a static entity. To capture its dynamic aspects, define a run to be
a function from time to global states. Intuitively, a run is a complete description
of what happens over time in one possible execution of the system. For future
reference, note that we have a great deal of flexibility regarding what counts as a
“time step”. We could, for example, take a “time step” to correspond of a tick on
a global clock, a step in a protocol, or the amount of time needed to perform a
computation. We could also, as BAN logic does, consider only two time instants:
the first representing the state of the world before the protocol is run and the second
time represents the state of the world after the protocol is run. The local state
of each agent after the protocol is run will contain all the events the agent has
participated in. It is up to the modeler to decide which notion of time is most
appropriate for an analysis.

A pointis a pair(r,t) consisting of a run and a timet. For simplicity, take
time to range over the natural numbers in the remainder of this discussion. At a
point(r,t), the system is in some global stat). If »(¢) = (se, s1,...,5,), then
taker;(t) to bes;, agent’s local state at the poirit-, ¢). Formally, define a system
R to consist of a set of runs (or executions). Therefore, a system is just a trace
model, except that there is much more flexibility in representing the states, as well
as allowing for simultaneous events for different agents. It is compatible with the
trace models used in process calculi, as well as the transition systems used by the
model-based approaches.

It is relatively straightforward to model security protocols as systems. Since se-
curity protocols are essentially protocols based on messages exchanged between
distributed participants, a natural class of systems to use is thagsgage-passing
systemsConsider a fixed se¥ of messages. Aistoryfor agenti (over M) is a
sequence of elements of the fowand(j, u), recv(u), andint(a), whereu € M
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anda is some internal action. We think aknd(j,u) as representing the event
“messageu is sent to agenj”, recv(u) as representing the event “messagis
received”, andnt(a) as representing the event “internal actiowas performed”.
Intuitively, #’s history at(r, t) consists of’s initial state, taken to be the empty se-
guence, followed by the sequence descrihia@ctions up to time. If i performs
no actions in round, then its history afr, t) is the same as its history @t ¢ — 1).
For an agent, letr;(t) be agent’s history in(r, t). An evente occurs ini’s history
inroundt¢ + 1 of runr if e is in (the sequence) (¢t + 1) but not inr;(¢).

In a message-passing system, the agent’s local state at any point is its history.
Of course, ifh is the history of agentat the point(r, ¢), then we want it to be the
case that, describes what happenedrimp to timet from ¢'s point of view. To do
this, we need to impose some consistency conditions on global states. In particular,
we want to ensure that message histories do not shrink over time, and that every
message received in rouhdorresponds to a message that was sent at some earlier
round.

Given a setM of messages, defineraessage-passing systéover M) to be a
system such that for each poifit ¢) and each agent the following constraints
are satisfied:

MPL1. r;(t) is a history ovetM;

MP2. for every eventecv(u) in r;(t) there exists a correspondingnd (i, u) in
r;(t), for somey;

MP3. r;(0) is the empty sequence andt + 1) is either identical to;(¢) or the
result of appending one eventitgt).

MP1 says that an agent’s local state is its history, MP2 guarantees that every mes-
sage received at rourtccorresponds to one that was sent earlier, and MP3 guaran-
tees that histories do not shrink.

An asynchronous message-passing system systarmessage-passing system
that does not place any constraints on the relative order of events in different agents’
histories beyond those imposed by MP1 and MP2. Such asynchrony can be cap-
tured by considering systems that consisalbfuns satisfying MP1-3 for some set
of histories. FormallyR is anasynchronous message-passing systémere exists
a sequencdy, ..., V,, wherel; is a set of histories over some ggtof messages,
such thatR consists of all runs satisfying MP1-3 where agémtocal state is a
history inV; at every point. The systef is the systengenerated by, ..., V,,.
Informally, the setl; specifies the possible histories agéobuld have. The sys-
tem generated by, ..., V,, consists of all runs satisfying MP1-3 such that agent
's histories are iri/; for all 1.

For the purposes of analyzing security protocols, define the clasafity sys-
tems The messages exchanged by the agents are taken from the symbolic encryp-
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tion scheméM generated by a sét of plaintexts and a seéX of keys. A security
system is an asynchronous message-passing systenis{avbere the local state

of an agent consists of the agent’s initial information followed by the sequence of
events that the agent has been involved in. An event is either the receftidm)

of a message:, the sendingend (i, m) of a message: to another agent or the
updateupdate(var, m) of variablevar to valuem. We write (evty, . .., evt,) for
sequences of events, whejeis the empty sequence, and writets - evt for the
result of appending evenrtt to the sequence of eventsts.

Assume a distinguished value:ll € M used for undefined values, such as the
initial value of variables. As we shall see shortly, the cryptographic operations all
returnnull if one of their argument iswull; moreover, assume that if decryption
fails, it returnsnuli.

DefineC onM as the smallest relation satisfying the following constraints:

(1)) mCEm

(2) if m C mq, thenm C (mq,ms)
(3) if m C mq, thenm C (mq,ms)
(4) if m C mq, thenm C {ml}k

Intuitively, m; C my if mq couldbe used in the construction of;. For example,

if m = {m1}x = {mal«, then bothm; T m andms C m. Therefore, if we want

to establish thatn; C mo for a givenm, andms, then we have to look at all the
possible ways in whichny can be taken apart, either by pairing or encryption, to
finally decide ifm; can be derived fronm,.

There are a number of useufl operations that can be performed on local states.
The functiond(¢) gives a mapping from variables to values as recorded in local
state/, by looking up the last binding for the variable (returningl! if none is
found). Letd, be the mapping that assigns!! to every variables.

0(Q) = bo
O(evts - evt) = {

O(evts)[var — m] if evt = update(var, m)

0(evts) otherwise,
where the notatiorf[x — y] for a functionf represents the functiofl defined as
(z) = Yy if z=2x

f(z) otherwise.

The functionp(¢) returns the value of the last received message in local &tate
or null if no message has been received yet.

p(()) = null
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m if evt = recv(m)

p(euvts - evt) = {

p(evts) otherwise.

An important concept that arises in both the next section and the next chapter is
that of a term representing a message in a local state. Roughly speaking, a term is
just an expression that describes how to construct a message, by applying encryp-
tions and decryptions, pairings and projections. A term can refer to variables, and
when a message is constructed from the term, the values of those variables is taken
from the bindings in the local state of an agent. The syntax of terms is as follows:

term ::= m
| var
| {terma}ierm,
| decrypt(termy, terms)
| (termy, terma)
| w1 (term)
| mo(term)

| received|)

wherem is an arbitrary element oM, and var is an arbitrary variable. We
write (termy, . .., termy,) for (termaq, (..., (termy—_1, term,)...)). Given aterm
term, we canevaluatethe term in a given local stateto get the message it repre-
sents, denotefterm],:

[m]e=m
[var], = 0(¢)(var)
It ) I null if m1 = null or me = null
ermi Merms e = .
Hrtermzd T o, otherwise

wherem = [term1],
ma = [terma]y
null if m1 = null or mg = null
[decrypt(termy, terma)]e = < null if my = {m/ }r andmy # k~*
mll if mi = {m’l}k andmg =k!
wherem; = [termi]
ma = [terma]y
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null if m1 = null or me = null
[(termy, terma)]e = )
(my,m2) otherwise
wherem = [term1],
ma = [terma]y
null if m = null
[mi(term)]e = § null if m # (mq, ms) for somemy, mo
my  if m=(mi,me)
wherem = [term],
null if m = null

[ma(term)]e = § null if m # (mq, ms) for somem;y, mo

me  if m = (mi,ma)
wherem = [term],

[received ()], = p(¥).

For the purposes of this chapter, assume that the adversary in a security protocol
can be modeled as just another agent. The adversary’s information at a point in a
run can be modeled by his local state. We return to adversaries and the intricacies
of modeling them in Chapter 8.

7.2 A Language for Security Protocols

We now present a programming languageeBeC that can be used to program
an agent’s actions in a system. This language is a formalization of the informal
language we used in the previous chapter. The idea is to provide a program for
each agent that, along with an execution context for the program, gives rise to
a particular security system. In a precise sense, programs are given a semantics
using security systems.

A program for ageni can rely on Boolean tests performed on the local state of
the agent. The syntax of Boolean tests is as follows:

bool ::= termy = termy | booly A booly | —bool.

As usual, takéool; V bools as an abbreviation fofi(—bool; A —bools). To every
test and agent associate the sgbool]; of local states of ageritat which the test
is true:
[term; = terma]; = {€ € Loc; | [term1], = [terma]s}
[—bool]; = Loc; — [bool];
[bool1 A bools] = [booli]; N [bools];.
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Atestbool is true inf (for agent;) if ¢ € [bool];.

A programfor agent; specifies what action the agent should perform next. What
do we take as actions? Primitive actions incluilethe null actionsnd(i, m), the
sending of message: to agentj, rcv, the reading of a message from the input
buffer, andupd(var, m), the update of variablear to valuem. The language in
which we write the programs is essentially a language of while loops. It also cor-
responds to the sequential fragment of a process calculus such as the one described
in Section 6.4.2. However, there is no attempt to capitalize on the process-calculus
ability to represent the structure of the network as a whole; networking assump-
tions can be captured by the environment. Mostly, the focus is on communication
between agents in as simple a network topology as possible.

A program is a statement, given by the following grammar:

stmt ::= send termq terms
| skip
| recv
| var — term
| stmitq; stmito
| if bool then stmt; else stmts

| while bool do stmt.

Informally, send termy terms is the sending of the message denoteddayn to

the agent denoted biyrm1; skip is the null statement with no effeatecv awaits

for a message to arrive in the agent’s buffedsr — term updates the variable

var to the value denoted bgerm in the local state of the agent. The remaining
constructs are the standard sequencing, conditional, and looping constructs. In
Chapter 6, we used the notation

recv var
which in fact is simply an abbreviation for

recv;

var «— received().

The semantics oMPSEC, given in Figure 7.1, is defined in terms of a transition
relation, where the notatioh I-; stmt —— stmt’ says thatstmt rewrites into
programstmt’, performing actiora, at local staté.

An IMPSEC program describes the behaviour of a single agent. To describe
the behaviour of a whole system requires at least a program for each agent. Ac-
cordingly, define goint IMPSEC programto be a tupleS = (stmty, ..., stmt,)
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snd([termi]e,[terma]e)

¢ F; send(termy, terms) skip

¢ 1F; send(termy, terms) i, send(termy, terms)

?; skip 2L skip

rcv . nil
{1F; recv —— skip {F; recv — recv

upd(var,[term]e)

l i var «— term skip

nil
{1F; var «— term — var «— term

0, stmt = stmt! 0, stmty = stmt’

? I+; skip; stmt —— stmt’ 01k stmty; stmts —— stmt'; stmity

0 € [bool]; (£IF; stmt; —— stmt)
0 IF; if bool then stmt, else stmty —— stmt

0 & [bool]; € 1F; stmty = stmit},
0 |F; if bool then stmt, else stmty —— stmt,

¢ € [bool]; ¢£IF; stmt = stmt’
¢ I+; while bool do stmt —— stmt’; while bool do stmt

£ & [bool];
¢ I; while bool do stmt " skip

Figure 7.1. Semantics oMPSEC

of programs, one per agent. Given an initial global state (s, s1,...,sn),
define R[S](s) to be the set of runs consistent withfrom states. A run r

is consistent with the joint program§' from states if »(0) = s, and if the se-
quence of global states incorresponds to a possible execution of the joint pro-
gram S, that is, if there exists a sequence of joint prograsiisS?', ... (with

at

S% = S) and joint actiona®,al,... such thatr;(t) I-; S! —— S*! and the
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states(t) = (e, S1,...,8,) @andr(t + 1) = (s., s}, ..., s,) satisfy the following
constraints, for all agents

— if al = upd(var,m), thens, = s; - update(var, m);

— if al = snd(j,m), thens] = s; - send(j, m);

— if aj = rev, then either there existssuch that’ = snd(i,m) ands; = s; -
recv(m), or{a | a € s¢, a =snd(i,m)} # @ ands, = s; - recv(m) for some
m such thasnd(i,m) € s..

Furthermore, the messages that are not delivered are buffered by the environment.
Formally, if

S = {snd(j,m) | Ji.al = snd(j,m)}
R = {snd(j,m) | Eij.az- = rev, sh = 55 - recv(m) },
thens, = (sc U S) — R.

If 3 is a set of initial states, defifR[S](X) to be the set of all runs consistent
with S from some state in 3. Thus, given a joint prograr§ and a set of initial
global state>, the systeniR[S](X) models the protocol represented by the joint
programs.

Note that there is a clear relationship betwes®$EC programs and process
calculi of the kind we described in Section 6.4.2. Intuitively, we can think of
IMPSEC programs as written in a sequential fragment of a process calculus. (While
IMPSEC does not have a concurrency operator, it is straightforward to add one.)
One difference is that the semantics &PISEC is more concrete, in that there is an
explicit scheduler in the form of the environment. The semantics above does not
take advantage of this flexibility, since the environment is simply used as a buffer
to hold messages in transit. Moreover, connectivity assumptions (for instance,
network topology) can also be added to the environment, rather than encoded in
the process describing the system as a whole. It remains to compare the respective
advantages and disadvantages of these approaches to modeling protocols.

7.3 Strand Spaces and Multiagent Systems

The strand-spaces framework is a recent popular framework for the analysis of se-
curity protocols. Roughly speaking, the strand space corresponding to a protocol is
the set of the traces of the various interactions between the agents under considera-
tion. Strand spaces are meant to capture the “causality” between the various events
of a protocol; According to the strand-space theory, an event causes an other event
if the presence of the latter implies the presence of the former. Thus, a causality
relation in this sense is simply an authenticating relation, of the kind described in
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Section 6.3. There are clear similarities between strand spaces and multiagent sys-
tems, as introduced above. We examine the relation between these two frameworks
more carefully, focussing on strand spaces as a tool for modeling protocols.

The key issue in relating the two frameworks is the handling of agents. Most im-
portantly, an agent has a state that is shared across all the interactions that the agent
performs. In multiagent systems, there is a clear notion of an agent participating in
an interaction. In strand spaces, there is not. Each protocol interaction (described
by a strand) is viewed as independent from all others. In fact, each strand can be
viewed as representing a different agent. This approach to modeling agents is de-
liberate in the definition of strand spaces, and gives a theory that yields general
results. Strand spaces do treat agents, in a fashion, by essentially assigning to ev-
ery strand a name representing the “agent” executing the strand. However, it is still
the case that strands corresponding to the same “agent” can exchange values only
through explicit communication, i.e. there is no shared state across the strands cor-
responding to the same “agent” name. For all intents and purposes, these strands
may as well be assigned to different actual agents.

To highlight the role of agents, we provide a family of translations from strand
spaces tatrand systems subclass of multiagent systems related to security sys-
tems that seem to capture the intuition underlying strand spaces. The translations
are parameterized by an assignment from strands to agents. This assignment as-
sociates with a strand the agent performing the protocol interaction described by
the strand. Such an assignment captures the intuition that different strands can
potentially be executed by the same agent.

Why is the role of the agents so significant? For the protocols typically consid-
ered in the literature it is not. On the other hand, it should be clear that belief and
knowledge are useful concepts when reasoning about security protocols. There are
a number of ways that an adversary can gain knowledge in a system. Certainly
when an adversary intercepts a message, he learns the contents of the message.
But he may learn much more if he knows the protocol being run. In addition, dif-
ferent agents representing the same adversary may be able to pool the information
they have acquired. In any case, as soon as one talks about belief or knowledge,
there must be agents in the picture to which belief or knowledge is ascribed. One
advantage of a multiagent system is that it explicitly identifies agents and provides
an easy way to ascribe knowledge to agents In the context of security, that means
we are forced to reason about, for example, which names represent the same agent
or which ones may represent the same agent.

Significantly, the translations in this section are not surjective. Some strand
systems are not the image of any strand space, regardless of the assignment of
agents to strands. This is not just an artifact of our particular translation. Any
translation from strand spaces to strand systems that preserves the message history
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of the agents, in a precise sense, cannot be surjective. Intuitively, this is because
in a strand space we cannot say “either this sequence of events happens or that
one does, but not both”. This indicates a fundamental lack of expressiveness in the
current formulation of strand spaces.

Let M be the set of possible messages that can be exchanged by the agents in a
protocol! A signed ternis a pair(o, u) with o € {+, -} andu € M. A signed
term (+, u) represents the sending of messagend is typically writterd-u, and
a signed tern{—, u) represents the reception of messagend is typically written
—u. We write (£M)* for the set of finite sequences of signed terms. A strand
space oveM signed terms. Astrand spaceover M consists of a set, whose
elements are calledtrands together with a trace mapping tr¥ — (+M)*,
associating each strand I with a sequence of signed terms. A strand space is
typically represented by the underlying sgtleaving the trace mapping implicit.

In a strand spac®, anodeis a pair(s, ), with s € ¥ and an integei with
1 <4 < Jtr(s)|. The set of nodes of is represented b§{. The node(s, i) is
said tobelong tothe strands, written (s, i) € s by abuse of notation. Given a
noden = (s,i), where tfs) = (o1,u1) ... (o, ux), define ternin) = (o, u;).
If n; andny are nodes, the notatiom, — n9 indicates that teritm;) = +u and
term(ny) = —u; the notation; = ny indicates that both; andny occur on the
same strand andn; = (s,7) andns = (s,7 + 1). Note that the seN of nodes
together with both sets of edges — ne andn; = ns forms a directed graph
(N, (= U =)).

A bundle represents a snhapshot of a possible protocol execution. For a given
strand spac&, letC = (N¢, (—e U =¢)) be a subgraph dfN, (— U =)). The
graphC is abundleif

B1. Cis finite,

B2. if no € Ne and ternfng) is negative, then there is a unique such that
ny —en2,

B3. if no € Ne andn; = no, thenny =¢e ns,

B4. € is acyclic.

In B2 and B3, becaus@ is a graph, it follows that; € Ne. A noden is in the
bundle@ ifitis in Ne.

It will be useful in this section to allow infinite bundles. Amfinite bundles just
a subgraph ofN, (— U =)) that satisfies B2—B4 (that is, we no longer require
the finiteness condition B1). ThHeeightof an infinite bundle is the length of the
longest finite sequence of nodes, no, ns, ..., ni in € such thatny ~» ny ~

. ~ ng, where~~ is either— or =. (A bundle can have infinite height if there

I The actual contents of the message and the structubé afe not important for the purpose of this section.
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is no bound on the length of the longest sequence of this type.) Of course, all
finite bundles have finite height. It is easy, however, to construct infinite bundles of
infinite height (even if all individual strands have length at most 2). For example,
consider the strand spac¢e = {s; | ¢ € Z}, with a trace mapping {s;) =

(—u;, +u;41). The strand space itself in this case is an infinite bundle of infinite
height. All the arguments pertaining to strand spaces that are applied to finite
bundles go through without change for infinite bundles of finite height. (Indeed,
they go through for infinite bundles that anell-founded in the sense of having

no infinite “descending” sequences of the form ~~ n3g ~» ny ~» nqy, although

we end up using only bundles of finite height in our arguments.)

The multiagent systems that will be constructed from the strand spaces repre-
sentation of a protocol are a class of systems westalhd systemselated to the
asynchronous message-passing systems of Section 7.1, that provide the foundation
for security systems. Due to the assumptions made by the strand-space approach,
namely that events in strands consist of sending and receiving messages, we con-
sider only systems where the local state of an agent is the sequences of messages
that the agent has sent and received. Thus, we deliberately ignore internal actions
such as variable updates (or, more accurately, treat them as irrelevant). There are
other minor differences. For instance, messages do not specify a receiver, so that
send events are of the forsand(u), instead ofsend(a, u), for an agent. Strand
systems also allow for an infinite number of agents, whereas in the systems we
describe above, there are only finitely many agents. (In this section, wefose
agent names rather thanto emphasize this fact.) The definitions earlier in the
chapter generalize to infinitely many agents in a straightforward way. Moreover,
agents are allowed in security systems to have a nontrivial initial state, while for
strand systems, the initial state is always the empty sequence.

7.3.1 Translating Strand Spaces to Systems

We now turn to the problem of translating strand spaces into systems. This is
done by formalizing the strand space intuition that bundles represent snapshots of
possible executions. Our construction derives the possible execution traces in terms
of sequences of bundles, which are then used to construct the runs of the system.
A multiagent system requires an explicit set of agents; a strand space does not.
To perform the translation, specify a sébf agents and a particulagent assign-
mentA : ¥ — A, which intuitively associates with each strand X the agent
A(s) executings. In the generated strand system, an agent behaves as if it were
concurrently executing the various strands assigned to it. The motivation behind
this approach is that if the same agent is in reality executing many strands, then it
should share its knowledge across all the strands it is executing.
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The choice of agents and the agent assignment for a given strand space is left
to the model designer. Different choices lead to different multiagent systems. As
we show at the end of this section, associating a different agent with each strand
enforces the basic strand space tenet that information is exchanged only through
explicit messages, that is, there is no shared state between different strands.

The translation takes as arguments a strand spaeesetA of agents, and an
agent assignmem from strands inX to agents. To define the translation, first
define a relation on bundles that represents the actions that the agents in the strand
space can perform. Given a strand ¥ and a bundle, let B-heigh{s) be the
largesti such that(s, i) € Ne. (We takeB-heights) = 0 if no node ins appears
in C.)2 A function f : ¥ — X respectsA if A(s) = A(f(s)), that is, the same
agent is associated with both strandand f(s) for all strandss € X. If By, By
are (possibly infinite) bundles &f, andf : ¥ — X is a bijection that respect4,
we write By T Bs if the following two conditions hold:

(1) if (s,i) isin By, then(f(s),) isin By and terni(s, i)) = term({f(s), 1)),
(2) if (s,i) — (5, 7) is an edge inBy, then(f(s),i) — (f(s'),7) is an edge
in Bs.

These clauses guarantee that the prefix tifat is in By is a prefix of the prefix
of f(s) thatis inB,. For example, ifB; consists of the single node, 1) and B
consists ofs’, 1) and(s’, 2), where terni(s, 1)) = term((s’, 1)), thenB; Cy By,
where f is the bijection that permutesands’, while acting as the identity on all
other strands.

For many cases of interest, we can simply take the bijegtitmbe the identity;
in that case,B; Ty B if and only if By is a subgraph of3;. We discuss the
reason for allowing arbitrary bijections and the role of the bijection at the end of
this section.

We write B; — B if there is a bijectionf : ¥ — ¥ that respectsl such that

(1) By &5 By, and
(2) X_sea-1(q) Ba-height f(s)) — Bi-heights) < 1 for all agents: € A.

Informally, By — B if, for each agent € A, B, extends the prefix of at most
one strand imB; corresponding ta, and extends it by at most one node. (Note that
the strandf(s) in B, extending the prefix of strandin B; may be different from

s, depending on the definition gf.) If B, does extend the prefix of one of the
strands inB; corresponding to ageatby one node, let, g, g, denote the event
corresponding to that node: if the nodensind ternin) = +u, thene, B, is
send(u), and if tern{n) = —u, thene, B, B, is recv(u). Define a—-chain (or

2 This notion of height of a strand in a bundle should not be confused with the notion of height of a bundle we
defined earlier.
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simply a chain) to be an infinite sequence of bundbgsBy, . .. such thatBy is
the empty bundle an#y — By — .. ..

Let Chains(3, A, A) be the set of all chains iR. Associate with every chain
in Chains(X, A, A) arun as follows: Given a chaii = By — Bj — ... and an
agenta € A, definehistt (C) inductively. Lethist(C) = (); let hist™™1(C) =
hist] (C) if no strand corresponding to agenin B, is extended inB,,;1; oth-
erwise, lethist? ™! (C) = hist(C) - eq BoB,.,- (Informally, hist?*!(C) is the
result of appending taist] (C) the unique event performed by agenin going
from B,, to B,,11.) Thus,hist (C) consists of all the events thathas performed
in B,,. Letr® be the run such thaf (t) = hist’ (C) and letR(%, A, A) = {r¢ |
C € Chains(3,A, A)}.

Theorem 7.1.R(X, A, A) is a strand system.

In light of Theorem 7.1, define the mdpy, from strand spaces to strand systems
by takingT'4(X) = R(3, A, A).

As we mentioned at the beginning of this section, strand spaces as originally
described can be modeled by taking the set of agents of a strandXpadmz X,
and taking the identity functiofi as the agent assignment. This captures explicitly
the intuition that strands are independent protocol executions, that for all intents
and purposes may be assumed to be executed by different agents. This is the case
since there is no state shared between strands, and every communication is made
explicit. In other words, there is no conceptual difference between two stsands
ands, executed by different processes of an agent or by two distinct agents if there
cannot be any shared state betwegandss.

There is a small amount of information that is lost in the translation from strand
spaces to strand systems, which will become evident in Theorem 7.2 below. This
loss stems from the fact that messages in strand systems are completely anony-
mous. For example, if agent 2 and agent 3 both send a messauet later agent
1 receives it, there is no way in a strand system to tell if agent 1 receifesm
agent 2 or agent 3. By way of contrast, in a strand space, there is an edge indicating
who agent 1 received the message from. The multiagent system framework can in
fact keep track of who an agent received a message from by adding an additional
component to the global state; this is the state o&tineronmentwhich intuitively
describes everything relevant to the system not included in the local states of the
processes.We will not bother going into the details of the environment in this sec-
tion, as the issue does not affect our results. We can characterize the information
loss resulting from our translation by defining a relation between globals states of

3 In this particular case, the environment could record the sender of each message that is received at any given
round.
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R(3, %, id) and bundles oE. A global stateos | s € ¥) (recall that hered = ¥0)

is message-equivaletd a bundleB if for eachs € ¥, if o5 = (e, ..., ex) then
B-heights) = k and, for eachi such thatl < i < k, if term((s,)) = +u thene;
is send(u), and if term{(s, 7)) = —u thene; is recv(u). Intuitively, a global state

is message-equivalent to any bundle that has the same nodes. This captures the
intuition that an agent receiving a message is not aware of the sender. The follow-
ing theorem shows that, except for this loss of information, our translation from
strand spaces to strand systems essentially identifies bundles and global states (if
all strands are treated as being associated with a different agent).

Theorem 7.2.Every global state dR(3, 3, id) is message-equivalent to a bundle
of X of finite height, and every bundle Bfof finite height is message-equivalent
to a global state ofR (%, X2, id).

If the environment state is used to record the sender of each received message,
Theorem 7.2 can be strengthened to a 1-1 correspondence between global states of
R(3, %, id) and bundles oFE of finite height.

With these results in hand, we now discuss some of the choices made, in par-
ticular, why we allowed infinitely many agents, infinite bundles, and an arbitrary
bijection f in the definition of—. It turns out that these choices are somewhat re-
lated. First observe that, in Theorem 7.2, each strand was identified with an agent.
Thus, if there are infinitely many strands in the strand space, the corresponding
strand system requires infinitely many agents. Naturally, if we restrict our analysis
to strand spaces with only finitely many strands, then we can take the correspond-
ing strand systems to have only finitely many agents. Infinite bundles are needed in
order to prove Theorem 7.1 when there are infinitely many agents. To understand
why, consider a strand spa&k whereX = {s1, s9,...} and ti(s,) = (+uy,). In
other words, strand,, has exactly one node, at which a send action is performed.

If a different agent is associated with each strand, then in the corresponding strand
system, the set of histories for agentvill consist of the empty history and the
history (send(u,)). The system based on this set of histories has a run where all
the agents send their message simultaneously at round 1. This history corresponds
to the infinite bundle consisting of all the strandinintuitively, if all the agents

can send a message, there is no reason that they should not all send it in the first
round.

Why do strand spaces allow infinitely many strands? Often, security protocols
rely onnonceswhich are values guaranteed to be unique within a run of the sys-
tem. Strand spaces model nonces by specifying a different strand for each possible
value of a nonce. Since, theoretically, there can be infinitely many nonces (as a
consequence of uniqueness), it is necessary to consider infinitely many strands for
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a given protocol. Note that these strands do not necessarily represent computations
of differentagents. Indeed, it probably makes sense to consider them all as being
performed by the same agent (but at most one of them being performed in a given
execution of the protocol).

The bijectionf in C is not needed if a different agent is associated with each
strand. (That is, in this case it suffices to tgkéo be the identity.) Similarlyf
is not needed if there is a bouridon the length of all strands iR. Indeed, it
is needed only to take care of the possibility that there is an infinite sequence of
strands, each intuitively a prefix of the next, and all associated with the same agent.
For example, consider the strand spacehere, againy = {si, s2, ...} but now
tr(s,) = (+u,...,+uy,). Intuitively, in this strand space, is a substrand of
sn+1 (although, formally, there is no notion of substrand in strand spaces). Suppose
that the mapping is such thdt consists of one agemt; and A associates all the
strands ir® with a1. If such a magf (or, equivalently, required to be the identity)
were not allowed, then the only chains would be those of the fBgm— B; —

. +— By — By — B — ... (for some finitek), where, for some strang each
B; is a prefix ofs. Applying the mapping to this collection of strands gives a single
set of histories

Va, = {(send(uy)), (send(uy), send(uz)), (send(u1), send(uz), send(us3)), ...}

in the resulting system, where each history/ip is finite. However, the system
generated by this set of histories contains an infinite run, which sends message
u; at timeq. Unfortunately, there is no chain corresponding to this run. On the
other hand, once nontrivial bijectiorfsare allowed, there is no problem. Abusing
notation somewhat, there is a chain of the form— sy — s3 — ... wherea;’s
history is unbounded, sincg. Ty, si1, Wheref;, permutess; ands; and is

the identity on all other strands.

Intuitively, if f must be the identity, then every chain must “choose” the strand it
is executing, which implicitly corresponds to choosing how many messages to send
in that particular run. Providing a functighthat permits “jumping” to strands with
the same prefix between any consecutive bundles of a chain essentially models an
agent that does not choose the length of the strand up front, but rather just performs
the actions (and thus, if one strand is a prefix of another, it cannot tell which of the
two strands it is performing).

While it is important to recognize these subtleties, they do not arise in most pro-
tocols. For instance, strands for specific protocols will typically be of bounded
length, and therefore the bijectighis not needed to define chains in the corre-
sponding strand space.
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7.3.2 Translating Systems to Strand Spaces

What about the other direction, that is, the the translation of strand systems into
strand spaces. Specifically, given a strand syskeis there a strand space which
maps taR under a suitable agent assignment? In general, there is not. This result
is not an artifact of our translation, but reflects a fundamental difference between
strand spaces and strand systems. In particular, it does not depend on any of the
subtleties that were pointed out at the end of last section.

To understand the difficulties, consider the following simple systamlt es-
sentially contains two runs, andr,, with distinct messages, y, u, v:

Because the MP1-3 assumptions on strand systems allow arbitrary delays between
the events, there are more than two runs in the system; the essential fact is that,
in any given run, ager communicates only with agentor only with agent3.
Formally,R, is the strand system generated by taking:

{(), (recv(u)), (recv(u), send(v))}
{(), (send(u)), (send(x)), (send(u), recv(v)), (send(x), recv(y)) }
{(); (reco(x)), (recv(x), send(y))}-

C/O l\') »—‘
I

Under the mapping presented in the previous section, there does not exist a
strand space that maps to this system, for any agent assignment. Intuitively, any
strand space modeling the systém will need at least strands corresponding to
runsry and strands corresponding to runs Since these sets of strands do not in-
teract (that is, they do not exchange any message), the translation of Section 7.3.1
will produce a system that contains runs that amount to all possible interleaving
of the strands corresponding #p andr,. This results in a system that is strictly
larger tharR;. For example, it must contain runs with the following histories for
agents 1, 2, and 3:
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Roughly speaking, what is happening in the strand system is that agent 2 non-
deterministically decides whether to send message agent 1 or messageto
agent 3. In any run of the system, it sends one or the other, but not both. The prob-
lem here is that, in the strand-space framework, we cannot say “one or the other,
but not both”.

To make this precise, given an agent assignmerdefine a translatioft” from
strand spaces to strand systems todbleistory preservingf, given a strand space
3,

— for each agent € A, runr € T(X), and timet, there exists a bundié in X
such that the events in agetis history r,(¢) are exactly those that appear in
nodes(s, i) in € such thatd(s) = a;

— conversely, for each ageimte A and bundle? of finite height in, there exists
arunr € T(X) and timet such that the events in agedis history r,(t) are
exactly those that appear in nodesi) in C such thatA(s) = a.

Notice that the translatiofi’y defined in the previous section i&history pre-
serving.

Theorem 7.3. There is no agent assignmentand A-history preserving transla-
tion T from strand spaces to strand systems such that the strand s§fstésrin
the image off".

The example above suggests that in general, systems arising from an agent run-
ning a nondeterministic protocol may not be the image of a strand space under
the particular translation used. The problem in fact is more profound. Even if the
agents are running deterministic protocols, the nondeterminism inherent in the de-
lay of messages delivery may prevent a system from being the image of a strand
space. Consider the following system with two agents. Agent 1 sends a message
u to agent 2. If agent 2 hasn't received it yet, and hasn't senicd message yet,
she sends aack. When she gets messaggeshe sends anck. Here, the strand
space intuitively corresponding to this situation will include a strand for agent 1
where he sends. For agent 2, we can consider at least the following two strands,
(—u, +ack) and(+nack, —u, +ack). One can check that there exists a chain lead-
ing to the bundle made up of the following strand prefixgsu), (—u, +ack), and
(+nack), leading, through our translation, to a possible history for agent agent of
the form (recv(u), send(ack), send(nack)), which does not arise in the original



7.3 Strand Spaces and Multiagent Systems 131

system. In this example, the problem does not occur because the agent makes a
choice, but, intuitively, because the “environment” is making a choice when deliv-
ering messages.

7.3.3 Discussion

In this section, we have investigated the relationship between strand spaces and
multi-agent systems. Our results show that strand spaces are strictly less expressive
than strand systems, a subclass of multiagent systems that seems to capture the
assumptions underlying strand spaces, in two quite distinct respects. The first is
that strand spaces cannot express choice, the fact that exactly one of two possible
behaviours is chosen. The second is that strand spaces have no notion of agents.

How serious are these two issues? That depends, of course, on what we are
trying to prove. Consider first the inability of strand spaces to express choice.
Typical properties properties proved using strand spaces have the form “for all
bundles in the strand space, X happens”. One way to interpret Theorem 7.3 is
that when a strand space is used to model a system, some of the bundles may not
correspond to situations that actually arise in the system—those bundles can be
seen as “impossible” bundles. This is not a problem, of course, if the property of
interest in fact holds in the larger system. However, this may not always be the
case. For example, we may well want to prove that a property like “agent 2 sends
at most one message” holds in all executions of a protocol. If the protocol also has
the property that agent 2 can send messages to either 1 or 3 (as is the case in the
protocol described by the systeéRy in Section 7.3.2), then the fact that agent 2
sends at most one message in every execution of the protocol will simply not be
provable in the strand-space framework.

The runs of a strand system can be viewed as a linearization of bundles, that is,
an explicit ordering of the actions performed by agents in different bundles. This
suggests that results about strands can be imported to runs. The results in this
section point to subtleties in doing this. More precisely, while results about strands
can be imported to results about runs (the runs that arise from translating the strand
space to a system), the converse may not be true, depending on the expressiveness
of the language.

Turning to the issue of agents, the strand-space framework assumes that mes-
sages relayed between strands form the only means of exchanging information
between strands. In other words, there is no shared state between strands. There-
fore, for all intents and purposes, we can imagine that every strand is executed by a
different agent. On the other hand, if the same agent is executing two strands then,
intuitively, it should know whatever is happening on both strands, without requir-
ing communication between them. Furthermore, as soon as one wants to analyze
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the properties of strand spaces using belief and knowledge, agents to which the
knowledge can be ascribed are needed. But even without bringing in knowledge,
we need to be careful in interpreting security results proved under the assumption
that different agents perform different strands. Clearly this assumption is not, in
general, true. Ideally, security protocols should be proved correct under any “rea-
sonable” assignment of agents to roles in the security protocol. At the very least it
should be clear under which assignments the result holds. For instance, it is known
that methods for the analysis of cryptographic protocols that fail to handle multiple
roles for the same agent do not yield dependable results, as they may not reveal
multi-role flaws Multi-role flaws commonly arise when a cryptographic protocol
logic implicitly assumes that if an ageattakes on a roled in some session, then

he will not also take on another rolg in some different session. This assumption

is often a consequence of the identification of the notions of role and agent. It
is possible to show that reasonable protocols that can be proved correct under the
assumption that an agent takes on the same role in all sessions are flawed if this
assumption is dropped.

The set of runs in the system and the agent assignment are particularly significant
when considering specifications that are not-based A run-based specification
is checked on a per-run basis. For example, “agent 2 sends at most 1 message” is
a run-based specification: given a run, one can check whether the property holds
for that run. A run-based specification holds for a set of runs if it holds for all runs
in the set. In contrast, lenowledge-based specificatisnch as “after running the
protocol, agent 2 knowX” cannot be checked on a per-run basis, as it relies on
the set of rungs a wholgo verify the property. It holds if, in all runs in the system
that agent 2 considers possible after running the protdcdiolds. Clearly it does
not suffice to look at an individual run to determine whether such a property holds.
Similarly, probabilistic specifications likeX holds in at most 3% of the runs”
also depend on the whole system and cannot be checked simply by examining
individual runs.

Typical specifications in the security literature are safety properties, which are
often paraphrased as “bad things don't happen”, and hence are run-based. Run-
based specifications have the property that if they hold in a system, they hold in
any subset of the runs of the system. It is “safe” to prove that a run-based specifi-
cation holds of a strand space which translates to a superset of the intended system.
Proving that the property holds for “impossible” runs does not hurt. This is not the
case for properties that are not run-based. We believe that knowledge-based speci-
fications, as well as probabilistic ones, will play a significant role in the design and
analysis of security protocols. Fairness is a good example. A prototairig
intuitively no protocol participant can gain an advantage over other participants by
misbehaving. In the context of fair exchange protocols where two agents exchange
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one item for another, fairness ensures that either each agent receives the item it
expects, or neither receives any information about the other’s item. This notion
of “not receiving any information” can be interpreted as meaning that no knowl-
edge is gained. The results in this section suggest that strand spaces, as currently
defined, will have difficulty handling such specifications.

Notes

The work in Section 7.3 first appeared in [Halpern and Pucella 2003b].

Multiagent systems are a popular model of protocols from the distributed com-
puting literature. Our presentation in Section 7.1 is based on that of Fagin, Halpern,
Moses, and Vardi [1995, Chapter 4]. Arguments for capturing asynchrony by
considering all runs consistent with the constraints MP1-3 are given by Fagin,
Halpern, Moses, and Vardi [1995, Section 4.4.6]. Variants of multiagent systems
have been previously considered in the security literature [Halpern, Moses, and
Tuttle 1988; Bieber 1990; Abadi and Tuttle 1991; Syverson and Oorschot 1994,
Stubblebine and Wright 1996]. There are minor differences between the asyn-
chronous message-passing systems described in this chapter and those from Fagin,
Halpern, Moses, and Vardi [1995]. The main one is that messages in this chapter
are essentially anonymous. A message does not specify a sender or an actual re-
ceiver. Messages in the asynchronous message-passing systems of [Fagin, Halpern,
Moses, and Vardi 1995], on the other hand, are usually not anonymous: the events
are of the formsend(u, a, b) (u is send fromu to b) andrecv(u, a, b) (u is received
by b from a).

The generation of multiagent systems from programs is adapted from the gen-
eral approach of Fagin, Halpern, Moses, and Vardi [1995, Chapter 5]. They define
the notion of a protocol, which is just a function from local states to actions, and
show how protocols in that sense give rise to multiagent systems by being execut-
ing in a context, which includes a protocol for the environment. They introduce a
programming language based on state machines, and show how the semantics of
such a language is a protocol, that can then be used to generate a system. They
mention that it is possible to extend the language with higher-level features, but
that it is not necessary for the purpose of expressiveness. Since we are not aiming
for generality here, we dispensed with the general notion of a context and envi-
ronment protocol, essentially hardwiring it in into the semarfii¢S]. Moreover,
we also dispensed with the intermediate notion of protocol, and gave a semantics
directly to programs. Of course, it is possible to express the work in Section 7.2 us-
ing the framework of Fagin, Halpern, Moses, and Vardi [1995], but doing so might
lose some of the intuition of the underlying semantics, since it would amount to
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compiling IMPSEC into a lower-level language. The semantics mPBEC is es-
sentially a form of small-step operational semantics [Winskel 1993], in the tradition
of Plotkin’s [1981] structural operational semantics.

Strand spaces were introduced by Thayer, Herzog, and Guttman [1999b]. Athena
[Song 1999] performs automated checking of security protocols expressed in the
strand-space framework using a mixture of model checking and theorem proving.

Itis possible to augment strand spaces in such a way that restores the expressive-
ness. One way to do this is by adding a notion of conflicting strands that essentially
say that either one of two strands can appear in a bundle, but not both. See Halpern
and Pucella [2003b] for details. Independently, Crazzolara and Winskel [2001]
reached the same conclusions, and came up with a similar fix.

Snekkenes [1992] studies multi-role flaws in the context of various cryptographic
protocol logics. Recent work on analyzing mixed protocols using strand spaces
[Thayer, Herzog, and Guttman 1999a] shows that strand spaces can be extended to
deal with what essentially amount to multi-role flaws. However, the approach often
requiresphantom messagésiessages that are not actually exchanged during runs
of the protocols) to carry state information between the different protocol strands
corresponding to the same agent. Logics for reasoning explicitly about names of
agents, the kind of notions that arise in multi-role flaws, have been described by
Halpern and Grove [1993] and Grove [1995].

Some of the topics explored in Section 7.3 appear in various forms in other
work. For example, Cervesato et al. [2000] define a notiopasmetric strand
essentially a strand where messages may contain variables. Parametric strands
correspond to roles, which are implicit in the original work on strand spaces. The
work of Cervesato et al. also deals with the evolution of the system described by
a strand space; they define a one-step transition between bundles. The transition is
reminiscent of the one we describe in Section 7.3.1, but is restricted to extending
a single strand at a time. (They also allow actions specific to their formalization,
such as the instantiation of a strand from a parametric strand.) Parametric strands
also appear as trace-types in Athena, a model-checker based on the strand space
approach [Song 1999].

The formal definition of a safety property is due to Alpern and Schneider [1985].
The distinction between run-based specification and knowledge-based specifica-
tion is clarified by Halpern [2000].

Fair exchange protocols are introduced and described, for instance, by Ben-Or,
Goldreich, Micali, and Rivest [1990], Asokan, Shoup, and Waidner [1998], and
Shmatikov and Mitchell [2000].



8
A Logic for Reasoning about Security Protocols

RGUABLY, the problem of verifying that a protocol satisfies particular secu-
A rity properties (for instance, confidentiality) has received the most attention
in the recent literature on security protocol analysis. However, the task of speci-
fying security properties themselves is far from having received a satisfactory so-
lution. Many formal methods for the analysis of security protocols rely on spe-
cialized logics to rigorously state and prove properties of the protocols they study.
Here, we take a very general view of logic, to encompass formal methods where
the specification language is implicit, or where the properties to be checked are
fixed. Those logics provide constructs for expressing the basic notions involved
in security protocols, such as secrecy, recency, and message composition, as well
as providing means (either implicitly or explicitly) for describing the evolution of
the knowledge or belief of the agents as the protocol progresses. Indeed, informal
specifications of security in the literature are typically phrased in terms of knowl-
edge. It thus seems natural to use a specification language where specifications are
written directly in terms of knowledge. Knowledge specifications also have other
advantages. They tend to be more abstract, since they need not specify exactly how
the agents obtain knowledge. For instance, it is easy to write a property that says
that an adversary never knows a key, instead of writing a property saying that the
adversary never receives the key unencrypted, or never finds the key sitting in a
database, and so on.

There is of course another aspect to security protocols analysis. Every logic for
reasoning about security protocols aims at proving security in the presence of ma-
licious adversaries. To analyze the effect of adversaries, a security logic specifies
(again, either implicitly or explicitly) amdversary modelhat is, a description of
the capabilities of adversaries. Almost all existing logics are based the Dolev-Yao
adversary model already described in Section 6.2. Recall that a Dolev-Yao adver-
sary can compose messages, replay them, or decipher them if he knows the right
keys, but cannot otherwise “crack” encrypted messages.

135
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The Dolev-Yao adversary is a useful abstraction, in that it allows reasoning about
protocols without worrying about the actual encryption scheme being used. It
also has the advantage of being restricted enough that interesting theorems can
be proved with respect to security. However, in many ways, the Dolev-Yao model
is too restrictive. For example, it does not consider the information an adversary
may infer from properties of messages and knowledge about the protocol that is
being used. Recall the Duck-Duck-Goose protocol of Section 6.2: an agent has an
n-bit key and, according to her protocol, sends the bits that make up her key one
by one. Of course, after intercepting these messages, an adversary will know the
key. However, there is no way for security logics based on a Dolev-Yao adversary
to argue that, at this point, the adversary knows the key. Another limitation of the
Dolev-Yao adversary is that it does not easily capture probabilistic arguments. Af-
ter all, the adversary can always be lucky and gustsghe appropriate key to use,
irrespective of the strength of the encryption scheme.

The importance of being able to reason about adversaries with capabilities be-
yond those of a Dolev-Yao adversary is made clear when looking at the sometimes
subtle interactions between the cryptographic protocol and the encryption scheme.
It is known that various protocols that appear secure under a symbolic encryption
scheme can be insecure when implemented using encryption schemes with specific
properties. A more refined logic for reasoning about security protocols will have to
be able to handle adversaries more general than the Dolev-Yao adversary. Because
they effectively build in the adversary model, existing formal methods for analyz-
ing protocols are not able to reason directly about the effect of running a protocol
against adversaries with properties other than those built in.

In this chapter, we describe a logic for reasoning about security protocols that
allows an explicit and natural modeling of adversaries. The idea, which should be
unsurprising at this point, is to model the adversary in terms of what the adversary
knows. This approach has some significant advantages. Logics of knowledge have
been shown to provide powerful methods for reasoning about trace-based execu-
tions of protocols. They can be given semantics that is tied directly to protocol
execution, using the models introduced in the last chapter, thus avoiding problems
of having to analyze an idealized form of the protocol. A straightforward applica-
tion of logics of knowledge leads to the conclusion that in the Duck-Duck-Goose
protocol, the adversary knows the key. Logics of knowledge can also be extended
with probabilities so as to be able to deal with probabilistic phenomena. Unfor-
tunately, as we saw in Chapter 2, traditional logics of knowledge suffer from a
well-known problem known as thegical omniscienceroblem: an agent knows
all tautologies and all the logical consequences of her knowledge. The reasoning
that allows an agent to infer properties of the protocol also allows an adversary to
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deduce properties that cannot be computed by realistic adversaries in any reason-
able amount of time.

This is exactly the motivation for explicit knowledge, and the particular approach
described in Chapter 2, algorithmic knowledge: assume that agents (including ad-
versaries) have “knowledge algorithms” that they use to compute what they know.
The capabilities of the adversary can be captured by his algorithm. Hence, Dolev-
Yao capabilities can be provided by using a knowledge algorithm that can only
compose messages or attempt to decipher them using known keys. By changing the
algorithm, the capabilities of the adversary can be extended, so that he can attempt
to crack encrypted messages by factoring (in the case of RSA), using cryptanal-
ysis, or just by guessing keys. Moreover, the algorithmic knowledge framework
can also handle the case of an agent sending the bits of his key, by providing the
adversary’s algorithm with a way to check whether this is indeed what is happen-
ing. By explicitly using algorithms, it is possible to analyze the effect of bounding
the resources of the adversary, and thus make progress toward bridging the gap
between the symbolic analysis of cryptographic protocols and more computational
accounts of cryptography. (See Chapter 10.) Note that both traditional knowledge
and algorithmic knowledge are necessary in the analysis. Traditional knowledge
is used to model an agent’s beliefs about what can happen in the protocol; algo-
rithmic knowledge is used to model the adversary’s computational limitations (for
example, the fact that he cannot factor).

The focus of this work is on developing a general and expressive framework for
modeling and reasoning about security protocols, in which a wide class of adver-
saries can be represented naturally. Therefore, we emphasize the expressiveness
and representability aspects of the framework, rather than studying the kind of
security properties that are useful in such a setting, or developing techniques for
proving that properties hold in the framework. These are all relevant questions that
need to be pursued once the framework proves useful as a specification language.
We will return to this point in Chapter 10.

8.1 The Logic

The goal is to be able to reason about properties of security systems as defined in
Section 7.1, including properties involving the knowledge of agents in the system.
To formalize this type of reasoning, we first need a language. Take as a base
language the logi€ > of Chapter 2. Recall that starting with a ggf of primitive
propositions, which we can think of as describing basic facts about the system,
such as “the key i8” or “agent A sent the message to B”, formulas of LE*(®y)
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are formed by closing off under negation, conjunction, and the modal operators
Ki,..., K,andXq,..., X,.

Recall thatLE* is given a semantics in terms of algorithmic knowledge struc-
tures. A system can be viewed as an algorithmic knowledge structure, once we
add a functionr telling us how to assign truth values to the primitive proposi-
tions, and add knowledge algorithms for the agents.irAarpreted algorithmic
knowledge systefhis a tuple(R, 7, A, ..., A,), whereR is a systemg is an in-
terpretation for the propositions iy, anda; is the knowledge algorithm of agent
i. The interpretationr assigns truth values to the primitive propositions at the
global states. Thus, for evepye ®, and global state that arises iriR, we have
7(s)(p) € {true, false}. Of courses also induces an interpretation over the points
of R; simply taker(r,t) to bex(r(t)). We refer to the points of the systefas
points of the interpreted algorithmic knowledge systénirhe knowledge algo-
rithms are used to compute the explicit knowledge of the agents. In locallstate
the agent computes whether he knawby applying his knowledge algorithm to
input (o, £).

The interpreted algorithmic knowledge systém= (R, 7, A;,...,4A,) can be
made into an algorithmic knowledge structure by taking the possible worlds to be
the points ofR, and by defining’; so thatV;(r,t) = r;(t). Thus, agent considers
a point(r’,¢') possible at a pointr, t) if i has the same local state at both points;
thus, the agents’ knowledge is completely determined by their local states. Define
(r,t) ~; (', t") ifand only if r;(t) = 7} (t').

Define what it means for a formulato be true (or satisfied) at a poift, ¢) in
an interpreted algorithmic knowledge systénwritten (J,r,¢) |= ¢, inductively
as follows:

(9,r,t) = pif 7(r,)(p) = true

(9,m,8) b= if (9,7,0) 1

J,rt) Eenyif (3,7 t) = eand(d,rt) =9

( ) E Kipif (3,7,¢) = ¢ forall (', ') such that;(t) = r}(t')
( ) ): XZ(P if Ai(tp, T’Z'(t)) = “Yes”.

As before, the first clause shows how to use the interpretatitmdefine the se-
mantics of the primitive propositions. The next two clauses, which define the se-
mantics of- and A, are the standard clauses from propositional logic. The fourth
clause is designed to capture the intuition that agé&nbwsy exactly if ¢ is true
in all the worlds that thinks are possible. The last clause captures the fact that
explicit knowledge is determined using the knowledge algorithm of the agent.

To reason about security protocols, consider a specific set of primitive proposi-
tions &5 C Po:
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— send;(m): agenti sent message.
— recv;(m): agenti received message
— has;(m): agenti has message.

Intuitively, send;(m) is true when agernithas sent a message containingit some
point, recv;(m) is true when agent has received message at some point, and
has;(my) is true if agent has received a message such thatn; T mo. Note
that thehas; predicate is not restricted by issues of encryption: since {m},
the has; predicate characterizes the messages that ageas implicitly in his
possession, given the messages that he has received.

An interpreted algorithmic knowledge security systasnsimply an interpreted
algorithmic knowledge systeth= (R, m,A;,...,A,) whereR is a security sys-
tem, andr is anacceptablénterpretation, that is, it gives the following fixed inter-
pretation for the primitive propositions ij:

— m(r,t)(send;(m)) = true if and only if there existg andm’ such thatn C m’
andsend(j,m’) € r;(t)

— 7(r,t)(recvi(m)) = true if and only if recv(m) € r;(t)

— m(r,t)(has;(m)) = true if and only if there existsn’ such thatn C m' and
reco(m') € r;(t).

What properties can we express using the above language? The property that
will be the focus of this chapter is that of confidentiality of messages, as described
in Section 6.3. Intuitively, confidentiality guarantees that throughout a protocol
interaction, the adversary does not come to know a particular message. Confiden-
tiality properties are stated naturally in terms of knowledge, for example, “dgent
knows that the key: is a key known only to agert and himself”. Confidential-
ity properties are well studied, and central to most of the approaches to symbolic
reasoning about security protocols. Higher-level security properties, such as au-
thentication properties, can often be derived from confidentiality properties.

To illustrate some of the issues involved, consider the Needham-Schroeder pub-
lic key authentication protocol, which was presented in Section 1.2;

1. A— B : {na,A}r,
2. B— A : {na,np,Bl},
3. A— B : {nplig-

This protocol uses asymmetric cryptography, andandk p are agentd and B’s
respective public encryption keys. The values andnp are nonces, which are
assumed to be unpredictable. The confidentiality property of this protocol can be
expressed informally as follow: under suitable assumptions on the keys known to
the adversary and the fact th&tis running his part of the protocaf knows that
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n4 andnp are kept confidential between her aBd From this, it is possible to
derive an authentication property, namely tdatnows that she is interacting with
B, because she has received a message containing’hich only B could have
produced. SimilarlyA also knows that wheB receives her messagg will know
that he is interacting witl, because only knows the nonce g which is part of
the last message. Similar reasoning can be applidel tohis argument relies on
the confidentiality of the nonces, andn;. Using knowledge, this is simply the
fact that no agent but and B knowshas;(n4) or has;(ng).

However, the knowledge operator suffers from the drawback of logical omni-
science. More specifically, at every point where an adversariercepts a mes-
sage{na,np, Blr,, thenK;(has;(na)) is true (sinceny T {na,np, Bltk,).
and hence the adversary knows that he has seen the nondaespectively of
whether or not he knows the decryption key correspondingstoThis is clearly
not a desirable result. The adversary having the implicit knowledge:thét part
of the message does not suffice, in general, for the adversexpligitly know that
n 4 is part of the message. Intuitively, the adversary may not have the capabilities
to realize he has seery.

A more reasonable interpretation of confidentiality in this particular setting is
expressed by X;(has;(n4)), that is, the adversary does not explicitly know (can-
not compute) whether he has seen the nongeMost logics of security introduce
special primitives to capture the fact that the adversary can see a message
crypted with keyk only if he has access to the ké&y Doing this hardwires the
capabilities of the adversary into the semantics. Changing these capabilities re-
quires changing the semantics. With algorithmic knowledge, we simply need to
supply the appropriate knowledge algorithm to the adversary, capturing his capa-
bilities. In the following section, we examine in more detail the kind of knowledge
algorithms that correspond to interesting capabilities.

8.2 Passive Adversaries

As we outlined in Sections 7.1 and 8.1, interpreted algorithmic knowledge security
systems provide a foundation for representing security protocols, and support a
logic for writing properties based on knowledge, both traditional and algorithmic.
For the purposes of analyzing security protocols, traditional knowledge models an
agent’s beliefs about what can happen in the protocol, while algorithmic knowledge
models the adversary’s capabilities, possibly resource-bounded. We have not said
anything yet as to what kind of algorithms are useful, short of the fact that we

L Strictly speaking, it may make more sense to talk about belief in the confidentiatity ahdr 5 rather than

belief. For simplicitly, we will talk about knowledge in this chapter, but most of what we say about knowledge
can be said about belief.
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typically care about sound knowledge algorithms. For the purpose of security, the
knowledge algorithms given to adversaries are the most important, as they capture
the facts that adversaries can compute given what they have seen. In this section,
we show how we can capture different capabilities for the adversary rather naturally
in this framework. We first show how to capture the standard Dolev-Yao model
of adversary. We then show how to account for adversaries in the Duck-Duck-
Goose protocol, as well as adversaries that can perform self-validating guesses
(also known as offline-dictionary attacks).

For this section, assume a passive (or eavesdropping) adversary, that simply
records every message exchanged by the agents. For simplicity, assume a sin-
gle adversary per system; our results extend to the general case immediately, but
the notation starts becoming cumbersome. Passive adversaries can be modeled
formally as follows. Aninterpreted algorithmic knowledge security system with
passive adversary (for a € {1,...,n}) is an interpreted algorithmic knowledge
security systeri = (R, m, Ay, ..., A,) such that for all point$r, ¢), the following
constraints are satisfied:

P1. ro(t) consists only ofrecv(u) events;
P2. there exists an everdcv(u) in r4(t) for every eventend(j, u) in r;(t),
for all ;.

P1 captures the passivity of the adversary—he can only receive messages, not send
any; P2 says that every message sent by an agent is copied to the adversary’s local
state.

The only thing that remains to be done now is to define the capabilities of the
adversary to derive information from those messages in his local state. This is done
by defining suitable knowledge algorithms.

8.2.1 The Dolev-Yao Adversary

Recall that the Dolev-Yao adversary model is a combination of assumptions on the
encryption scheme used and the capabilities of the adversaries. Specifically, the
encryption scheme is taken to be the symbolic encryption scheme generaked by
andX, while the capabilities are given by the derivatiin-,,, m indicating that
messagen can be derived from the set of messagesising the inference rules
described in 6.2.

To capture the capabilities of a Dolev-Yao adversary, we specify how the ad-
versary can tell if he in fachasa message, by defining a knowledge algorithm
APY for adversaryi. Recall that a knowledge algorithm for agéritkes as input
a formula and agents local state (which by assumption contains the messages
received byi). The most interesting case in the definitionAgf is when the for-
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submsg(m,m’, K) = if m = m/ then
returntrue
if m’is {my}, andk~! € K then
returnsubmsg(m, my, K)
if m’ is (my,m2) then
returnsubmsg(m, my, K) V submsg(m, mg, K)
returnfalse

getkeys(m, K) = if m € XK then
return{m}
if m’is {my}, andk~! € K then
returngetkeys(mq, K)
if m’ is (my,m2) then
returngetkeys(mq, K) U getkeys(ma, K)
return{}

keysof (¢) = K « initkeys({)
loop until no change ik
K~ | getkeys(m,K)
recv(m)€L
return K

Figure 8.1. Dolev-Yao knowledge algorithm auxiliary functions

mula ishas;(m). To computeA?” (has;(m), £), the algorithm simply checks, for
every messager’ received by the adversary, whetheris a submessage of/,
according to the keys that are known to the adversary. Assume that the adversary’s
initial state consists of the set of keys initially known by the adversary. This will
typically contain, in a public-key cryptography setting, the public keys of all the
agents. The functiomnitkeys(¢) denotes the set of initial keys known by agent

7 in local statef. (Recall that a local state for agehis the sequence of events
pertaining to agent, including any initial information in the run, in this case, the
keys initially known.) Checking whether is a submessage of’ is performed

by a functionsubmsg, which can take apart messages created by concatenation, or
decrypt messages as long as the adversary knows the decryption key.

AYY (has;(m), ) = if m € initkeys(¢) then return “Yes”
K = keysof (£)
for eachrecv(m’) in ¢
if submsg(m,m’, K) then
return “Yes”
return “No”.
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The auxiliary functions used by the algorithm are given in Figure 8.1.

According to the Dolev-Yao model, the adversary cannot explicitly compute
anything interesting about what other messages agents have. Hence, for other
primitives, includinghas;(m) for j # i, AP returns “?”. For formulas of the
form K and Xy, AP also returns “?”. For Boolean combinations of formulas,
APY returns the corresponding Boolean combination (where the negation of “?” is
“?”, the conjunction of “No” and “?” is “No”, and the conjunction of “Yes” and
“?” is “?”) of the answer for eaclhas;(m) query.

The following result shows that an adversary usifij recognizes (i.e., returns
“Yes” to) has;(m) in state/ if and only if m exactly the messages determined to
be in the set of messages that can be derived (according,tpfrom the messages
received in that state together with the keys initially known, Moreover,if(m)
formula is derived at the poirit, t), the has;(m) is actually true afr, ¢) (so that
APY is sound).

Theorem 8.1.Let] = (R, 7, Ay, ..., A,) be aninterpreted algorithmic knowledge
security system whetg = APY. Then(J,r,t) = X;(has;(m)) if and only if{m |
recv(m) € ri(t)} Uinitkeys(ri(t)) Fpy m. Moreover, if(J,r, t) = X;(has;(m))
then(J,r,t) = has;(m).

In particular, for an interpreted algorithmic knowledge security system with a
passive adversary with A, = ALY, Proposition 8.1 captures the knowledge of a
passive Dolev-Yao adversary.

8.2.2 The Duck-Duck-Goose Adversary

The key advantage of our framework is that it is easy to change the capabilities
of the adversary beyond those prescribed by the Dolev-Yao model, to incorporate
protocol-specific knowledge, for instance. In the Duck-Duck-Goose example, as-
sume that the adversary maintains in his local state a list of all the bits received
corresponding to the key of the other agent. Itis easy to write the algorithm so that

if the adversary’s local state contains all the bits of the key of the other agent, then
the adversary can decode messages that have been encrypted with that key. Specif-
ically, assume that ke is being sent in the Duck-Duck-Goose example. Then for

an adversary, has; (k) will be false until all the bits of the key have been received.
This translates immediately into the following algoritfarPe:

APPS(has;(k), ) = if all the bits recorded irf form % then
return “Yes” else return “No”.

AP handles other formulas in the same waygs.
Of course, nothing keeps us from combining algorithms, so that we can imagine



144 8 A Logic for Reasoning about Security Protocols

an adversary intercepting both messages and key bits, and using an alggrithm
which is a combination of the Dolev-Yao algorithm and the Duck-Duck-Goose
algorithm, such as:

Ai(p,0) = if APY(p,f) = “Yes” then
return “Yes”
else returm?™ (o, £).

This assumes that the adversary knows the protocol, and hence knows when the key
bits are being sent. The algorithm above captures this protocol-specific knowledge.

8.2.3 The Lowe Adversary

For a more realistic example of an adversary model that goes beyond Dolev-Yao,
consider the following adversary model, due to Gavin Lowe, that permits the anal-
ysis of protocols subject to offline guessing attacks. The intuition is that some
protocols provide for a way to “validate” the guesses of an adversary. For a simple
example of this, here is a simple challenge-based authentication protocol:

1. A—S : A
2. S—A : ng
3. A—S : {ng}p,.

Intuitively, A tells the servelS that she wants to authenticate herselfreplies
with a challenge:;. A sends back t&' the challenge encrypted with her password
pq- Presumablys knows the password, and can verify that she §ets,,,. Unfor-
tunately, an adversary can overhear beffand{n,},,, and can “guess” a valug
for p, and verify his guess by checking{if.s }; = {ns},,. The key feature of this

kind of attack is that the guessing (and the validation) can be performed offline,
based only on the intercepted messages. A well known variant of this problem
is the problem of weak passwords, that is, passwords that can be verified offline
using a dictionary. Dictionary attacks can be modeled using offline guessing, by
assuming that the dictionary is part of the initial state of the adversary.

To account for this capability of adversaries is actually fairly complicated. We
present a slight variation of Lowe’s description, mostly to make it notationally
consistent with the rest of the section.

Lowe’s model relies on a basic one-step reduction functyon, m, saying that
the messages if can be used to derive the message This is essentially the
same as$ 5y, except that it represents a single step of derivation. Moreover, the
relation is “tagged” by the kind of derivation performet (

{m, k} >enc {m}x
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{{m}lwkil} D>dec M
{(m1,m2)} Dt M1

{(m17 mQ)} >snd 1M2.

Lowe also includes a reduction to deriye, m2) from m; andmsy. We do not
add this reduction to simplify the presentation. It is straightforward to extend the
work in this section to account for this augmented derivation.

Given a setH of message, and a sequenaef one-step reductions, define in-
ductively the sefH],; of messages obtained from the one-step reductions given in
t:

[H]y =H

[HU{m}]; ifSCH
[H]<S>lm>-t = .
undefined  otherwise.

Here,() denotes the empty trace, ahdt, denotes trace concatenation. A trace
said to bemonotonef, intuitively, it does not perform any one-step reduction that
“undoes” a previous one-step reduction. For example, the redugtioh } > {m}
undoes the reductiof{m}, k~1} > m.

A set H of messagesalidatesa guessn if, intuitively, H contains enough
information to verify thatm is indeed a good guess. Intuitively, this happens if
a valuev (called a validator) can be derived from the message ia {m} in
a way that uses the guess, and either that (a) validatar can be derived in a
different way fromH U {m}, (b) the validatow is already inH U {m}, or (c) the
validatorv is a key whose inverse is derivable frathu {m}. For example, in the
protocol exchange at the beginning of this section, the adversary sees the messages
H = {ng, {ns}p, }, and we can check thdf validates the guess = p,: clearly,
{ns,m} >enc {ns}p,, and{ns},, € H U {m}. In this case, the validatdm},,
is already present itd U {m}.

We can now define the relatialf -, m that says thatn can be derived from
H by a Lowe adversary. Intuitivelyd +, m if m can be derived by Dolev-
Yao reductions, om can be guessed and validated by the adversary, and hence
susceptible to an attack. Formally, ., m if and only if H -5, m or there exists
a monotone tracé a setS, and a validatop such that

(1) [H U {m}]; is defined,

(2) Syvisint,

(3) there is no tracé such thatS C [H],/, and
(4) either:

(a) there exist$S’,l") # (S,1) with S’ >y v in t,
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guess(m, €) = H — reduce({m | recv(m) in £} U initkeys(¢)) U {m}

reds — {}

loop until reductions(H) — reds is empty
(S,1,v) « pick an element ofeductions(H) — reds
if 3(S",1',v) € reds s.t. 5" # S andl’ # [ then return “Yes”
if v € H then return “Yes”
if v € X andv~! € H then return “Yes”
reds «— reds U {(S,1,v)}
H — HU{v}

return “No”

reduce(H) = loop until no change it
r «— reductions(H)
for each(S,1,v)inr
H — HU{v}
return 4

reductions(H) = reds — {}
for each(my, ms) in H
reds — {({m},fst,m1), ({m},snd, ma)}
for eachmy, ms in H
if mo € K andsub({m1 }m,, H) then
reds «— {({m1, ma},enc, {m1 }m,
if my is {m'}; andms is k! then
reds — {({m1,mz2},dec,m’)}
returnreds

sub(m, H) = if H = {m} then returntrue
if H={(my,m2)} then
returnsub(m, {my}) V sub(m, {ma})
if H={{m'}x} then returnsub(m, {m’})
if |Hl >1andH = {m’} U H' then
returnsub(m, {m’}) v sub(m, H')
returnfalse

Figure 8.2. Lowe knowledge algorithm auxiliary functions

(b) v e HU{m},or
(c) v e Xandv~! € [HU{m}];.

We can verify that the above formalization captures the intuition about validation
given earlier. Specifically, condition (1) says that the traisewell-formed, condi-
tion (2) says that the validateris derived fromH U {m}, condition (3) says that
deriving the validatow depends on the guess, and condition (4) specifies when
a validatorv validates a guess, as given earlier.

It is straightforward to define a knowledge algoritiinto capture the capabili-
ties of the Lowe adversary. Again, the only case of real interest is ajhdes on
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input has;(m).

AY(hasi(m),£) = if AP (has;(m), ) = “Yes” then
return “Yes”
if guess(m, ¢) then
return “Yes”
return “No”.

The auxiliary functions used by the algorithm are given in Figure 8.2.
As before, we can check the correctness and soundness of the algorithm:

Theorem 8.2.Let] = (R, 7, Ay, ..., A,) be an interpreted algorithmic knowledge
security system whetg = AF. Then(J,r,t) = X;(has;(m)) if and only if {m |
recv(m) € r;(t)} U initkeys(ri(t)) . m. Moreover, if(J,r,t) = X;(has;(m))
then(J,r,t) = has;(m).

8.3 Probabilistic Adversaries

The Lowe adversary model described in Section 8.2.3 does not involve random-
ization, since the adversary needs to explicitly specify which value to guess and
validate. Another guessing model consists in extending a Dolev-Yao adversary by
allowing him to try to guess keys before determining if he has a given message.
But how should these keys be chosen? One obvious way is that they should be
chosen from the space of keys according to some probability distribution (perhaps
chosen at random).

As expected, probabilistic algorithmic knowledge can deal well with an adver-
sary who guesses keys randomly in an effort to crack an encrypted message. Con-
sider the Dolev-Yao knowledge algoritha?™, modified so as to allow for key
guesses. Assume that the key space is finite, anguetskeys(n) returnn of
these, chosen uniformly at random. Lzéi”rg(") be the result of modifying the
second line o&?™ to take random guessing into account (the rg standsafatom

guess.

DY +rg(n)
Ai

(hasi(m),?) = if m € initkeys(¢) then return “Yes”
K = keysof (£) U guesskeys(n)
for eachrecv(m') € £ do
if submsg(m,m’, K) then
return “Yes”
return “No”.
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Essentially, using&?”rgw, the adversary gets to work with whatever keys he al-

ready had available, all the keys he can obtain using the standard Dolev-Yao algo-
rithm, and an additionak randomly chosen keys. Of course, if the total number
|K| of keys is large relative ta, makingn random guesses should not help much.
The algorithmic knowledge framework lets us make this precise.

An interpreted probabilistic algorithmic knowledge security system is the obvi-
ous generalization of an interpreted algorithmic knowledge security system, along
the lines developed in Chapter 4 to give a semantics to randomized knowledge
algorithms.

Theorem 8.3.Suppose that = (R, 7, A, ..., A% v) is an interpreted probabilis-

tic algorithmic knowledge security system with an adversary as agentl that

A = Af”rg(”. Let K be the number of distinct keys used in the messages in
the adversary’s local state;(t) (that is, the number of keys used in the messages
that the adversary has intercepted at a paintt)). Suppose thai(/|X| < 1/2

and thatv is the uniform distribution on sequences of coin tossed, If, t, v) =
—K;X;(has;(m)), then(d,r, t,v) |= Pr(X;(has;(m))) < 1 — e~ 2K/1X1, More-
over, if(J,r,t,v) = X;(has;(m)) then(g,r,t,v) = has;(m).

Theorem 8.3 says that what we expect to be true is in fact true: random guessing
of keys does not help much (at least, if the number of keys guessed is a small frac-
tion of the total numbers of keys). In other words, if it is possible that the adversary
does not have algorithmic knowledge sf, then the probability that it has algo-
rithmic knowledge is low. While this result just formalizes our intuitions, it does
show that the probabilistic algorithmic knowledge framework has the resources to
formalize these intuitions naturally. More importantly, it allows us to characterize
an adversary without being limited to Dolev-Yao style adversaries.

8.4 Active Adversaries

In the last section, we were concerned with describing the capabilities of adver-
saries in term of deriving explicit information from messages stored in their lo-

cal state. The adversaries were assumed passive, intercepting every message ex-
changed by the protocol participants. Eavesdropping adversaries can breach confi-
dentiality of messages.

There are many attacks on security protocols that do not necessarily involve a
breach of confidentiality. For instance, some authentication properties aim at en-
suring that no adversary can pass himself off as another agent. This presumes that
the adversary is able to interact with other agents. Even as as far as confidential-
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ity is concerned, an active adversary can attempt to manipulate other agents into
revealing secrets.

Active adversaries are more complex to reason about, since they interact with
other agents. Moreover, there is the question of exactly what messages they can
send. The answer depends of course on their capabilities, which are already cap-
tured using knowledge algorithms. Formally, at a local state adversary using
knowledge algorithm,; can construct the messag€sns;(¢), defined to be the
closure undef-} and(-, -) of the set{m | A;(has;(m),¢) = “Yes"} of messages
the adversary has. Thus, we can use the knowledge algorithm describing the capa-
bilities of the adversary not only in the specification language in which we write
down the security properties, but also at the level of modeling the protocol.

When modeling, it is necessary to decide whether adversaries are outsiders to
the system, or insiders. Recall from Section 6.2 that an insider is an adversary that
other agents know about, and with whom they can initiate interactions.

Consider the case where there is a single active adversary. (The definitions gen-
eralize to the multiple adversaries case immediately.)im@rpreted algorithmic
knowledge security system with active (insider) adversdfgra € {1,...,n})is
an interpreted algorithmic knowledge security sysfem (R, 7, A4, ..., A,) such
that for all points(r, ), the following constraints are satisfied:

Al. for everyrecv(m) € rq(t), there is a correspondingnd(j,w) in r;(t)
for somes;

A2. for everysend(j,m) € rq(t), we havem € Cons,(rq(t)).

Al says that every message sent by the agents can be intercepted by the adversary,
and end up in the adversary’s local state, rather than reaching its destination. A2
says that every message sent by the adversary must have been constructed out of the
messages in his local state according to his capabilities. (Note that the adversary
can forge the “send” field of the messages.)

To accomodate outsider adversaries, it suffices to add the restriction that no mes-
sage is sent directly to the adversary. Formallyirderpreted algorithmic knowl-
edge security system with active (outsider) adversaffor a € {1,...,n}) is
an interpreted algorithmic knowledge security system with an active insider adver-
sarya J = (R, 7, Aq,...,A,) such that for all point$r, ¢) and for all agents, the
following additional constraint is satisfied:

A3. for everysend(j,m) € ri(t), j # a.
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8.5 The Logical Approach

We have presented a framework for security analysis using algorithmic knowledge.
The knowledge algorithm can be tailored to account for both the capabilities of the
adversary and the specifics of the protocol under consideration. Of course, it is al-
ways possible to take a security logic and extend it indhocway to reason about
adversary with different capabilities. Our approach has many advantageadver
hocapproaches: it is a general framework (changing the algorithm used by the ad-
versary changes his capabilities), and it permits reasoning about protocol-specific
issues (such as the agent sending the bits of its key). Another advantage of our
approach is that it naturally extends to the probabilistic setting. For instance, prob-
abilistic protocols are easily handled, by considering multiagent systems with an
associated probability distribution on the runs. Randomized knowledge algorithms
can also be handled, using the techniques developed in Chapter 4.

One natural question that remains is whether there is in fact a need for formal
logics for reasoning about security. After all, many of the approaches described
in Chapter 6 are not based on a logical specification language, and are certainly
successful. In the remainder of this section, let me attempt to motivate the logical
methodology.

First, what do we mean by logic for reasoning about a phenomenon? There are
essentially two (not incompatible) views on the role of logics. The first view is
that a logic captures valid patterns of reasoning about a particular phenomenon,
where the models simply “justify” the reasoning process. The second view starts
with a structure, which is used to capture abstractly a situation. The logic provides
a language in which to write down properties of the structure. Of course, these
two views are intimately related, but they have distinct methodologies. In this
dissertation, we have mostly subscribed to the second view, and structured my
arguments accordingly.

Of course, the structure-centric view begs a question: why should we bother in-
troducing a formal language to reason about the structure, since we could do our
reasoning directly on the structure, using standard mathematical techniques? This
is the approach used, for instance, in probability theory and in economics. There
are at least two reasons for advocating a logic. First, it provides a formal language
for capturing certain notions independently of a particular structure. For instance,
authentication can sometimes be established by proving that two agents share se-
crets initially known to the individuals only. In a different context, authentication
corresponds to a different property of the abstract model representing the situation.
Having a formal language gives us the possibility of writing down a formula that
captures authentication in general, meaningful across different models. Secondly,
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a formal language provides the structure for deriving proofs, either via the proof
theory of the logic, or by induction on the structure of formulas in the language.

Therefore, there is a distinction between reasoning directly about a phenomenon
over a particular structure, and using a formal language capturing the phenomenon
in question. While we advocate the use of a formal language in this dissertation,
there is the second question of the appropriate language to use. There are at least
two choices. The first, which is the one we follow in this dissertation, is to intro-
duce a special-purpose logic for reasoning about the phenomenon of interest. This
involves carefully choosing the structures with which to capture the particulars of
the real-world phenomenon being studied, and then carefully choosing the logical
operators with a suitable and natural semantics. The language also has to be ex-
pressive enough to express the specifications of interest. The second alternative is
to use a generic logic, such as first-order logic or higher-order logic. The advantage
of using, say, higher-order logic is that most of mathematics is directly available,
since much of it can be formalized in higher-order logic. Moreover, there exists
theorem proving environments for higher-order logic that provide tools for prov-
ing theorems semi-automatically. Such an approach is therefore useful for proving
hard (or tedious) theorems about particular situations. However, this is just highly
formalized reasoning about a particular structure. Most of the criticisms laid out
about reasoning directly about structures apply here, in that it may become diffi-
cult to highlight the commonality between different structures when reasoning at
the level of the structures themselves—even if this reasoning is done via a for-
malized notation rather than informal mathematics. Finally, expressive logics such
as higher-order logic are typically highly undecidable, as opposed to hand-crafted
logics, which can often be tailored to be decidable.

Notes

Most of the work in this chapter first appeared in [Halpern and Pucella 2002],
except for Section 8.3, which first appeared in [Halpern and Pucella 2003c].

While we focus on confidentiality and authentication properties in this disserta-
tion, we should point out that the models described in Chapter 7 and the epistemic
core of the logic in this chapter have been used to reason about other security
properties, such as information flow and anonymity [Halpern and O’Neill 2002;
Halpern and O’Neill 2003]. Halpern and O’Neill [2002], in particular, present a
knowledge-based definition of secrecy that goes beyond the kind of confidential-
ity property studied here. (They do not take cryptography into account, however.)
Higher-level security properties, such as authentication properties, can often be
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established via confidentiality properties; Syverson and Cervesato [2001] discuss
some of these issues.

The adversary in Section 8.2.3 was introduced by Lowe [2002]. We refer the
reader to the original paper for a discussion of the design choices, for details on
undoing reductions, and for a discussion of implementation issues.

The Dolev-Yao adversary is the most widespread adversary in the literature. Part
of its attraction is its tractability, making it possible to develop formal systems to
automatically check for safety with respect to such adversaries [Millen, Clark, and
Freedman 1987; Mitchell, Mitchell, and Stern 1997; Paulson 1998; Lowe 1998;
Meadows 1996]. The idea of moving beyond the Dolev-Yao adversary is not new.
Other approaches offer some possibility of extending the adversary model. For
instance, the framework of Paulson [1998], Clarke, Jha and Morrero [1998], and
Lowe [1998] describe the adversary via a set of derivation rules, which could be
modified by adding new derivation rules.

There are other approaches that weaken the Dolev-Yao adversary assumptions
either by taking concrete encryption schemes into account, or at least by adding
new algebraic identities to the algebra of messages. Bieber [1990] does not assume
that the encryption scheme is a free algebra, following an idea due to Merritt and
Wolper [1985]. Even et al. [1985] analyze ping-pong protocols under RSA, taking
the actual encryption scheme into account. The apptiedlculus of Abadi and
Fournet [2001] permits the definition of an equational theory over the messages
exchanged between processes, weakening some of the symbolic encryption scheme
assumptions when the applieecalculus is used to analyze security protocols.

Most frameworks for reasoning about security protocols using knowledge or
belief have had to circumvent the logical omniscience problem. In the context of
security, this has taken the form of using different semantics for knowledge, either
by introducing hiding operators that hide part of the local state for the purpose
of indistinguishability (as done, for example, in [Abadi and Tuttle 1991]), or by
using notions such asvarenes$Fagin and Halpern 1988] to capture an intruder’s
inability to decrypt [Accorsi, Basin, and Vigan2001]. The use of awareness
by Accorsi et al. [2001] is not motivated by the desire to model more general
adversaries, but by the desire to restrict the number of states one needs to consider
in models. Halpern, Moses and Tuttle [1988] analyze zero-knowledge protocols
using a notion of resource-bounded knowledge defined by Moses [1988].
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Epistemic Foundations of Security Protocols

HE logic we described in the last chapter was based on a formal notion of
knowledge. Of course, this is not the first attempt at basing a logic for se-

curity protocol analysis on epistemic notions. For the past fifteen years, there has
been an intuition in the world of security that formal theories of knowledge and
belief should have something interesting to say about security protocols, and cryp-
tographic protocols in particular. One of the earliest and the most discussed is
BAN logic, which we already described in Section 6.4.3. As we pointed out, BAN
has been the subject of many criticisms, mostly in connection with its verification
method based on idealization.

Other approaches to the formal analysis of security protocols have emerged in
recent years that seem to provide stronger correctness guarantees than BAN logic.
These approaches, many of which were described in Chapter 6, work by reasoning
directly about the behaviour of adversaries, which cannot be done in BAN. These
more recent approaches do not make explicit use of logics of knowledge and belief,
and yet have been quite successful, arguably more so than approaches based on
epistemic notions. One might therefore ask whether the intuitions about the utility
of using knowledge and belief to reason about security protocols were misplaced.

We argue in this chapter that epistemic notions are in fact needed in any anal-
ysis of security protocols. We focus on a particular problem: in order to analyze
protocols that use nonces, we need to make precise the properties of these nonces.
We proceed by analyzing the well-known Needham-Schroeder public key authen-
tication protocol, already introduced in Section 1.2, under the standard Dolev-Yao
adversary model. This shows that the Dolev-Yao model does not capture some
of the key intuitions underlying the Needham-Schroeder protocol—in particular,
it leads to unreasonable conclusions about who must have sent certain messages.
Since these conclusions follow from the Dolev-Yao model, they must be reached
by any approach based on this adversary model (the majority of the approaches
described in Section 6.4). This raises concerns about the interpretation of what has

153
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been proved. To address these concerns, we formulate a variant of the Dolev-Yao
model in which the adversary can guess nonces. We show that, in such a model,
it does not suffice that a nonce besh(that is, that a nonce be a new message,
different from any other previously seen message). If this were enough, nonces
could be taken to be sequence numbers. A nonce must alsgdoedictable Un-
predictability is an inherently epistemic notion; we show how it can be modeled in
the logic of Chapter 8, extended with probability and time.

An additional argument for the suitability of such a logic to the purpose of secu-
rity protocol specification is also provided; it is straightforward to capture higher-
level security notions that seem useful when reasoning about protocols. The BAN
logic resulted from a careful analysis of notions useful for protocol analysis. We
show how to recover BAN logic by defining a translation from BAN forulas to
formulas of our logic. This establishes, among other things, the expressive power
of our framework. It also helps illuminate the assumptions underlying BAN, and
more importantly provides insight into notions that are useful for protocol analysis.

How can we justify that we have captured the meaning of the BAN operators?
The original presentation of BAN gave axioms characterizing some properties
of the operators, supplemented with informal descriptions of their meaning. We
would certainly expect that our interpretation of each BAN operator satisfies the
same axioms as the original BAN operator. We show that the (translated versions
of) the BAN axioms are indeed sound with respect to a restricted class of semantic
models that capture our proposed guessing Dolev-Yao adversary behaviour. The
need to consider this restricted class of models is not an artifact of our interpreta-
tion, but is a consequence of assumptions built into BAN.

Of course, it is not enough to show that the BAN axioms are validated. We also
show that the “meaning” of the operators is similar. This cannot be established
formally, since BAN did not provide a formal meaning for their operators. We pro-
vide some evidence for the reasonableness of our translation by showing how our
logic handles the Needham-Schroeder protocol alreeady presented in Section 1.2.
We show that the Needham-Schroeder protocol generates a model that satisfies
the (translated version of the) specifications for the protocol given in the original
BAN analysis of this protocol. Significantly, the reasoning makes no use of the
idealization step that has frequently been argued to be one of the weakest points of
BAN.

We emphasize that we are not attempting to give a full reconstruction of BAN.
And we certainly do not claim that BAN’s choice of primitives was the “right” set.
There has been a debate in the literature about what the appropriate set of primi-
tives for a security logic should be. Our view is that, where possible, one should
minimize the number of primitives, and use constructs that are well understood
and have utility in a broader domain. One advantage of expressing higher-level
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operators in terms of simpler primitives, such as those provided by the logic of the
previous chapter (extended with time and probability), is that it provides a basis for
extending the higher-level operators to more general situations.

Why focus on BAN at all? The BAN operators are an attempt to clarify the
intuitive notions that arise when reasoning about security protocols: belief, trust,
freshness, jurisdiction. Therefore, they seem like reasonable candidates for the
higher-level security notions that we claim to be able to capture. However, we be-
lieve that the epistemic approach and the insights that we obtain from it go well
beyond BAN, and should be relevant for any formal attempt to reason about secu-
rity.

9.1 Nonces, Uniqueness, and Unpredictability

Recall from Section 1.2, the following version of the Needham-Schroeder public
key authentication protocol, without a server, which we call the SNS protocol (for
“simplified Needham-Schroeder”):

1. A—B : {na,A}i,
2. B— A : {]nA,nB[}kA
3. A—B : {npli,-

It presumes that agents and B know each other’s public keys, denotkgd and

kg, respectively. Heren 4 andnp are nonces, ankly andkpg are the public keys

of agentsA and B, respectively. The claim is that, at the end of this protocol,
A and B know that they have communicated with each other. The protocol also
establishes 4 andnp as secrets known only té and B.

Assume a context where the adversanjis not an insider. In other words, the
initiator A of the protocol will will never try to authenticate herself 2. The
adversary can of course intercept messages, but no message is addressed explicitly
to him. (We saw in Section 1.2 that the original SNS protocol is vulnerable to a
man-in-the-middle attack when the adversary is an insider. We do not focus on this
attack in this chapter, although it can certainly be captured in our framework.)

We concentrate on the Dolev-Yao adversary model described in Section 6.2,
since it essentially underlies the BAN approach and most other approaches to sym-
bolic protocol analysis. Recall that this model is a combination of assumptions
on the encryption scheme and the capabilities of the adversaries. The encryption
scheme is the symbolic encryption scheme of Section 6.1, that is, the free algebra
generated by the plaintext and the keys, using the operations of pairing, encryp-
tion, and decryption. It follows that it is always possible in this model to determine
whether a message is a plaintext, a pairing, or an encrypted text. There are also
no collisions; messages always have a unique decomposition. The adversary is
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allowed toextractmessages (from messages he has intercepted) by taking apart
pairings and decrypting encrypted messages if he knows the decryption key, and
is allowed toconstructnew messages (from messages he has been able to extract)
by pairing and by encryption using known encryption keys. The adversary, how-
ever, is not allowed to guess keys, guess nonces, or attempt to “crack” encrypted
messages using cryptanalysis.

There have been many analyses of the SNS protocol under Dolev-Yao adver-
saries. Most analyses establish a result that can be paraphrased as follows, con-
cerning the first two messages of the protocol: “The guarantee$ &e that her
nonce remains secret from the adversary and khist present. The latter follows
from the former, for if the adversary does not knay then he could not have
sent message 2”. This is based on the interpretation of confidentiality from the
adversary given in Section 6.3—the adversary cannot derive the secret. In MSR,
the model-based approach described in Section 6.4.1, this amounts to saying that
the atomic formulal/ (n 4) does not appear in any state derivable from the initial
state, wheréd/ is the predicate representing the adversary’s knowledge. In order to
prove such a result, most approaches assume that nonces are uniquely generated.
In other words, if a protocol step calls for the generation of a nonce, then the nonce
produced is generated just once in the history. Any other instance of nonce gener-
ation, by the same agent, or by another, produces a different nonce. In MSR, this
is modeled by using the existential quantifieto produce the nonce.

These assumptions lead to somewhat odd conclusions. Consider, for example,
what can be proved about the first message of the protocol. Intuitively, what the
respondeB should learn from the first message of the protocol is that some agent,
possibly the adversary, is attempting to authenticate itsed.aghe remaining
two messages are designed to convince the responder that this agent isAn fact
The intuitive reason that the first message does not suffice is that it could have
been constructed by the adversary. However, according to the (pure) Dolev-Yao
adversary model, the adversary can send only messages constructed from what he
has been able to extract. If only SNS protocol messages are sent, the adversary is
not an insider, and the keys of the agents are not divulged, then the adversary is
never able to extract any nonce that he can use to forge a message. Thu#; agent
knows that the first message he receives was not constructed by the adversary. (The
message could still be a replay of a previous attemptilig authenticate herself
to B.) This seems to be a much stronger conclusion than is warranted by intuitions
about the protocol.

Clearly, this limitation of the Dolev-Yao model can be overcome by allowing
the adversary to use nonces that it has not been able to extract in order to construct
messages. And indeed, most approaches to security protocol analysis allow the
adversary to generate nonces that it has not extracted before. But which nonces do
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you allow the adversary to generate? MSR (and many other approaches) only allow
the adversary to generate nonces that are unique, thereby enforcing the uniqueness
assumption on nonces. This is reflected by the rule for nonce generation for the
adversary given in Section 6.4.1:

— Jx.C(z).

How reasonable is this? The choice has a number of consequences. First, the
agents may as well usequence numbegs timestampsather than nonces, since
the adversary will never be able to generate a value that already exists. It seems
counterintuitive that a given protocol using nonces and the same protocol using
sequence numbers would behave similarly in all contexts. The nonce-uniqueness
assumption is not sufficient to prove thégenerated the message. For example, if
the current sequence number is taken to be the value of the nonce, then the nonce
is unique, but completely predictable. Thus, a real adversary should be able to
forge the message. However, a Dolev-Yao adversary, even augmented with unique
nonces, would never be able to do this. To analyze the protocol correctly, it is
necessary to be able to assume that the nonces in question cannot be predicted.
Unpredictability is arepistemimotion. Roughly speaking, it means that the prob-
ability that an adversary will know the nonce is low.

As this discussion shows, we cannot sweep these epistemic concerns under the
rug if we want to get an appropriate analysis of the SNS protocol. The logic intro-
duced in Chapter 8, extended with probability and time, allows us to capture these
notions in what we believe is a reasonable way.

9.2 Temporal and Probabilistic Extensions

There are standard techniques for extending the logic of Section 8.1 with the abil-
ity to reason about time and probability. In fact, systems already incorporate time,
since they are sets of runs, and runs are functions from time to global states. To
reason about probabilities, we consigesbabilistic systemsvhere there are prob-
ability distributions on the seR of runs of the system. We do not assume a single
probability distribution oriR, since that would require a probability on the possible
protocols that the adversary is using. Rather, the idea is to paditiato subsets,
called cells; intuitively, each cell corresponds to factoring out all the choices that
are best viewed as nondeterministic (such as the choice of protocol, or the keys
used by the participants in a protocol). Assume that there is a probahilitgn
the runsR¢ of each cellC.

The logic itself is a straightforward extension of that presented in Chapter 8.
Again start with a symbolic encryption scheme. To be able to model BAN, how-
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ever, there must be sufficient structure to the space of plaintexts, namely that it
includes (representations of) formulas. Thus, assume a new set of plaintext mes-
sagessitring(y), wherey is a formula in the logic. (These propositions are needed
because BAN allows formulas to be sent as messages. Theraigmari inter-
pretation associated with these representations. They are just strings of characters.)
The syntax of the logic is extended with the formu@s, ¢, Oy, Elp, and
Pr;(¢) > «a. The temporal operatany states thap is true at the next time step,
while (¢ states thap was true at the previous time step. We use the abbreviations
Ol and @'y (for I € N) for the I-fold application of O and (>, respectively,
to . The temporal operatdrly states thatp is true at the current time and all
subsequent times. Similarlily states thaty is true at the current time and all
previous times. FinallyPr;(¢) > « says that the formula holds with probability
atleastv, according to agernit Define the usual abbreviations, suctPag ¢) < «
for =(Pr;(¢) > «), and so on.
To give semantics to formulas of the forAr;(¢) > « at a point(r, t), proceed
as follow. LetX;(r,t) be the set of points that agentannot distinguish from
(r,t), thatis, the sef(r',t) | (r,t) ~; (+',¢')}. For every rurr, there is a unique
cell C, with r € C,. Let C(r) be the set of points from the runs R, that
is, the points in the runs in the same cellrasThe prior probabilityuc on the
runsR¢ of cell C induces a probability:,.; ; on the points irkC;(r, t) N C(r) in a
straightforward way. I/ C K;(r,t) N C(r), define

po({r' | (', t) cU})
po{r' [ (1) € Ki(r,t) N C(r)})’

The satisfaction relation of a formula in an interpreted algorithmic knowl-
edge security system with probabilitigs= (R, 7, i, A1, ..., A,) at point(r,t) is
extended by the following rules:

(J,rt) E Qpliff (3,rt+1) ¢
J,rt) Epiff t >1and(J,rt—1) E ¢
I, t) EOgpiffforall ¢/ > ¢, (I,r,t') E ¢
(I, t) ECpiffforall ¢ <t, (3,r,¢) =
(3,7, t) = Pri(e) > aiff g ({(7,0) | (3,7, ) = o}nKi(r, t)NEC(r)) > a
Define the probabilistic knowledge operafdf ¢ as an abbreviation for the for-
mula K;(Pr;(¢) > 1 — «). This operator simply means that, essentially, no matter

which cell C the agent thinks the current point is in, the probabilitycoin that
cellis at leastl — «. It is easy to check that

Ik (K& AKJY) = KPP (0 A).

:U’r,t,i (U) -

Moreover, if the systerfi does not assign probabilityto any subset of the runs,
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then
I Ko e K.

In other words, if no nonempty subset of runs has probalsi|ithen knowing with
probability 1 collapses to actual knowledge.

9.3 An Interpretation of BAN

One of our claims is that the logic introduced in Section 8.1 and extended in Sec-
tion 9.2 is a good foundation for security protocol logics. To provide evidence for
this claim, we show how we can interpret the constructs of BAN logic by translat-
ing them into the simpler primitives of our logic. Doing so exposes many of the
assumptions underlying these constructs. Our translation provides evidence that
the intuitions underlying authentication logics can be given a rigorous semantic
foundation using well-understood modal operators. Although we focus here on
BAN, we believe that other related logics could be similarly reconstructed.

The set of formulag” and set of messages are defined by mutual induction,
since formulas are actually a subset of messages, and can include messages in
them. Messages are defined essentially as in Section 8.1:

m:::t|k:|n|i|(m1,m2)|{mi}k|F‘

The superscriptin {m'};, represents a “from”-field, intended to indicate the orig-
inal sender of the message. Note that BAN logic has an extra message construct,
(m?),,, representing a messagecombined with esecretm’. This is essentially

a pairing(m,m’), except for the need to account for the “from”-fieldindicat-

ing the original sender of the message. Since we do not use this construct in the
remainder of this chapter, and since accounting for it complicates the presentation
without adding insight, we do not deal with it here. Formulas are defined by the
following grammar:

F ::= i believes F
| i controls F'
| i sees m
| i said F
i
[ =
i

| fresh(m).
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Ry, _ibelieves j &i isees {FlY 141
' i believes j said F

Ry _ibelievesj & isees {F'}—1 1#1i
' 1 believes j said F
i believes fresh(F') i believes (j said F))

R3. 1 believes j believes F
i believes j controls F' i believes j believes F'
RA4. - :
1 believes F
- /
R5, _isees (F,F")
i sees F'

Re. _¢believes j &0 isees {F}p
' i sees F

R7 _ibelieves i isees {F}y,
' isees F

Rg. _ibelieves s j isees {F}y-
1 sees I
i believes fresh(F')
i believes fresh(F, F”)

R9.

Figure 9.1. BAN inference rules

The intuitive reading of the formulas is as follows. The formiiteelieves F holds

if agenti believes formulat’. The formulai controls F' means that ageritis an
authority on or has authority or jurisdiction ovEr The formulai sees m indicates
thati has received a message containing The formula; said F' indicates that
agenti at some time sent a message contairfingnd (if it was sent recently) that
i believesF. The formulafresh(m) indicates that the messageis fresh, that
is, it was sent recently. The formufa<> j means that agentsand j can use
key k to communicate (and thatis a good key). The formuld> j means that
the keyk is j's public key (and that is a good key). Finally; = j means that
messagen is a secret between ageritandj. Most logics in the BAN tradition
extend the logic, adding formulas suchiaays F (i recently saidF’), and: has k

(@ is in possession of kek). For ease of exposition, we do not consider these
modifications here.

BAN uses inference rules to derive new formulas from others. A representative
fragment of these rules is given in Figure 9.1. For instance, rule R3 says that if
believes both thak’ is fresh and thaf said it, theni also believes thagtbelievesF'.

R3 encapsulates the assumptions that statements do not change their truth value in
short intervals of time and that agents say only things that they believe to be true.

The BAN operators seem to capture the intuitive notions that arise when reason-
ing about security protocols: belief, trust, freshness, jurisdiction. The criticisms
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aimed at BAN do not argue this point, but rather focus on the lack of semantics and
on the protocol verification method. We have an additional criticism, namely, the
choice of primitive notions. We believe that there should be relatively few primi-
tive notions, with all the rest defined in terms of them. We believe that the logic
presented in the second part of this dissertation overcomes these deficiencies, while
still being able to express the key features of the BAN operators.

We now define a translation from BAN formulas to formulas in the logic of Sec-
tion 9.2. We emphasize, however, that this is not the only translation that captures
a useful interpretation of BAN; we discuss variants where appropriate. The trans-
lation takes a BAN formula and produces a family of formulas. The formulas in
the family differ only in the probability used to determine belief. A form#la is
apossible translation of if it can be produced by the translation rules below.

Because BAN formulas include messages and are messages, messages also need
to be translated; writex for a possible translation of message The translation
of messages that are not formulas is the obvious one: for a primitive message
mM = m, and(my, m2)™ = (MM, my™), wherem;™ andm, are possible
translations ofn; andm,. Translate encryptiongm®};, by treating the “from”-
field as concatenated to the end of the encrypted meséag¥; i}, wherem™ is
a possible translation ofi. A possible translation of a formul& (when viewed as
a message) istring(EFT), whereF” is a possible translation df, when viewed
as a formula.

Here is the translation of formulas of BAN logic.

— The translation fobelieves is based on the assumption that an agent oper-
ates with a set of default assumptions, expressed as a fouhuken agent’s
belief in ¢, relative to assumptiong, can then be captured by the formula
K;(A = ¢). Thatis, the agent believesrelative to assumptiond if it knows
thaty holds under assumptions The translation for the BAN logic expression
1 believes [ uses this idea, but adds probabilities. The agent’s default assump-
tions are characterized by a set of “good” runs. Intuitively, these are the runs
in which undesirable events like the adversary guessing a nonce do not occur.
Any set of runs can be taken as the good runs, but one should expect the prior
probability of the set of good runs to be high (a fact that can be expressed in
the logic). The particular choice of good runs used in proving that a protocol
satisfies a BAN logic specification will depend on the details of the protocol and
the system used to model the behaviour of the adversarygdodtbe a prim-
itive proposition that expresses “the run is good”. The possible translations of
i believes I have the formK®(good = FT), where0 < o < 1 andFT is
a possible translation of. (Note thatK !¢ is vacuously true for all.) As
we shall see, the soundness of the translation does not depend on the particular
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-

choice ofgood. In many cases of interest, we can take- 0 (in particular, this

is true for our analysis of SNS in Section 9.4); in that case, many details of the
translation below can be simplified. If all runs have positive probability (as is as
the case in the analysis of SNSif? reduces tak;; that is, we are back to the
original definition of defeasible belief.

The possible translations ¢fsees m)” have the formX;(has;(m™)), where

m™ is a possible translation of.. Here, the knowledge algorithm for agens

is doing all the work of deciding what information can be extracted from the set
of messages received.

The translation of said F' is somewhat complicated, since thaid opera-

tor is conflating a number of distinct notions that must be untangled to express
it in our logic. For one thing, it means that a message is sent. However, an
agent should not be interpreted as sayifhigzhen it sends a message containing

F encrypted under a key that the agent does not possess (this situation arises
in some protocols that rely on agents to forward server generated tickets.) To
capture this intuition, the translation sdid also incorporates the notion of ex-
traction; nothing is said that was not extracted at the time when the message
was sent. Accordingly, take a possible translation @fid F' to have the form
send;(FM)AB(=send;(FM) A Osend;(FM) = X;(has;(FM))), whereFM

is a possible translation af. The BAN reading okaid also involves claims
about belief; BAN assumes that all formulas said recently éne believed by.

This assumption is not part of the translation, but is captured in the systems for
which the translation is proved sound, by imposing an “honesty” requirement.

Capturing that is a good key betweehand; depends on what is meant by
“good key”. There are at least two interpretations. One interpretation is that
“no one buti and j sends messages encrypted withfor the length of the
protocol interaction. Another possible interpretation is that no one other than
possibly; andj has extracted the key. Both interpretations can be encoded, but
the second, while stronger, seems more in keeping with the intuitive reading of
k being a good key. Roughly, if a key is leaked to an adversary that never uses
it to encrypt messages, BAN would consider the key a good key, despite the
adversary being able to read all traffic encrypted with that key. While BAN’s
precise intention could be captured, it would again complicate things, and it
runs somewhat counter to the intuitive reading of “goodness”. Accordingly, take

While it suffices for the purposes of this chapter, this translation does not quite capture all the subtleties of
BAN's reading ofsaid. According to their reading, an agenshould not be considered to haseid m if it
sent{m}x, did not possesk at the time, but was nevertheless able to extradtom some other message.
According to the interpretation abovésaid m does hold in this case. While it is possible to come up
with an interpretation that was even closer to BAN's (at the cost of complicating the logic), it does not seem
worthwhile. Our translation satisfies BAN’s axioms and seems to capture the essence of their notion.
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(i & j)T to be

Xi(hasi(k)) A Xj(has;(R)) A |\ ~Xi(hasy (k)
i 0,5

Interpreting “good key” in general is not that simple, unfortunately. Many pro-
tocols studied in the literature assume the existence of a key server in charge of
distributing session keys to agents. In such a context, a good key is not only
known to the agents exchanging messages, but also of course to the server that
initially distributed the key. It is easy to accommodate such an interpretation of
“good key” by assuming that the server, as well andj, can extract the key.
For simplicity, however, we will consider only the interpretation of “good key”
given above. Note that BAN interpretsbeing a good key as a statement that
also talks about the future; in essencé; i a good key, it remains so throughout
a protocol interaction. Such an interpretation can be captured by prefixing the
translated formula by &l operator. Of course, this interpretation precludes the
analysis of protocols that leak the key value. Ideally, the analysis should reveal
such leaks, rather than presupposing that they do not happen.
> j says that is j's public key, and that the key is a good key. The formula is
intended to mean that onlyknows the keyt—!. Thus, its translation is similar
in spirit to that of the formula for shared keys, and the same comments apply;

take (> j)T to be X;(has;(k~1)) A (/\#]— ﬁXi/(hasi/(k‘*l))) :

iP= j says thatn is a secret shared hyand ;. This is intended to mean that
only i andj knowm, that is, that only they can extract it. Hence, take a possible
translation of(i = j) to have the formX;(has;(m™)) A X;(has;(m™)) A
(/\i,#,j ﬁXi/(hasi/(mM))), wherem™ is a possible translation of.

A message is fresh if it could not have been sent, except possibly recently. It
is up to the user to decide what counts as “recently”, by choosing a suitable
Thus, a possible translation fifesh(m) has the forn®! A;(B-send;(m)),
wherem™ is a possible translation of.. Of course, this translation does not
address the issue of what makes a nonce fresh, or how to prove that a nonce is
fresh. Intuitively, this is where the unpredictability of the nonce comes in; we
return to this issue in Section 9.4.

We interpreti controls F' as “ knows F' if and only if F' is true”. Thus, a
possible translation af controls F' has the formi;(F7) < FT, whereF™

is a possible translation df. This captures, to some extent, the intuition that

is an authority or¥'. There is no way folF' to change without ageritknowing

it, so thatF’ is in some sense “local” to agentOur translation, however, while
capturing a reasonable consequenceaftrols, does not fully capture the in-
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tent of the operator. For instance, the translation seems inappropriateR¥hen
is a formula for which neithef'” nor K;(FT) holds; in this case controls
vacuously. A better translation might bénecessarily knows'” if and only

if £ is true. While it is straightforward to add a “necessarily” operator to the
logic, the overhead of doing so does not seem justified.

To what extent does the translation above capture BAN? The minimum we can ask
is that the translation validates the axioms of BAN. This ensures that we capture
at least the reasoning underlying BAN. As the following theorem shows, it does
provided that we use the appropriate knowledge algorithm, and make appropriate
assumptions about agents. Capturing the reasoning is not quite enough however,
since a formula and its translation should also have the same meaning. This cannot
be made precise, however, since BAN does not provide meanings for its formu-
las. In Section 9.4, we address this issue by examining the extent to which our
translation above validates the conclusions of BAN analyses.

In order to validate the axioms of BAN, we need to make assumptions on the
system. Intuitively, these are assumptions that are made implicitly by BAN logic,
and which must be made explicit in order to prove the soundness of the transla-
tion. In particular, it is necessary to assume that agents have essentially no prior
information, that agents tell the truth (since BAN assumes that when a “good”
agent sents a formula, it believes it), and adversaries’ capabilities are characterized
by the Dolev-Yao model. Agentisave no additional prior information beyond
guessesn an interpreted algorithmic knowledge security systéim the initial
states of all agents include only public keys, their own private keys, the nonces
required by their protocol (in the case of nonadversary agents), and a finite set of
other keys or nonces they have guessed. It is also necessary to make precise the
intuition that agents tell the truth, since BAN assumes that when a (nonadversary)
agent sends a formula, it believes the formula. Without this requirement, the va-
lidity of R3 cannot be ensured. Implicit in the notion of honesty is the idea that
an agent does not forge “from”-fields in messages. Furthermore, BAN assumes
that agents’ capabilities of creating and decomposing messages are those charac-
terized by the Dolev-Yao model. These capabilities, together with the assumption
that agents not forge “from”-fields, are captured by providing a suitable knowledge
algorithm for the agent. (This is similar to what was done in Section 8.2, except
that a knowledge algorithm is not given explicitly; rather, the properties it should
have are specified.) Assume there is a functioit(s) that, given a local state,
returns the set of messages contained in the initial state.islfa local state for
agenti, definecan_compute,(s) to be the smallest sét/ of messages such that
m € M if one of the following conditions hold:

(1) recv(m) € s orm € init(s);
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(2) there existsn’ with (m,m’) € M or (m’,m) € M;

(3) there exists a kel (symmetric or asymmetric) witfim}, € M andk=! €
M;

(4) m = (mq, mg), Wwithmy € M andms € M,

(5) m = {mu, j}x, withm; € M,k € M,andl < j < N.

Similarly, we can define the “nonforging” versiomn_computel* (s), by replac-
ing rule (5) by the following:

(5) m = {mq,i}, withm; € M,k € M.

Rule (5") ensures ensures that when the agent constructs an encrypted message, he
includes a “from”-field set to its own name. The interpreted algorithmic knowledge
security systerd models agent as a Dolev-Yao agerit for all runs in J, for all

t > 0, and for all messages,

(1) (3,7, t) = Xi(has;(m)) ifand only if m € can_compute;(r;(t));
(2) ifri(t+1) =r;i(t) - send(i,m), thenm € can_compute;(r;(t)).

The definition of anonforging Dolev-Yao agerd similar, but usesan_compute;
for can_compute;. An agenti is ay-honest Dolev-Yao agefifior 0 < v < 1) in
an interpreted algorithmic knowledge security sysfeim

() 7 is a nonforging Dolev-Yao agent ih and

(2) forallp and all pointgr, t), if i sends a messageat round: (i.e., between
timest — 1 andt), string(¢) C m (i.e., ¢ is a submessage of), and
(J,T,t - 1) ): Xi(hasi((p))i then(ja Tt — 1) ’: K;Y(/\l’<l Ol/@)'

The intuition for the last condition is that an agent will say only things that he
believes will still be true some time in the near future after its message is received.
Again, this is parameterized by a tinhewhich should be taken as the same time
parameter used to interpret freshness.

Observe that while the restriction to Dolev-Yao agents is hardwired into the def-
initions of said andsees by BAN and later logics, it is modeled using knowledge
algorithms in our framework. This means that our framework can be used to deal
with other adversaries besides those that satisfy the Dolev-Yao properties, without
changing the underlying syntax and semantics. Similarly, rather than hardwiring
honesty into the definition afaid, it is built into the class of structures. Itis there-
fore possible to model the kind of operators BAN advocates without being tied to
the particular choices made by BAN and its successors.

The next step is to show that this translation preserves the validity of the BAN
inference rules. Making this statement precise requires care, since translations of
formulas are not unique. Note that an instance of a BAN inference rule has the
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form “from F; [and F»] infer F3”. This instance translates into a set of formulas
of the form L [AF]] = FI', whereF! is a possible translation df;, subject to
some consistency conditions:

— The possible translations of rule R6 have the fdkifi(good = (i < j)T) A
Xi(has;({FM}1)) = X;(has;(FM)), where '™ is a possible translation of
F. (Of course, the same possible translatio'appears in both the antecedent
and the conclusion.) The rules R5, R7, and R8 are translated similarly.

— Rules R1, R2, and R9 all havelslieves formula in their antecedent. The
sameq is required in the translation dselieves in both the antecedent and
the conclusion. For example, the possible translations of rule R9 have the form
K®(good = fresh(F)T) = K®(good = fresh(F, F')"), where the possible
translations offresh(F') and fresh(F, F’) use the same possible translation
M,

— For R3, there are twbelieves formulas in the antecedent, and one in the
conclusion. The possible translations of rule R3 have the fAifigood =
(fresh(F))T) A KP(good = (j said F)T) = K*°(good = K] (good =
FT)), where they is taken from they-honesty assumption.

— Finally, for R4, the possible translations have the fdtih(good = (K;FT <
FTY) A KP(good = K?(good = FT)) = K™ (good = FT).

Note that if belief is translated using? and ify = 0 in the definition ofy-honesty
(as is natural in many applications), then there is a unique translation where all the
superscripts tdg; are 0.

The following theorem, where the notati@r@ is used to emphasize that the
formulas in the translation of refer to agentg and j, states that the translation
preserves soundness.

Theorem 9.1. Every translationriTj of an instancer;; of the BAN inference rule
Rn, forn = 1, 2, is valid in systems that model Dolev-Yao agents that have no addi-
tional prior information beyond guesses and where ageémisd j are nonforging
Dolev-Yao agents. Every translati@ﬁ; of an instance-;; of the BAN inference
rule R3 is valid in systems that model Dolev-Yao agents that have no additional
prior information beyond guesses and where ageéatsd j are y-honest. Finally,
every translation'” of an instance: of Rn for n > 4 is valid in systems that model
Dolev-Yao agents that have no additional prior information beyond guesses.

It follows from the theorem that believes is interpreted as “holds with prob-
ability 1” (so thati believes F is translated as<?(good = FT)), then this
translation also preserves validity. With this translation, if each run has positive
probability, the translation of BAN belief as knowledge follows as a special case.



9.4 An Analysis of the SNS Protocol 167

Thus, our translation generalizes two of the standard interpretations of BAN belief
in the literature.

The soundness of our translation is independent of how the primitive proposition
good is interpreted. However, it should be the case that the initial probability of
good is high. In other words, it should be the case tt¥at, 0) = K*(good) holds
for all runsr, for a smalla. Otherwise, the conclusions drawn about a protocol
are unlikely to be of great interest. The analysis in the next section illustrates this
point.

9.4 An Analysis of the SNS Protocol

We now show how to perform an analysis of the SNS protocol using the logic
of Sections 8.1 and 9.2, and illustrate how to justify the conclusions of the BAN
analysis of that protocol.

It is straightforward to construct a systeifi”* modeling executions of the
SNS protocol. Consider the case of two agentsand B, and an adversary .
Suppose thatl runs the protocol just once. This means that the analysis does not
cover replay attacks, but it suffices to illustrate the role of nonces and probability.
Intuitively, for every choice ofi4 andnp (the nonces ford and B), k4 andkg
(the public keys ofd and B), and for every choice of a deterministic protodel
(compatible with the Dolev-Yao capabilities) for the adversafyf)¥ contains a
run where agentl uses nonce 4 and private keyc;l, agentB uses honce g and
private keyk 5!, and where the adversary starts with the knowledge of the public
keys, runs protocaP, and guesses andny for the nonces thatl and B use.

For simplicity, assume that the key space is such tha k:;l if kg # kp (that
is, one key cannot be the inverse of another) and the sgamfenonces is finite.

Let Jgg}{ ,x be the subsystem consisting of all runs in which the adversary uses
WA B

protocol P and nonceszjf andng. (To simplify the presentation, assume that the
adversary only attempts to guess a single nonce per agent. It is easy to extend our
results to the more general case of a finite number of initial guesses.)

Take the adversary’s choice of protocol and nonces to be nondeterministic. In
other words, assume that the adversary has complete freedom of choice (uncon-
strained by any distribution) concerning which attack he is going to mount. In
order to ensure that nonces are unpredictable, we take the agents’ choice of nonce
to be random. The agents use these random choices to protect themselves against
the unknown but fixed adversary. Formally, define a distribution on the runs of each
subsysterﬂgﬁ}ﬁ ,x» by taking the values 4 andn  to be uniformly distributed.

Consider thgsgecifications of the SNS protocol given in the original BAN anal-
ysis of this protocol. (Given our simplification of the protocol, only the specifi-
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cations that do not involve the server are relevant.) £et 4, np, ka, kg) be the
conjunction of the following formulas, wheres andnp are nonces, ankl4 and
kp are keys

Abelieves 2 B

B believes +4 A

Abelieves A = B

B believes A = B

A believes B believes A = B

B believes A believes A = B

B believes A believes B believes A = B.

F(na,np, ka, kp) is the conclusion that BAN would like to reach for a run of the
protocol wherék 4 is A’s key, kp is B's key,n 4 is A’'s honce, andiz is B’s nonce.

The goal is to show that the (translated) conclusions hold at poird§’H
where the protocol has successfully run to completion. In order to do this, it is
necessary to define the notion of a good run. Intuitively, a run is good if the ad-
versary has not guessed the correct nonger ng for A or B respectively, and if
na # np, thatis, if A and B choose different nonces. Defigeod to be true at a
point (r, ¢) if and only if the adversary has not correctly guessgdandn g, and
n4 # np onrunr. (Thus,good has the same truth value at all the points in a given
run.) Because the agents choose their nonces at random, and because the adversary
uses a deterministic protocol, which is independent of the choice of nonce by the
agents, the prior probability of the adversary being able to guess the right nonces is
low. In other words, the unpredictability of the nonces ensuresgidat is likely
to be true. Formally, for all runs, (J9PY r,0) = K$(good) A K%(good), where
a = 3/|N|. Moreover, on good runs, messages with nonces in them must be fresh.
Since nonces are unpredictable, the only way that an adversary could have gener-
ated a message with a nonce is by guessing it, and this is precisely what does not
happen in good runs.

As this discussion suggests, on good runs, all the conclusions of interest hold, so
we can take belief to hold with probabiliyin the translation of the conclusions of
the BAN formulas. Lef""? be the possible translatidn! where every occurrence
of i believes G is interpreted a®’? (good = G**°). Since every run id“?Y has
positive probability. we can repladé’ by K;; that is, we can interpret BAN belief

2 BAN logic does not have conjunction, but it is convenient here to assume it does.



Notes 169

as knowledge. The following result shows that our translation of the last section
validates the goals of authentication for SNS as given by BAN.

Theorem 9.2.1f r is a run whereA's key isk 4, B’s key iskp, A’S nonce isn 4,
and B’s nonce isn g, then

(IGPY r,0) = O(recup({ng i) = (F(na,ng, ka, kg))"0).

Theorem 9.2 helps elucidate the role of unpredictability for nonces in SNS. In-
tuitively, the BAN beliefs are justified whenever a run is good. Unpredictability
of the nonces translates into the fact that the probability of a run being good is
high. Hence, the BAN beliefs are justified with high probability, assuming un-
predictability of the nonces. By way of contrast, suppose that nonces are chosen
as sequence numbers. The good runs are still the ones where the adversary does
not guess the nonce. However, now there will be a protocol for the adversary
where he takes the nonce to be the sequence number; with this protocol, the adver-
sary guesses the nonce correctly. As a consequence, thereviscnd such that
(I9PY 1, 0) = K% (good) N K&(good), since K& (good) holds initially only if i
believes that, no matter what protocol the adversary uses, the set of good runs with
that protocol has probability at leakt- «.. While Theorem 9.2 still holds in this
setting, it is no longer that interesting, since the set of good runs is not guaranteed
to have high probability.

We stress that our result shows the original version of SNS (without the change
described in Section 1.2 to prevent the insider attack) to be correct in certain set-
tings, rather than showing that it does not work in other settings. These results are
established by checking that the appropriate formulas hold at appropriate points
of the model; There was no use of protocol idealization. Rather, a system was
obtained directly from the original description of the protocol.

Notes

The work in this chapter, joint with Halpern and Meyden, is as yet unpublished.

The issue of nonce freshness and unpredictability is somewhat related to whether
or not nonces should be kept secret. In some protocols, the nonce need not be
kept secret, in which case it may as well be a timestamp. Guttman and Thayer
[2002] discuss some of these issues. Different notions of freshness are discussed
by Syverson and Meadows [1996].

Temporal logic has its roots in the philosophy of language [Prior 1957]. For the
past few decades, it has been used to reason about temporal properties of sequences
of events, or sequences of states in computer systems and software [Pnueli 1977;
Gabbay, Pnueli, Shelah, and Stavi 1980]. One of the first logics for reasoning
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about probabilities is due to Nilsson [1986]. The approach taken here, to view
probability as a modal operator, is due to Fagin, Halpern, and Megiddo [1990]. The
semantics folPr; is due to Halpern and Tuttle [1993]. While all subsets of points
are measurable given the definitions in Section 9.2, the framewaork of Halpern and
Tuttle [1993] makes certain set of points unmeasurable.

The syntax of BAN logic in this chapter is along the lines of the reformulation
given by Abadi and Tuttle [1991].

The definition of defeasible belief on which our interpretation of BAN belief is
based is due to Moses and Shoham [1993]. Abadi and Tuttle [1991] also define
belief based on a set of good runs, but we differ from them in the way that the
set of good runs is obtained. They define the good runs by a complicated fixpoint
construction based on the original set of beliefs ascribed to the agents by the BAN
analysis.

The interpretation ofees by providing a way to extract information from a mes-
sage has been advocated before [Wedel and Kessler 1996; Dekker 2000], however,
without an algorithmic interpretation.

The interpretation of good key as “no one b@nd;j sends messages encrypted
with k” is advocated by Abadi and Tuttle [1991]. The fact that interpreting good
key as a statement that talks about the future means that BAN cannot capture key
leaks is discussed by Nessett [1990] and Burrows, Adadi and Needham [1990b]

Abadi and Tuttle [1991] interprefontrols by taking only the forward direction.
More precisely, they definecontrols F as:i saysF” implies F'7. The fact that
they focus on sayingF in order to controlF’, as opposed to simply knowing,
is orthogonal to the main concernsaintrols.

To account for the fact that an agent may forward a formula without necessarily
believing it, Abadi and Tuttle [1991] introduce a special notation (quotation) for
forwarded message; this does not remove the need for honesty, in that the original
sender of the formula still must have believed the formula before sending it. For
ease of exposition, We did not deal with forwarded messages here; they do not
cause any difficulties. The fact that BAN requires honesty was pointed out by
Abadi and Tuttle [1991]; they avoid the need for honesty by replacing R3, the only
rule for which honesty is essential, by other rules.

The Needham-Schroeder protocol was analyzed in the original paper on BAN
logic [Burrows, Abadi, and Needham 1990a].
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Conclusion

HIS dissertation initiated a study of the applicability of theories of resource-
bounded knowledge to the problem of reasoning about security protocols.
Our approach consisted of investigating a theory of resource-bounded knowledge
in some generality and examining its applicability to the particular domain of se-
curity protocol analysis. By way of conclusion, we now review what has been
achieved, and point out some of the most interesting directions in which this work
can be extended.

10.1 Algorithmic Knowledge and Evidence

The first part of this dissertation aimed at establishing that it was possible to de-
velop a logic for resource-bounded knowledge. Has this goal been reached? Start-
ing with the existing framework of algorithmic knowledge, it is fair to ask what it
actually means to develop a reasonable logic of resource-bounded knowledge. The
first desideratum is expressive power. We would like a framework that allows us to
model and reason about all the relevant features of a security protocol. The general
framework of algorithmic knowledge was show to be quite expressive, especially
once extended to deal with randomized knowledge algorithms.

A theme that emerges from this development is that, aside from giving us a
specification language that can talk about both implicit and explicit knowledge, the
framework lets us naturally describe the epistemic properties of knowledge algo-
rithms. If we view knowledge algorithms as computing approximations of knowl-
edge, the logic can be used to make precise the conditions under which algorithmic
knowledge yields knowledge. For instance, in Chapter 3, we described deductive
knowledge algorithms. Studying the use of such algorithms to approximate knowl-
edge amounts to studying the epistemic content of answers to queries to deductive
databases. Another example is given in Chapter 4, where we examined reliable
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knowledge algorithms. Evidence helps formalize what can be learned from such
knowledge algorithms, that is, what the epistemic content of the answers given by
reliable knowledge algorithms is. An interesting question is whether this approach
could help shed light on probabilistic deductive databases. These databases are
deductive databases with probability weights on their inference rules. Most of the
issues surrounding probabilistic deductive databases are not settled, partly because
it is not clear how to interpret the probability weights. The algorithmic knowledge
framework could help clarify what one learns from a probabilistic deduction.

Another theme that emerges is the importance of evidential reasoning. As we
already pointed out in Chapter 5, evidence arises naturally in the presence of prob-
abilistic and nondeterministic choices. There has been a lot of work on formal
frameworks for modeling stochastic concurrent systems; these systems exhibit both
nondeterministic and probabilistic behaviour. We believe that evidence can help
write down more precise specifications in those frameworks. For example, con-
sider a system with a number of possible executions, and in every execution, there
is an associated probability of evesAitoccurring. Most frameworks can only han-
dle specifications of the form “the probability of evetis at leastl /2", meaning
that for every execution, the probability of evetibn the execution is at least2.

A notion of evidence can help tie the occurrence of ewémnwith an associated
hypothesis.

It seems that a deeper study of the notion of evidence is required. The notion
of evidence space and weight of evidence developed in Chapter 4 is not quite suf-
ficient in general. For instance, the probability of an observation often does not
depend only on whether or not an hypothesis is true, but of other aspects of the
world, which the evidence space cannot take into consideration. An example of
this was already given in Chapter 4, where the probabilistic behaviour of the Rabin
algorithm depends on the actual natural number tested for primality, and not just
whether or not the number is prime. An obvious approach would be to sesecd
probability measuresather than a single probability measure for the likelihood of
an observation given any particular hypothesis. Such a set of probability measures
represents the uncertainty as to the actual probability of observation. As far as we
can tell, no measure of evidence has been defined in the literature based on sets of
probability measures. There are obvious questions with such a generalization. For
instance, is it the case that the notion of weight of evidence that arises can be inter-
preted as a function from priors to posteriors, and if so, what are the properties of
such a function? Itis also possible to generalize the notion of evidence to represent
the uncertainty of an observation using one of the many existing representations of
uncertainty. Again, how to interpret evidence is an intriguing question.
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10.2 Security Protocol Analysis

In the second part of the dissertation, we examined in detail a particularly appropri-
ate area of application of algorithmic knowledge. In security protocol analysis, one
studies protocols in the presence of an adversary that uses the knowledge he gains
through intercepting messages and possibly interacting with other agents to learn
secrets and perform other actions. To get meaningful results, we should consider
the knowledge that the adversary can compute. This knowledge can be captured
in a natural way using algorithmic knowledge, where the knowledge algorithms
capture restrictions on the capabilities of an adversary.

Itis fair to ask at this point what can be gained by using this framework. For one
thing, we believe that the ability of the framework to describe the capabilities of
the adversary will make it possible to specify the properties of security protocols
more precisely. We also believe that an epistemic language is a natural language
for the specification of security protocols. We argued in Chapter 9 that many no-
tions underlying protocol analysis are essentially epistemic. Moreover, many secu-
rity properties are intrinsically epistemic: confidentiality specifies information that
agents should not know, while authentication involves an agent knowing the origin
of a message, or the identity of another agent. This is not a hew observation—
many informal arguments are based on such an epistemic formulation. Having an
epistemic language lets us make this formulation explicit.

An obvious question that arises is whether other security properties can be cast
naturally in this epistemic framework. More general forms of confidentiality can
be captured, including anonymity, which can be which viewed as a form of confi-
dentiality with respect to the identity of the agenkairness the property that no
agent can gain an advantage over other agents by misbehaving in a protocol, can
sometimes be expressed epistemically, when this advantage amounts to obtaining
information about another agent. (This is the case in fair exchange protocols, where
two agents exchange one item for another, and where fairness ensures that either
each agent receives the item it expects, or neither receives any information about
the other’s item.Non-repudiationthe property that the sender of a message should
not be able to deny sending the message, can also be given an epistemic reading:
the receiver of a message knows that the sender of the message actually sent it (and
is able to convince other agents of this fact). One could also view non-repudiation
as stating that the receiver of a message has enough evidence to establish that the
sender in fact sent the message. It is interesting to speculate whether it is possible
to quantify this kind of evidence using techniques described in Chapter 5.

The approach to protocol analysis presented in the second part of this disserta-
tion is a general framework for handling different adversary models in a natural
way. With this framework, it should be possible to provide a formal foundation for
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new attacks that are introduced by the community. We gave concrete examples of
this in Chapter 8. This can be pushed much further, while remaining in a purely
symbolic setting. Many protocols require operations on the “message space” be-
yond the simple encryption and pairing. For instance, it is straightforward to model
operations such asor (). This requires reasoning under the assumption that

x ®y Py = x. Other operations can be similarly handled.

There are at least two topics that especially deserve further investigation. The
first topic isverification While we have focussed on modeling protocols and de-
veloping a logic in which it is possible to specify the capabilities of adversaries and
reason about the knowledge of agents, we have yet to address the problem of auto-
matic verification of properties expressed using the language. Two approaches are
worth pursuing. The first is model-checking. While we do not expect that general
model-checking techniques for arbitrary knowledge algorithms can be developed,
it may well be possible to extend current technigues to handle more restricted ad-
versaries (for example, Dolev-Yao extended with random guessing). Another ap-
proach is to reason about protocols at the language-level, that is, at the level of
IMPSEC (or any other language for protocols that can be given a semantics in terms
of security systems.) It may be possible to borrow techniques from the study of pro-
gramming languages, process calculi in particular, to analyze a class of properties
expressible in the logic. For example, a type-based analysisipSHC programs
could be used to establish confidentiality properties.

The second topic deserving further investigation is to move beyond symbolic
analysis, and reason abaamputational properties of the encryption schenvds
suspect that the framework in the second part of this dissertation can be useful for
capturing more computational approaches to security protocol analysis. Compu-
tational approaches are characterized by reasoning about encryption schemes with
a probability of distinguishing distinct encrypted messages (among other things).
This probability is defined in terms ofgecurity paramete(for instance, the key
length) that captures the “hardness” of the encryption scheme. For example, a
encryption scheme isemantically securd, intuitively, given two equal length
messages; andmsy, an adversary given an encryption of a random one of them
cannot tell which it was with a probability significantly better than that of guess-
ing. The adversary, in this context, can perform any probabilistic polynomial-time
computation on the messages in order to try to distinguish the two messages. Thus,
rather than having a fixed number of capabilities corresponding to abstractions of
the operations of the underlying encryption scheme, the capabilities are arbitrary,
but restricted by computational limitations. To account for this, it is necessary to
reason about the probability of events parameterized by a security parameter and
about classes of knowledge algorithms, for instance, the class of all probabilistic
polynomial-time knowledge algorithms. In a computational setting, confidential-
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ity is taken to mean not that the adversary does not derive any information from
the encrypted messages. Thus, the specifications still have an epistemic flavour.
Moreover, since this notion of confidentiality refers to information that can be ex-
plicitly derived, it should be possible to capture it using algorithmic knowledge.
Of course, it may be the case that to prove correctness of a security protocol with
respect to certain types of adversaries (for example, polynomial-time bounded ad-
versaries), we will not be able to do much within the logic—we will need to appeal
to techniques developed in the cryptography community. However, modeling com-
putational approaches using algorithmic knowledge provides the hope for a truly
general specification language that bridges both the symbolic and computational
approaches to security protocol analysis.

Notes

Representative samples of recent work in the literature on probabilistic deductive
database literature include [Lukasiewicz 1999; Lakshmanan and Sadri 2001]. Us-
ing sets of probability distributions is a common approach to capture uncertainty
[Huber 1981; Kyburg 1974; Levi 1980]. A good overview of different measures of
uncertainty and associated properties is given by Halpern [2003].

The importance of reasoning abatit- was made clear by Ryan and Schneider
[1998], who showed that a prior analysis by Paulson [1997] on a recursive au-
thentication protocol was flawed when these properties of the protocol related to
the use ofror were completely abstracted away. Related extensions to the basic
symbolic approach include multiplication and Diffie-Hellman exponentiation; see
[Millen and Shmatikov 2003] for more detail.

Meyden and Su [2004] have developed a tool to model-check some forms of
security protocols using epistemic logic, although not security protocols involving
encryption.

Goldreich [1998, 2001] provides excellent overviews and pointers to the litera-
ture of computational approaches to security protocol analysis and cryptography.
Semantic security is defined by Goldwasser and Micali [1982]. A standard model
for protocol analysis in a computational framework is due to Bellare and Rogaway
[1993]. Impagliazzo and Kapron [2003] have developed a logic for reasoning about
cryptographic notions by capturing the notion of indistinguishability of probability
distributions parameterized by a security parameter.

Bridging the gap between symbolic and computational approaches has been the
focus of recent work in security protocol analysis. Many of the approaches de-
scribed in Chapter 6 have been extended (in a somesathdbcmanner) to deal
with cryptographic assumptions. For instance, Lincoln et al. [1998] introduce a
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probabilistic process calculus along the lines of the spi calculus. They establish
formal relationships between security expressed using bisimulations in this calcu-
lus and more computational definitions of security based on computational indis-
tinguishability. Similarly, Guttman et al. [2001] introduce a quantitative version of
strand spaces to model cryptographic assumptions.

A distinct thread of recent work, originating with Abadi and Rogaway [2002],
tries to justify the abstractions used by symbolic approaches with respect to more
computational assumptions, by examining properties of the encryption scheme suf-
ficient to ensure that a formal analysis in terms of symbolic encryption schemes
yields correct results.



Appendix A
On the Problem of Human Knowledge

N the 1960’s, Hintikka gave the now standard possible-worlds interpretation of
knowledge! In this interpretation, there are different possible worlds (or state
of affairs), some of which an agent considers as possible alternatives to the actual
world. The agent then knows if P is true at all the worlds the agent considers as

possible alternatives to the actual world.

However, the usefulness of this interpretation is somewhat limited by what Hin-
tikka called thelogical omniscience problemRoughly speaking, logical omni-
science is a closure property of an agent’s knowledge; it says that if an agent knows
certain facts, and if certain conditions hold, then the agent must also know some
other facts. Generally, this takes the following form: if an agent knsywand P
logically impliesQ), then the agent also know A consequence of this is that if
an agent knows>, then he knows alf) that are logically equivalent t&.2

In many fields, the above notion of knowledge has proved useful despite the phe-
nomenon of logical omniscience. For instance, it has been shown to be appropriate
for reasoning about the knowledge of processes in a distributed system, or as a way
to capture the notion of “information set” available to an agent in game thidary.
all of these setting, knowledge is ascribed by an external observer of the system
under consideration.

On the other hand, how do we reconcile such a theory of knowledge, that implies

1 See Hintikka [1962].

2 There are in fact many closure conditions that go under the heading of logical omniscience. The general form
is as follows: an agent ifully logical omniscienif whenever he knows all the formulas in a skt and W
logically impliesy, then the agent also knows Logical implication is always defined with respect to a class
of models for a logic under consideration. Rougkdypgically impliesy if whenevery is true, v is true. In
classical logic, this is equivalent to the validity of material implicatign=- v is valid. In different logics,
however, these notions may differ. See Fagfial. [1990] for more details.

3 Uses of knowledge in the distributed computing literature include Dwork and Moses [1990] and Moses and
Tuttle [1988]. For a good overview, see Faginal. [1995]. The game-theoretic use of knowledge goes back
to the seminal work of Aumann [1976]. Interestingly, the problem of logical omniscience also appears in
game theory under the guise of rationality assumptions that are difficult to justify. See Rubinstein [1998] for
more details on rationality and bounded rationality.
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that agents are logically omniscient, with the fact that humans are clearly not? As
Stalnaker puts it,

It is obvious that if belief and knowledge are understood in their ordinary sense,
then no nonsupernatural agent, real or artificial, will be logically omniscient.
Despite this obvious fact, many formal representations of states of knowledge
and belief, and some explanations of what it is to know or believe, have the
consequence that agents are logically omniscient. [Stalnaker 1991]

There are two common and contrasting ways to account for this reconciliation. The
first is to take that notion of knowledge as one for ideal knowers, or represent an
idealized notion of knowledge. The other is to view this notion of knowledge as a
normative notion, describing the ideal to be attained.

Most of the formal representations of knowledge, including the one presented
here, make assumptions on the nature of propositions, or on the objects of knowl-
edge. A particularly simple view is simply to take propositions as sets of possible
worlds (a proposition represents a way a world might be, and we identify a propo-
sition with the set of worlds that are that way), and take objects of knowledge to be
propositions. This is the so-calledarse-grainedriew of content. This view has
the advantage of being natural. To kn@wis to know that the world is a certain
way, which way is given by the propositiaR. Since the propositio® is a set
of possible worlds, an agent knowsif the set of worlds he considers as possible
alternatives to the actual world is a subset of the worldB.imThe problem is that
such a notion of knowledge intrinsically suffers from logical omniscience.

To illustrate why, consider the following example. Suppésis a proposition,
or set of possible worlds. Suppose moreover dbgically implies@, that is,
at every world that is a way represented®ythe world is also a way represented
by Q. Then, when viewed as sets of possible worlesC . Now, if the agent
knows P, then the set of worlds he consider as possible alternatives to the actual
world is a subset of?, hence a subset @, and thus the agent know. This
holds irrespectively of how complex the relationship betwfesnd( is.

Observe that a form of logical omniscience arises for most propositional atti-
tudes. Say that Oscar convinced Alice to make a bet so that Alice gets money
if P is true, but loses money @ is false. Unbeknownst to Alicel? and(Q are
logically equivalent, maybe through a complex logical manipulation. Just like Al-
ice could know thatP without knowing that), Alice can certainly hope tha®
without hoping that). In decision theories that are based on a coarse-grained
view of propositions, the fact that one could accept such a bet would make one

4 There is a sense in which Hintikka’s [1962] view is normative; he interpgkgtsto mean thatp is knowledge
(or belief) that isdefensible Cresswell [1973, p. 47, footnote 61] is more forward, calling this notion of
knowledgerational, indicating it is the kind of knowledge that a rational agent should possess.

5 See Stalnaker [1984]. It is commonly adopted by philosophers of a logical persuasion, such as Cresswell
[1973].
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irrational, but just as logical omniscience seems unreasonable when representing
human knowledge, it seems unreasonable in the above example as well.

There is a general way to understand this. In most cases of interest, propositional
attitudes describe the attitude of the agent towards the world being a certain way
(belief that the world is a certain way, knowledge, hope, fear, and so on). But there
can be many ways of describing such a world, all equivalent, and the agent will
realistically only be aware of some such ways. With this view, it is clear that any
propositional attitude is subject to a form of logical omniscience if propositions
are to be the object of propositional attitudes, and propositions are sets of possible
worlds.

Hence, it appears that taking propositions as sets of possible worlds cannot avoid
the logical omniscience problem. A possible response is to take a more fine-grained
view of the content of propositional attitudes, such as sentences in some language
of thought¢. Stalnaker argues that this does not solve the problem, by examining
a particular proposal, theentence storagmodel of belief: (While this model
applies to belief, it can be straightforwardly be used for knowledge.) This model
is particularly simple: every agent has a “belief box” that holds the sentences that
the agent believes. Here, the objects of belief are sentences, not propositions. This
allows us to make a direct distinction between what we might term implicit and
explicit belief: a belief is explicit if its sentence is stored in the box, while it is
implicit if it is not. The claim here is that the notion of explicit belief does not
suffer from logical omniscience, and hence more accurately captures the notion of
belief that real agents have. For instance, while the sentenagght logically
imply @, if P is in the belief box and) is not, then the agent explicitly believes
P, but does not explicitly believe).

However, argues Stalnaker, equating real belief with explicit belief is not quite
the identification we want to make. On the one hand, we do not want trivial con-
sequences of beliefs in our belief box to clutter the belief box, yet these trivial
consequences ought to be as explicit as the sentences actually stored in the belief
box. What one really wants here is a notion of a belief beiogessibldrom the
beliefs stored in the belief box. Accounting for such a notion of accessibility of
belief is essentially the same problem as accounting for a notion of belief that does
not suffer from logical omniscience Clearly, if we allow for any logical conse-
quence of the content of the belief box to be accessible, we simply recover the

6 See Fodor [1976].

7 See Harman [1973] or Cherniak [1986].

8 Stalnaker [1984, p.73] admits that in the case of mathematical propositions, the objects of knowledge may have
to take the presentation of the proposition into account, in an attempt to circumvent the fact that mathematical
propositions are necessarily true or false. In Stalnaker [1987], he examines the view that objects of knowledge
and belief are always propositions, by allowing that-clause of a knowledge or belief attribution to not
always represent the same proposition all contexts, via his notion of propositional concept.
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standard notion of belief, closed under logical consequence, and thus subject to
logical omniscience. Therefore, we need to define a notion of accessibility that
is more restricted, yet can capture obvious (or reasonable) consequences of the
content of the belief box.

In this chapter, we will try to argue for a way to define knowledge to retain as
much as possible the coarse-view of content, while avoiding logical omniscience.
The intuition is in fact taken from the belief box approach, and relies on taking a
more explicitly cognitive view of the knowledge attribution process. We describe
a notion of knowledge by taking into account the “mechanisms” in which agents
can obtain their knowledge. More precisely, we will assume a representation of
propositions in the mind of the agents. We then describe mechanisms in which a
sentence of the language can be, for an agent, associated with a particular repre-
sentation of the proposition that the sentence expresses. We maintain the view that
the object of knowledge is a proposition, but allow for the agent not to be able to
actually derive a representation of the proposition corresponding to that particular
sentenceé. This difficulty on the part of the agent in deriving a representation of
the proposition expressed by a sentence is the reason why this approach does not
priori suffer from the logical omniscience problem.

The above account requires some precisions. First, what do we mean by a rep-
resentation of propositions in the mind? A proposition is a set of possible worlds.
Note that there are uncountably many propositions, at least, in any reasonable ac-
count of possible worlds. We will restrict representations to be effective, and hence
will take the set of representations to be countable (in fact, recursive). So, we seem
to be limited in the number of propositions we can represent. We shall argue that
this is a reasonable restriction for any natural agent. Second, going back to Stal-
naker’s quote, accounting for a reasonable notion of knowledge for nonsupernatu-
ral agents presupposes that we can specify what make an agent nonsupernatural for
the purposes of attributing knowledge. As we shall argue, this can be understood
computationally, that is, what differentiates a supernatural agent from a nonsuper-
natural agent is that the latter is subject to inherent computational limitations.

A.1 Impossible Worlds

Let us first examine an idea that has been advocated to deal with the logical om-
niscience problem, while remaining within a possible-worlds framework. This
account has proved popular in some communities, mostly because it allows for
a technically flexible solution to the logical omniscience problem. However, the
philosophical underpinnings seem shaky.

9 Such an approach is alluded to in Stalnaker [1984, p.72], but not developed.
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The idea is to consider, along with the familiar possible worlds, so-catted
possible worldsworlds where the laws of logic do not hold, where contradictions
occurio Perhaps the clearest account of impossible worlds is given by Cresswell,
who calls thermon-classical worldsThe idea is easily summarized:

A way out is to divide the worlds into those we may call ‘classical’ and those we
can call ‘non-classical’. Two propositions are logically equivalent if and only if
they contain the same classical worlds, though they may differ in the presence or
absence of certain non-classical worlds. [Cresswell 1973, p.40]

The intuition behind non-classical worlds is that, for instance, contradictions may
hold at a non-classical world. As Cresswell points out, it is certainly possible to
make sense of non-classical worlds in a purely formal setting, without questioning
what those worlds are. Many such formal semantics of knowledge have been pro-
posed based on non-classical worlds, without addressing the metaphysical status
of those worlds.

A standard argument against such a presentation is that it leads to a contradic-
tion.1 Let us say that a propositioR? is true at a world if the world is a way
represented by’. Suppose a non-classical wordin which bothP and—P are
true. Consider a modal operator ‘inf, such that ‘inw, P’ is true at a world if
and only if P is true in worldw. Hence, ‘inw, P’ and ‘in w, =P’ are both true
in the actual world. But ‘inw, =P’ is logically equivalent to - in w, P’. So a
contradiction is true at the actual world, which it is fair to presuppose, is a classical
world, not non-classical.

Cresswell’s response to this argument is to actually take non-classical worlds as
those where the logical operators (negation, conjunction, and the likes) do not have
their classical truth-tables. The idea is to say th&Af— P is true at a non-classical
world, it is not becausé” and—P are truly contradictory, but simply that and
— do not have their usual interpretation. An important point of Cresswell’'s view
is that while his aim is to define propositions in such a way that they can describe,
for instance, contradictory states of affairs (or states of affairs wRere: P is not
true), sets of possible worlds cannot in fact describe contradictions.

To achieve this, he defines a proto-proposition to be a set of possible worlds.
Accordingly, proto-propositions are essentially what we called ‘propositions’ until
now. These cannot be contradictory, and satisfy the usual rules of classical logic.
A set of proto-position forms a heaven, which plays the role of a world, except that
it should be thought of as a state of affairs that need not be consistent with the laws
of logic. A proposition is finally defined as a set of heavens.

10 proponents of this approach include Cresswell [1972], Hintikka [1975], Rantala [1982], Rescher and Bran-

dom [1979], and Wansing [1990]. Kripke [1965] talks about non-normal worlds, which can be considered a

precursor to impossible worlds.
11 See Stalnaker [1996], for a discussion of this argument.
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One attractive feature of the impossible-worlds approach, from a formal point
of view, is its flexibility. Indeed, it is possible, formally, to add impossible worlds
that provide a counterexample to any specific logical equivalence. Returning to our
initial example, suppos® and( are propositional formulas such thatlogically
implies@. This means that at every (classical) worldPiis true, theny is true as
well. On the standard account of knowledge, this yields that if an agent kRows
then he knows). Consider adding an impossible world that the agent considers as
a possible alternative to the actual world to the model, a world wRdsetrue, but
Q@ is not. This is an impossible world, since it does not obey the logical law that if
P impliesQ, thenq@ is true wheneveP is true. In this extended model, the agent
knows P, sinceP is still true at all worlds he considers as possible alternatives to
the actual world, but does not kna@, since there is a world, namely the impossi-
ble one, that he considers as a possible alternative to the actual world and@vhere
is not true.

This showcases the flexibility of the approach. However, it also raises the ques-
tion of how one chooses the impossible worlds to add to any particular model. This
question has rarely been addressed in the literatubelding impossible worlds to
break specific equivalence seeatshog¢ and does not help explain which equiva-
lences should be broken. Adding all impossible worlds breaks all equivalences, and
does not begin to explain why some equivalences are indeed known. Finally, the
flexibility of the framework comes at the cost of the intuitive view of propositions
as sets of possible worlds. Even Cresswell admits:

It would perhaps have been nicer to remain with propositions as sets of possible
worlds. ... The more complex analysis seems needed only when we have functors
which represent ‘propositional attitudes’, ... A full justification of our procedure
would need a far deeper semantical analysis of these notions that has yet been
given. [Cresswell 1973, p.47]

As we advocate in the remainder of this chapter, we can recover the intuition un-
derlying impossible worlds (that there are situations that are impossible but are not
recognized as such by agents) by taking a more cognitive view of the knowledge
attribution process.

A.2 Awareness and Mental Representations

While the notion of impossible worlds allows for a formally elegant solution to the
logical omniscience problem, it remains difficult to account for the metaphysical
status of those worlds. In this section, we describe a different approach to the prob-

12 Rantala [1975] gives an approach based on urn models. Impossible worlds have been used in decision theory
to model bounded rationality by Lipman [1999], who advocates a particular construction of impossible worlds.
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lem of logical omniscience that remains compatible with the view of propositions
as sets of possible worlds.

The idea is to consider the knowledge attribution process as a cognitive one.
Roughly speaking, to know a fact is to be able to derive a representation of the
proposition capturing that fact, and to have that proposition true at all worlds that
the agent considers as possible alternatives to the actual world. Thus, we retain
the view that propositions are sets of possible worlds, but now capture the limited
reasoning process of the agent by restricting what representations the agent can
handle.

We can illustrate the issue as follows. Recall the problematic consequence of
logical omniscience: if Alice know$’, and P is logically equivalent tay, then
Alice knows Q. As many people have noticed, this is particularly problematic in
the context of mathematical expressions. To avoid dragging in issues of mathemat-
ical foundations, consider a simple class of sentences, that suffices to exhibit the
problem of interest:

Alice knows thaty is a valid formula of classical first-order logic.

Here, ¢ ranges over formulas of classical first-order logic. Clearly, for @nthe
sentence ¢ is a valid formula of classical first-order logidgs either the neces-
sarily true proposition, or the necessarily false proposition. The standard account
of knowledge simply says that Alice knows all such sentences whésandeed

a valid formula of classical first-order logic. This includes such uncontroversial
formulas such asue.

What happens, however, if Alice does not know any classical first-order logic?
Even if we assume that Alice is a competent English speaker, nothing warrants that
she knows what a valid formula of classical first-order logic is! So she is certainly
in no position to agree that ‘thatue is a valid formula of classical first-order
logic’, however uncontroversial, represents the necessarily true proposition. What
is going on here is that Alice, who does not know any classical first-order logic,
cannot assent to the fact that she knows that is a valid formula of first-order
logic, despite the fact that it is the necessarily true proposition; she doesn’t have
enough information, so to speak. One way to capture this is to assume that Alice
has an internal representation of the meaning of sentences, which in this case we
take to be propositions. We can understand that Alice doesn’t have information to
assent to the fact thateis a valid formula of classical first-order logic by saying
that she cannot derive that the meaningtnfé is a valid formula of classical first-
order logic’ is a representation of the necessarily true proposition.

With this view in mind, let us say that an agentaware of a sentence if he
can derive a representation of the proposition corresponding to the sentence. The
actual form of the representation is not relevant for our purposes, as long as there is
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a well-defined way of relating the representation of a proposition to the proposition

it represents. Note further that this presentation is agnostic as to which proposition
we take to be the meaning of the sentericé reasonable notion of knowledge

can be defined by saying that an agent kndwévhere S is a sentence) if the
agent is aware oP, the representation of the propositiGhexpressed by, and

P is true at all worlds he considers as possible alternatives to the actual world.
Observe first that knowledge applies to sentences, even though in a formal sense
the final objects of knowledge really are proposition (via their representation in the
agent’s internal language). Second, this requires us to talk about representation
issues when dealing with knowledge.

What should an agent be aware of? More to the point, if an agent is aware of a
particular sentence, does this imply that he is aware of other sentences? Intuitively,
this should be the case. For instance, it seems reasonable to say that if an agent
is aware of the sentencB and (), then he is in fact aware of botR and Q).

More generally, it appears plausible that awareness is closed under subsentences;
if @ is a subsentence dt, then if the agent is aware @, then he is aware a.

This seems to be the content of standard linguistic compositionality principles, that
among other things say that to determine the meanitigy ofe need the meaning of

its subsentences, includirg !¢ Hence, deriving the representation of the meaning

of P should require a representation of the meaning)othat is, this requires

that we are aware d@). However, one can check that if awareness is closed under
subsentences, then awareness is closed under material implication: if an agent is
aware of P and is aware of P = (@), then the agent is aware @f. This is not

quite logical omniscience, but still a strong principle nonetheless.

Is this really such a strong principle? Consider the Alice example from earlier
in this section. Assume Alice is in fact a logician, and is thus aware of a sound
and complete deductive system for first-order logic. The deduction rules are of the
form 51 = S, for instance[if o is a valid formula of classical first-order logic
andy is a valid formula of classical first-order logic, them ) is a valid formula
of classical first-order logi€ Alice is aware of all such rules, which simply means

13 For instance, this is compatible with Stalnaker’s [1987] propositional-concept approach to belief attribution.

14 A general notion of awareness is formally defined Fagin and Halpern [1988], and studied further by Huang
and Kwast [1991]. Interestingly, awareness can be shown to be equivalent in expressive power to impossible
worlds. In other words, from a purely formal point of view, any situation that can be described or analyzed
in terms of impossible worlds can also be described in terms of awareness. Wansing [1990] shows how
impossible worlds can capture what awareness can capture. The converse result is an exercisetragin
[1995, Ex.9.45].

15 Dienes and Perner [1999] attempt to make a distinction between implicit and explicit knowledge via cognitive
notions, although in a sense different than what we try to do here. They are much close to the kind of
distinctions that the sentence storage model of belief attempts to make.

16 On the other hand, there are situations where this is not so clear. The best candidate along those lines would
be a sentencs or not .S, which we can reasonbly expect to be aware of as representing the necessarily true
proposition, without being aware of the sentesscghat is, without having a representation for the proposition
expressed by).
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that she can derive a representation of the proposition expressed by all such rules.
Part of the assumption that Alice is a logician includes that she is aware of the
sentencetfueis a valid formula of classical first-order logic’. Letbe an arbitrary
complex and valid formula of classical first-order logic. Since the deductive system
is complete, there is a deduction in the deductive system that provBgcause

Alice is aware of true is a valid formula of classical first-order logic’, and she is
aware of all the deduction rules of the complete deductive system, she is aware of
T is a valid formula of classical first-order logicln other words, she can derive a
representation for this sentence, which must be a representation of the necessarily
true proposition: she can derive thais valid, for all validy. Thus, it seems that
closure under awareness is still too strong a principle to capture a reasonable notion
of knowledge.

Closure under material implication (and thus closure under subsentences) essen-
tially misses out on a particular feature of real reasoning agents, the same feature
that appears to be the problem with logical omniscience. Intuitively, it does not
capture that fact that deriving a logical conclusion from a set of hypotheses is a
procesghat requires mental resources, perhaps more resources than the agent pos-
sesses. This suggest that while we need in some sense a “theory” of what sentences
an agent is aware of, this theory should not only take the form of a set of rules de-
scribing what an agent is aware of, based on sentences he is already aware of, but
also take into account the process of deriving sentences he is aware of, keeping
track of the mental resources needed to perform the derivation.

A.3 Towards Computational Mental Representations

How can we characterize, then, awareness of sentences by taking into account the
process of deriving the representation of a proposition expressing the meaning of
a sentence? The answer is implicit in the use of the term “process” above. More
precisely, we will view the process of deriving the representation of a proposition
expressing the meaning of a sentence to be an effectively computable process per-
formed by the agent.

The notion of effectively computable process (or effectively computable func-
tion) goes back to Church and TurifigRoughly speaking, a function is effectively
computable if there is a “mechanical” procedure (mechanical in the sense that it
does not require intuition) that produces the results of the function given its inputs.
(We must also assume that the inputs are, in some sense, themselves computable.)
A Turing machine is an abstract device that captures a particular form effective
computability. TheChurch-Turing thesigCT) is the widely believed thesis that

17 See Church [1936] and Turing [1936].
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Turing machines in fact capture all forms of effective computability. (This thesis is
supported by the fact that every other alternative to Turing machines that captures a
form of effective computability can be shown to be equivalent to Turing machines.)
In other words, if a function can be effectively computed by any conceivable mech-
anism, then it can be computed by a Turing machine. This may not have been the
belief of Church and Turing, but it has become the common interpretation &f CT.

We can posit that a nonsupernatural being, for our purposes, is one for which
the process of deriving the representation of the proposition expressed by a sen-
tence is an effectively computable process. (As opposed, say, to a being that could
magically derive the representation of the proposition expressed by the sentence.)
Assuming CT, and assuming that the representation of the proposition is of a suit-
able form, this means that this derivation process can be simulated by a Turing
machine.

This view that the activity of the brain might be somehow related to the notion
of effective computability is certainly not original. The general assumption that
the brain, or in fact any biological system, is an effectively computable process,
and thereby can be simulated by a Turing machine is shared by many philosophers.
Searle, for instance, writes:

Can the operations of the brain be simulated on a digital computer? ... The
answer seems to me ... demonstrably ‘Yes’ ... That is, naturally interpreted,
the question means: Is there some description of the brain such that under that
description you could do a computational simulation of the operations of the
brain. But given Church’s thesis that anything that can be given a precise enough
characterization as a set of steps can be simulated on a digital computer, it follows
trivially that the question has an affirmative answer. [Searle 1992, p.200]

Similarly, Johnson-Laird and the Churchlands write:

If you assume that [consciousness] is scientifically explicable ... [and] [g]ranted
that the [Church-Turing] thesis is correct, then ... [i]f you believe [functionalism]

to be false ... then ... you [should] hold that consciousness could be modeled in
a computer program in the same way that, say, the weather can be modeled ...
[and if] you accept functionalism ... you should believe that consciousness is a
computational process. [Johnson-Laird 1987, p.252]

Church’s Thesis says that whatever is computable is Turing computable. Assum-
ing, with some safety, that what the mind-brain does is computable, then it can
in principle be simulated by a computer. [Churchland and Churchland 1983, p.6]

While these are all interesting statements which, if true, have deep consequences
for the study of cognition, we must remark that for the purposes of this chapter, one
18 See Copeland [2002] for a discussion of these views. There are also dissenting opinions, holding that Turing

machines do not fully capture effective computability; see Penrose [1989, 1994] and Steiglitz [1988] for
typical arguments along those lines.
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need not go so far as assume that the whole process of cognition is captured by Tur-
ing machines. Specifically, it is sufficient that there is a notion of a representation
of a proposition, and a notion of effectively computing this representation from a
sentence.

Perhaps the most vocal advocate of the computational view of propositional at-
titudes is Fodor, who holds a view quite close to the one presented here, at least
superficially. Fodor arguésthat a propositional attitude suchbelieving thatP
should be understood as a computational relation between an organism and a men-
tal representation expressing the propositianin a way, this chapter describes a
particular formalization of Fodor’s ideas, and in the next section provides a suitable
logic for reasoning about knowledge in such a setting.

Our thesis is that computational issues are relevant to a notion of knowledge
that pertains to address human-like knowledge. As we argued in the last section, it
seems required to consider the process under which representations of propositions
are derived from sentences, in order to capture the fact that the mental capacities
of nonsupernatural beings are resource-limited. An interesting consequence of this
view is that if we believe that the Church-Turing thesis applies to this derivation
process, that it is somehow effective, then there are fundamental limits to the repre-
sentations of propositions we can derive from sentences. What kind of limits? One
of the main results related to Turing machines, and in fact the motivation behind
Turing’s research, was to show that there exists problems that are not computable
using Turing machines, and hence, via CT, that are not effectively computable.
These are the so-calleshdecidableproblems.

A classical problem that is undecidable is the problem of deciding the validity
of an arbitrary classical first-order logic formula. More specifically, consider the
problem of deciding, given a formula of classical first-order logic, whether or not it
is valid, that is, true in all models. It can be proved that there is no Turing machine
that can answer such a question uniformly for all formulas. Assuming CT, this
means that there is no effectively computable process that can reliably answer the
question of whether a formula of first-order logic is valid or not. The existence of
undecidable problems seems to imply that it is not possible for a nonsupernatural
entity to always be able to derive a representation of the proposition corresponding
to a sentence. Returning to the example of Alice in the last section, consider again
the knowledge attribution:

Alice knows thaty is a valid formula of classical first-order logic.

If the process of deriving a representation of the proposition expresseg s/
a valid formula of classical first-order logidor any giveny is indeed subject

19 See Fodor [1976, 1981].
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to the Church-Turing thesis, then there is no effectively computable process that
can derive for eaclkp whether that representation is the necessarily true or the
necessarily false proposition. In other words, Alice cannot khgwis a valid
formula of classical first-order logicfor all ¢, even if she has complete mastery

of classical first-order logic.

As we mentioned, there is some debate as to the question of whether our brains
can be simulated by Turing machines. We also pointed out that all we need is
the somewhat more restricted assumption that only our ability to derive a repre-
sentation of propositions corresponding to the meaning of sentences need to be so
simulated. In fact, the argument goes through relatively unchanged if we allow the
computation of the representation of propositions to be simulated by more powerful
forms of Turing machines, such as relativized Turing machines. (Roughly speak-
ing, a relativized Turing machine is a Turing machine with access to an oracle that
can itself be noncomputable.)

A.4 Computational Knowledge

The approach of Hintikka, to explain knowledge in terms of epistemically possible
worlds, has the advantage of immediately giving rise to a logic for knowledge.
Indeed, a possible-worlds account of knowledge, where the objects of knowledge
are propositions, gives us a semantics for a normal modal logic of knowfedge.

Why is this interesting? Essentially, it gives a way to argue, in an abstract setting,
for various properties of knowledge, such as positive and negative introspection,
and argue whether they are reasonable or not. For instance, some properties of
knowledge that come out of the possible-words formalization translate directly into
axioms for knowledge such as the knowledge distribution axiomA K(p =
¥) = K1) or the knowledge introspection axioRy = K K. Of course, there
is some debate as to what properties knowledge ought to have even in Hintikka's
definition, and these debates translate into debates as to the correct axioms that
knowledge satisfies in such a logic. But the point is that Hintikka’s definition of
knowledge has an associated logic which is amenable to interesting axiomatization
about which one can debate.

In this section, we examine to what extent we can talk about a logic for the
account of knowledge that we have been talking about, and that we wittaaH
putational knowledgeClearly, such an account intrinsically depends on the com-
putational process of going from sentences to a representation of propositions.

The idea is simple: we model explicitly the process of deriving a representation
of the proposition expressed by a sentence, or perhaps simply an abstraction of

20 See Hughes and Cresswell [1972].
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this process. To this end, we assume for every agemganing algorithmaking a
sentence of the language and a representation of the actual world for the agent, and
returning a representation of the proposition corresponding to the sentence (or per-
haps an indication that the derivation cannot happen). We will represent the latter
event by the toke@, assumed not to correspond to the representation of any ex-
isting proposition. Since this algorithm is computational in nature, it falls under the
discussion of the previous section, and hence is subject to the CT limitations that
it be simulated by a Turing machine, assuming that our representations themselves
effective, which we will also assume. An agent is then said to computationally
know a sentence if the agent’s meaning algorithm says that the sentence, given the
agent’s representation of the actual world, corresponds to the representation of a
propositionP, and P holds at all the worlds that the agent considers as possible
alternatives to the actual world. We assume that the meaning algorithm always ter-
minates, and retur@ when a representation cannot be derived (perhaps because
it requires too much mental resources).

The above refers to a representation of the actual world. Intuitively, this is meant
to encompass everything that the agent needs to take into consideration in order to
derive a representation of the proposition of the sentence. Among other things, the
“meaning” of the words (or lexical entities) in the sentence need to be known. Not
every competent English speaker will know all the words in all the grammatical
English sentences, or even all the synonyms for a given word.

Let me now give a logical formalization of the above, in a way done for instance
by Hintikka. The models of the logic still use possible worlds, so that we can make
sense of the notion of a proposition, and implicit knowledge is still defined as truth
at all possible worlds. We furthermore equip the agent about whose knowledge we
are ostensibly reasoning with a meaning algorithm that gives, for every sentence, a
representation of the proposition corresponding to the sentence.

We have to be a little bit careful here. We need to distinguish the primitive
facts about the world, that make us the propositions, from the primitive vocabulary.
Under any reasonable interpretation of propositions, there are uncountably many
primitive facts. On the other hand, the primitive vocabulary in which we express
ourselves (or more accurately in which the agents express themselves) has at most
countably many words. They can be enumerated in a dictionary, for instance. Note
that only countably many sentences can be written, given this countable primitive
vocabulary. We certainly do not have a name for every real number, say, although

21 This approach is inspired by the work of Parikh [1987], who introduced a forlimgiistic knowledgeand
Halpern, Moses and Vardi [1994], who introduced a fornmalgforithmic knowledge In the latter case, the
algorithms associated with the agents directly return “Yes”, “No”, or “?” to the question of whether the agent
knows the given formula in the agent’s current state.
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we can describe the “naturally” occurring ones using more and more complex sen-
tences?

The logic itself needs to distinguish sentences, which are technically objects of
knowledge in this setting, from representations of propositions. For simplicity, we
only consider a propositional logic in this chapter. The ideas extend straightfor-
wardly to predicate logic. We assume a primitive vocabulbgy containing the
basic elements of the vocabulary of the language. We assume that this set is count-
able, following the above discussion. We also assume & seff primitive facts
about the world, and we assume tkigtC @;.

We define a sentenceto be either a primitive vocabulary elemeante &, a
conjunctionos; and o4 (for sentences andos), a disjunctions; or o5 (for sen-
tenceso; andos), an implicationo; implies o5 (for sentences; andos), or a
negationnot oy (for a sentencer;). This defines a very simply sentential lan-
guage, and clearly could be extended to cover more of English. The above lets us
retain the flavour of propositional logic. Note that we do not define implication and
disjunction by abbreviation as it is often done in many accounts of propositional
logic.

We define a representation for proposition as a formula of a propositional logic.
(Recall that a proposition is a set of possible worlds; we will have the equivalence
that a set of possible worlds is equivalent to the representation of a propaBition
that is true at all of the worlds i) The representation is a formula of a propo-
sitional language that we presently introduce. A formula is either a primitive fact
p € @y, a conjunctionp; A ¢ (for formulasy; andys), a negation-y; (for a
formulay1), and a knowledge attributioR o (for a sentence). Note that syntac-
tically, the object of knowledge in this setting is a sentence. In this propositional
logic, we do definep \V ¢ as an abbreviation for(—p A =), andy = 1 as an
abbreviation for-p V 1.

To give a semantics to this logic, we start with augmented Kripke structures
M = (W,X,n,A), whereW is a set of worlds, an&( is a binary relation on
worlds that represents the worlds that an agent considers as possible alternatives to
the actual world. We typically write’ € K(w) if (w’,w) € K. The functionr
associate with every world a set of primitive facts, essentially the primitive facts
that are true at that world. We also have a meaning algoridhthat takes as in-
put the sentence whose representation of the proposition we want to establish, as
well as a representation of the world that the agent takes into consideration when
deriving the propositional meaning. We do not go into the details of this representa-
22 This statement does not have as much content as one may think. What is a “naturally” occurring real number?

Say this is a real number that occurs during the course of mathematical investigation. This mathematical

investigation that gives rise to this real number can be considered as a description of that real number, which

seems expressible using a countable language, in this case, English supplemented by the apparatus of formal
mathematics.
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tion, but simply posit a functiorep(w) that takes a world and somehow hands out
representation of that world that the agent can take into account. We assume this
representation to be effective. This representation should also be compatible with
theX relation, so that iiv’ € X(w), we haverep(w’) = rep(w). In other words, if
the agent considers bothandw’ as possible alternatives to the actual world, then
the agent should not have different representations corresponding to these worlds.
As we discussed above, we assume that the algorithm always terminates, perhaps
with | ? | if no meaning can be derived for the sentence.

We can now define the truth of a formula/, w) = ¢, as follows:

(M,w) Epif p € m(w)

(Maw) ): ¥1 A P2 if (M,U)) ): ®1 and(Mvw) ’: ©2

(M, w) =~ if (M, w) & 1

(M,w) & Ko if A(o,rep(w)) # [?]and for allw’ € K(w), (M,w') E
Ao, rep(w)).

As usual, we writeV] = ¢ if (M, w) E pforallw e W.

Given the discussion in the previous sections, it should be clear that the above
logic does not suffer from the logical omniscience problem. Depending on the
meaning algorithred, it certainly can be the case that/, w) = Ko and(M,w) =
K (o implies o), but that(M, w) [~ Ko, if the meaning algorithm cannot derive
the appropriate representation fgr given his representation of the world

As a simple example, consider once again Alice, the logician. This example can
be modeled using a mod&I with a single worldw, the actual world. Le®,, be the
set of sentencésy is a valid formula of classical first-order logiéor all formulas
¢, and letd, = ®,. Let the interpretatiom atw be all the sentences i, where
the formulay appearing in the sentence is indeed a valid formula of classical first-
order logic. The representatioap(w) of the actual world is inconsequential for
this example, so we simply take it to be null. As Alice’s algoritbin take a
variant of the resolution proceddtgestricted to a fixed number of resolvents, say
ten. The algorithm will return one of the following tokenE:as a representation
of the necessarily true propositioR,as a representation of the necessarily false
proposition, an if the procedure does not return a result within ten resolvents.
It is easy to see that if a sentengein @, talks about a formula of first-order
logic ¢ that is valid but too complicated for the restricted resultion procedure to
handle, thetd (o, rep(w)) = , and thug M, w) | —Ko. In other words, there
is a sentence that expressses the necessarily true proposition, but that Alice does
not know. If o talks about a formula of first-order logic that is simple enough
and is valid, thenA(o, rep(w)) = T, the necessarily true proposition, and thus
(M,w) = Ko, sinceT is true atw.

23 See Nerode and Shore [1994], for instance.
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This is a very generic account of computational knowledge, and by itself does
not give rise to any logical theory of knowledge. In some sense, if we do not
put restrictions on the meaning algorithms we consider, there are no interesting
valid formulas involving knowledge. What kind of restrictions could we impose on
meaning algorithms to yield classes of meaning algorithms such that with respect to
models over algorithms in that class, we have interesting and relevant properties of
knowledge? Let us focus on one here. First, define the true meaning of a sentence
o, written T, to be the proposition representing the true meaning. dfhis can
defined inductively as followss™ is justv (recall that we assumed thét, C ),

(01 and 02)T isof Aol (01 or X2)T isof Vol (o1 implies 02)T isof = of,
and(not o)” as—o?. We say an algorithmi is sound inM = (W, X, r,A) if

for all w such thatA (o, rep(w)) # , we haveA(o, rep(w)) logically equivalent

to o”. In other words, if the algorithm returns a nontrivial result, it is the correct
result (as far as the meaning of the sentence is concernedMLbe the class of
augmented Kripke structures over sound meaning algorithms. It is easy to see that
in all modelsM in M*, M = Ko = o' is valid, which is essentially the truth
axiom for knowledge.

Other general principles of knowledge could potentially be extracted if we as-
sume a universality to the meaning algorithms used by, say, humans. For instance,
the kind of universal principle that Chomsky believed was common to all human
languages:

A.5 Conclusions

In this chapter, we have investigated a framework for knowledge that retains the
flavour of knowledge as truth in all possible worlds, while not suffering from the
problem of logical omniscience. This is achieved by essentially capturing the men-
tal process of deriving from a sentence of which knowledge is claimed the mental
representation of the proposition corresponding to the meaning of the sentence.
This approach to understanding knowledge pushes the problem of determining
the properties of knowledge into the mechanisms used by agents to derive the rep-
resentation of propositions expressed by sentences. We can view the notion of
knowledge as defined by Hintikka as a limit case of the kind of knowledge we have
here. The standard possible-worlds approach to knowledge truly represents the
knowledge that an ideal agent (not limited by computational issues) would have.
In that sense, it is idealized. The strong statement that we can make, if we assume
the Church-Turing thesis, and the effectiveness of the representation of proposi-

24 See, for instance, Chomsky [1968].
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tions and the view of the actual world, is that this ideal simply cannot be realized
by any human, however much good will one puts into it.

We observe that there appears to be a relationship between our notion of knowl-
edge and Ryle’s notion of knowing-how. Ryle describes a dichotomy between
knowing-that and knowing-how. That is, there is a distinction of sorts between
knowing that a fact is true, and knowing how to perform an action. In some sense,
we take the view that knowing a fact is knowing how to derive this fact using an
internal mental process. It would be interesting to see if our approach is subject to
the same criticisms as the Ryle account of knowing-how. Of course, it may simply
be the case that knowing a fact, even on our view, is not equivalent to knowing how
to derive this fact using an internal mental process, since the internal process is not
explicit to the agent.

It is our belief that we cannot have a uniform notion of knowledge, a theory that
encompasses in the abstract what can be known by any individual, without going
into some specifics of how that individual is thinking, so to speak. The current
approach provides a reasonable hope that some kind of logic can be developed to
account for realistic knowledge.

25 See Ryle [1949]. This relationship was first pointed out by Parikh [1987].






Appendix B
Proofs

HIS appendix gives the proofs of the technical results in the body of the text.
For ease of reference, we repeat the statement of the results proved.

B.1 Proofs for Chapter 2

Theorem 2.2. AX** is a sound and complete axiomatization £6r* with respect
to algorithmic knowledge structures.

Proof. Proving soundness is straightforward. For completeness, we prove the
equivalent statement that §f is consistent (i.e., if-p is not provable from the
axioms inAX"*¥) theny is satisfiable in some algorithmic knowledge structure.
We can do this by adapting the canonical model constructions typically found in
the modal logic literature [Hughes and Cresswell 1972]; we assume knowledge of
constructions based on maximal consistent sets of formulas throughout this section.

First, given a seV’ of formulas, letV/K = {¢ | K¢ € V}. LetC be the set
of all maximal consistent sets of formulas©f*. Define the relatior: overC by
takingV' ~ U if and only if V/K C U. We first check that this is an equivalence
relation, assuming the axioms K1-K5. For reflexivity, we sHoWws C V. As-
sumeyp € V/K. ThenKy € V, by definition of /K. By axiom K3,¢ € V,
as desired. For symmetry, we show thatK C U impliesU/K C V. Let
¢ € U/K. By definition, K¢y € U. Assume, by way of contradiction, that
¢ ¢ V. Then by maximality of’, =¢ € V. By K3, we have-K¢ € V. By K5,
K-Ky € V,sothat-K¢p € V/K C U, so that-K¢ € U, but this contradicts
K¢ € U andU consistent. Thusy € V, so thatU/K C V, as desired. Finally,
for transitivity, we show thai’/K C U, assumindl’/K C V andV/K C U. Let
¢ € T/K. By definition,Kp € T. By K4, KKy € T. Thus,Kp € T/K C V.

195
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Therefore,p € V/K C U, andT/K C U, as desired. Se: is an equivalence
relation.

A property of interest is that for alp in LX*, if V = U, thenXy € V if
and only if X+¢) € U. This follows easily from X1. Assum&vy € V. Then
KXy € V by X1, and thusXy € V/K, and sinceV ~ U, X¢ € U. The
converse direction follows from the fact thatis symmetric.

Let ¢ be a consistent formula &, and letSub(y) be the set of subformulas
of ¢ (includingy itself). Sinceyp is consistent, there is a Séf € C with p € V¥,
Let [V¥]~ be thex-equivalence class that contain®. We will use[V¥]. to
define the states of our canonical structure. More specifically, define the canonical
algorithmic knowledge structurkl¥ = (W, V¥ 7% A%) by taking:

W? ={wy |V € [V¥]x}
VA(wy) =L
true ifpeV
false ifpgV
“Yes” if ¢ € Sub(yp), Xp € V¥
A?(, L) = < “No”  if o € Sub(yp), Xi) € V¥
“r otherwise.

T (wy)(p) = {

SinceSub(yp) is finite, it is easy to see tha¥ is an algorithm that simple searches
a given finite list.

We now show that for allvy, € W% and all subformulag € Sub(y), we have
(M?,wy) = v ifand only if ¢» € V, by induction on the structure of formulas.

For true and false, the result is immediate, sindeue is in every maximally
consistent set, anfllse is in none. For a primitive propositign which is recall a
term inTY, the result follows immediately. M ¥, s) |= p if and only 7#(s)(p) =
true (by definition) if and only ifp € V' (by definition of7¥). For a conjunction
Y1 AN, we have(M ¥, s) = 1 Ao ifand only if (M¥, s) =1 and(M¥, s) =
19 if and only (by the induction hypothesig) € V andiy, € V if and onlyyy A
1o € V (by maximal consistency df). For a negationi), we have(M¥, s) =
- ifand only if (M¥, s) =« if and only if¢» ¢ V' (by the induction hypothesis)
if and only if -y € V' (by maximal consistency df).

For a knowledge formul&’v), we have the result following from essentially the
same proof as that of Halpern and Moses [1992]. First, asgifite wy ) = K.
It follows that (V/K) U {—%} is not consistent. (Otherwise, it would be con-
tained in some maximal consistent gétin ¢, and by construction, we would
haveV/K C U, and thusV ~ U, and sinceV’ =~ V¥, we haveU ~ V%, and
wy € W¥; but since we havew) € U, we havey ¢ U, and by the induction hy-
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pothesis(M %, wy) F~ 1, contradicting M ¥, wy ) = Kv.) Since(V/K)U{—v}
is not consistent, there must be some finite subget. . . , v, =1} which is not
consistent. By propositional reasoning, we can derive ghat>- (p2 = (... =
(¢r = 1) ...)) is provable, and thu& (o1 = (2 = (... = (or = ¥)...)))
is provable by K2. It is straightforward to derive from this by induction, proposi-
tional reasoning, and K1, th&fp; = (Ky2 = (... = (K¢ = Kv)...)) s
provable. ThusKy1 = (Kys = (... = (Kypr = K1)...)) € V. Because
©1,...,0k € V,we haveK 1, ..., Ky € V, and by MP, we havé&y € V, as
desired. Conversely, if we assumi@) € V, theny € V/K. Letwy be an arbi-
trary state of//¥. By construction of\/¥, V' ~ U and thus//K C U. Therefore,
we havey € U, and by the induction hypothesis}/¥, wy/) = . Sincewy was
arbitrary, andV(wy ) = V(wy ), this means thatM ¥, wy ) | K.

Now, consider an algorithmic knowledge formw{a). Assume thatM?, wy ) |=
X1. By definition,A? (¢, V(wy)) = “Yes”, which by the properties of¥ means
that Xy € V¥. SinceV ~ V¥, by the property ot~ given above, we have
Xy € V, as required. Conversely, assume that € V. Since is a subfor-
mula of ¢ (since X is), we have by definition that¥ (), L) = “Yes”. Thus,
(M wy) E X.

Completeness oAX** now follows immediately. Since € V¥ andy €
Sub(p), we have(M ¥, wy+) = ¢, and thusp is satisfiable. 0

Theorem 2.3. AX®*P is a sound and complete axiomatization fof*> over
algorithmic knowledge structures.

Proof. Soundness is straightforward. The proof of completeness is just like that of
Theorem 2.2, except that now we must also account for the opdpator

First, we verify the following property aby, namely that alty in L**Pif V' ~
U, thenDvy € V if and only if Dy € U. This follows easily from X3. Assume
Dy € V. ThenKDvy € V by X3, and thusDy € V/K, and sinceV ~ U,
Dy € U. The converse direction follows from the fact thais symmetric.

We construct a canonical structuké? = (W, V¥ ¥ A¥), as before, except
that we take the following definition far®:

“Yes” if ¢ € Sub(p), Xop € V¥
A? (Y, L) = < “No” if ¢ € Sub(p), Xy € VP, Dip € V¥
“" otherwise
We can again show that for alty € W¢ and all subformulag) € Sub(y),

we have(M? wy) = ¢ if and only if b € V, by induction on the structure of
formulas. The only case that we need to add is the on®for Assume first that
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(M*?,wy) = Dp. Thus, we hava?(y, L) € {“Yes”,“No” }. By definition, this
means eitheX¢ € V¥, or Xy ¢ V¥ and D1y € V¥, In the first case, we have
X1 e V (sinceV = V%), and thusDy € V (by axiom X2). In the second case,
we haveDy € V%, so thatDy € V (becausd/ ~ V¥). Thus, in all cases,
Dy € V, as required. Conversely, assuig € V. Becausd’ =~ V¥, we have
D+ € V¥. By maximality of V', either X¢ € V% (in which casedA®(y, 1) =
“Yes”), or -Xv¢ € V%, so thatXy ¢ V¥, and thusa®(¢y, L) = “No”. Thus,
in either caseA? (v, L) € {“Yes”,“No” }, so that(M¥,wy) | D, as required.
The resulting completeness AX**P now follows as before. 0

Theorem 2.4. AX"*" + {X4,X5} is a sound and complete axiomatization for
LEXP gver algorithmic knowledge structures with sound algorithms.

Proof. Soundness is straightforward. The proof of completeness is exactly as
that of Theorem 2.3. The only thing is that we need to verify that the knowledge
algorithmA¥ is in fact sound.

Givenwy € W¥, assume¥(y, V(wy)) = “Yes”. By the definition ofA¥, we
have Xy € Sub(y) and Xy € V¥, SinceV? ~ V, X¢ € V. By Axiom X4,
Ky € V. Hence,y € V/K. SinceXvy € Sub(p), ¥ € Sub(p). Letwy be
any state of\/¥. By construction, we hav&’ ~ U, and thusV’/K C U, so that
1 € U. By the result in the proof of Theorem 2.3V, wy) = . Sincewy was
arbitrary,(M,wy) | K1, as required.

Similarly, givenwy € W¥, assume\¥ (i, V(wy)) = “No”. Then by the defi-
nition of A¥, we haveXy € Sub(y), Xy ¢ V¥, andDy € V. SinceV? = V,
Xy & Vand Dy € V. By maximality of V, - X¢ € V. By Axiom X5,
-Kv¢ € V. SinceXvy € Sub(y), 1y € Sub(yp). We can apply the appropriate part
of the proof of Theorem 2.3, to get that if we haVd, wy ) = K1, thenKvy € V,
contradicting the consistency bf; therefore (M, wy ) = —K1, as required.

0

The following known result about the satisfiability 6f formulas is central to
many proofs of this section. We writd/, w) =k ¢ for the satisfaction relation of
L¥. Recall that, following Section 2.Z,* is interpreted over epistemic structures
M = (W, X, ), where we assume th&t is an equivalence relation di.

Lemma B.1. [Ladner 1977]Given f an L formula, if f is satisfiable in an epis-
temic structure, thery is satisfiable in an epistemic structufd = (W, X, )
where|W| < |f|, andX is the universal relation, that ig{ = W x W.

Theorem 2.5. AX**P+{X4, X5, X6} is a sound and complete axiomatization for
LXXP gyer algorithmic knowledge structures with sound and complete algorithms.
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Proof. Soundness is straightforward. For completeness, we cannot use the same
technique as used in Theorem 2.4. Certainly, we cannot define the knowledge
algorithm as we did there. Intuitively, we cannot have the algoridimeturn “?”,
because we want it to be complete. In the original algorithms, we replied “?” when
v ¢ Sub(y). This allowed us to only have to consider finitely many formulas,
those inSub(y). Because we want the algorithm to be both sound, we cannot
simply reply “No” whenvy ¢ Sub(p). In fact, the only sensical algorithm is the
following:

“Yes” if Xy e V¥

L) = {“No" if X4 ¢ Vo,

However, in general, this does not work, as we have no general way to check
whetherX 1 € V¥ algorithmically.

Instead, we take a different approach. We again prove the equivalent statement
that if a formulay is consistent, then it is satisfiable. We rely on the intuition that
is A is a sound and complete knowledge algorithm, thkembehaves like< ¢, and
Dy behaves likgrue. Formally, define a translatlon from a formutaof LExD
into aformulap ofLK by takingp = p, =% = —3, 1 A 92 = PIAP3, K<p Ko,
Xgo = Ko, andDgo = true. Itis easy to prove that for alp, - ¢ < @, using
axioms X4—6. We first establish thatfis consistent, the is AX*-consistent.
This follows rather immediately from the fact that for all if -,k @, thenk ¢.
(Since every axiom iIMX" is an axiom of AX**” + {X4,X5,X6}, Fyxxk @
implies that+ $, and applying- ¢ < ¢ yieldst ¢.) By completeness oA X"
for LX, o AX®-consistent means thatis satisfiable in an epistemic structure. By
Lemma B.1,(M,w) =k ¢ for some epistemic structud® = (W, X, ) where
(W] < |p| andX = W x W. We derive fromM an algorithmic knowledge
structureM’ = (W, V, x, A) by takingV(w) = L andA(yp, L) be the algorithm for
checking that M, w) = ¢ for allw € W. (For instance, we can take the algorithm
from Theorem 2.8.) It is straightforward to check taf’, w) | ¢, and thath is
a sound and complete knowledge algorithm, establishing our result. O

Theorem 2.6. Let M = (W,V,n, A) be an algorithmic knowledge structure.
If A weakly respects negation, théd = X¢ = —X-p. If A strongly respects
negation, then/ = Xy < - X .

Proof. We prove the result whem weakly respects negation. (The result when
A strongly respects negation is similar and left to the reader.) uLet W. If
(M,w) | X, thenA(p, V;(w)) = “Yes”. SinceA weakly respects negation, this
implies thatA(—p, V;(w)) = “No” and hence thatM, w) £ X;—p, So(M,w) |
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- X;—. Thus,(M,w) E X;o = —-X;—p. Sincew was arbitrary, we have that
M| Xip = —Xinp. =

Theorem 2.7.

(@) AX;* is a sound and complete axiomatization fgf* with respect to al-
gorithmic knowledge structures faragents.

(b) AXX*P is a sound and complete axiomatization fof*" with respect to
algorithmic knowledge structures faragents.

(c) AX;*P 4 {X4,X5} is a sound and complete axiomatization £gy*° over
algorithmic knowledge structures faragents with sound algorithms.

(d) AX;*P 4 {X4,X5,X6} is a sound and complete axiomatization £gf*"
over algorithmic knowledge structures faragents with sound and com-
plete algorithms.

Proof. (@) This is a straightforward generalization of the proof of Theorem 2.2.
Soundness is easy to check. For completeness, we again showhatdbnsis-
tent, theny is satisfiable. We give the definitions here, leaving the details of the
proof to the reader. Given a sEtof formulas, letV/K; = {¢ | K;p € V}. Let
C be the set of all maximal consistent sets of formula§ £f. We definex; over
C, for everyi, by takingV” =; U if and only if V/K; C U. We can check that;
is an equivalence relation for everyassuming the axioms K1-K5, just like in the
proof of Theorem 2.2. We can also check that forglif V' =; U, thenX;¢p € V
if and only if X;¢ € U.

Let ¢ be a consistent formula @** and letSub(y) be the set of subformulas
of ¢ (including ¢ itself). Sinceyp is consistent, there is a sEt* € € with ¢ €
V¥. For everyi, let [V¥]~, be the~;-equivalence class that containy. We
will use [V¥]~, N --- N [V¥]x, to define the states of our canonical structure.
More specifically, define the canonical algorithmic knowledge struclidfe =
(We, VY, ..., Vi, m? A7, ... A7) by taking

W¢¥ = {wv ‘ Ve [Vso]zlmu-mzn}
Vf(wv) =1
true ifpeV
false ifpgV
“Yes” if ¢ € Sub(y), X0 € V¥
Af(¢, 1) = ¢“No" if ¥ € Sub(p), Xip g V¥
“r otherwise.

7 (wy)(p) = {

We can check thafl/® is a deductive algorithmic knowledge structure with
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agents. We can prove, adapting the proof of Theorem 2.2, that faralkk W¢
and all subformulag € Sub(y), (M¥,wy) = ¢ ifand onlyify € V. Complete-
ness follows from the fact that € V¥ andy € Sub(p), so that(M?, wy) = ¢,
and thusy is satisfiable.

(b) This is a straightforward generalization of the proof of Theorem 2.3, along
the lines of part (a). We can verify that for allin LX*P, if V =~; U, thenD;y €
V if and only if D;s» € U. We construct the canonical algorithmic knowledge
structureM¥ = (W, VY, ..., Vi, 7%, A7, ... A7) as in part (b), except that we
take the following definition foa?:

“Yes” if i € Sub(p), X;9p € V¥
AP (Y, L) =< "No” if ¢ € Sub(p), X0 € VP, Dip € V¥
e otherwise.

(c) This is a straightforward generalization of the proof of Theorem 2.4, along
the lines of part (a). Soundnessigtis proved in exactly the same way.

(d) This is a straightforward generalization of the proof of Theorem 2.5, along
the lines of part (a). One (slight) difficulty is that the proof of Theorem 2.5 relies on
Lemma B.1, which does not hold fdr;;. However, a weaker but sufficient result
is asmall model theorerfor L};, namely, that if a formulg of L is satisfiable in
an epistemic structure for agents, then it is satisfiable in an epistemic structure
M = (W,X4,...,Ky, ), where|IW| is finite [Halpern and Moses 1992]. O

Theorem 2.9. There is a procedure that runs in time polynomialg- |[W|- f(|¢])
(wheref(n) = max{fa,(n) | i € {1,...,n}}) for deciding, given an algorithmic
knowledge structure for agentsM = (W, Vy,...,Vy,,m,A1,...,Ay) andp €
LEX whether(M, w) = .

Proof. Let ¢1,...,p; be the subformulas op listed in order of length, with
ties broken arbitrarily. Thus, we havg, = ¢, and if p; is a subformula ofp;,
theni < j. There are at mostp| subformulas ofp, so we must havé < |¢|.
An easy induction ork’ shows that we can klabel each woudin M with ¢,
or—ypj, forj =1,..., k', depending on whether or net; is true atw, in time
O(K" - |[W|- f(|¢])). Inthe case where; is of the formK;¢;/, wherej’ < j, we
label a worldw with K, if and only if each worldw’ such thatV;(w) = V;(w’)

is labeled withp ;.. Assuming inductively that each world has already been labeled
with ¢ or —p;/, this step can be carried out in tini® |IW|), as desired. In the
case where; is of the formX;p,;/, where;j’ < j, we label a worldw with X,

if and only A;(¢;, Vi(w)) = “Yes”. By assumption, this can be done in time
O(fa, (o)), which isO(f(|¢o])). sincelgy| < |¢]. O
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Lemma B.1, about the satisfiability &f* formulas, is central to the decision
procedures fo£.**. For one thing, we can easily reduce the decision problem for
L¥ to our logic, by simply ignoring th& ¢ formulas.

Lemma B.2.If f € LX, thenf is satisfiable in an epistemic structure if and only
if fis satisfiable irfv{*=.

Proof. For the forward direction, assunyeis satisfiable in an epistemic struc-
ture. M = (W,X,n). Construct the algorithmic knowledge structuré =
(W,V,m,A) by takingV(w) = [w]«, the equivalence class af with respect to
K. Thus,(w,w’) € X if and only if V(w) = V(w'), and thusk =~. Itis im-
mediate to check by induction on the structurefothat if (M,w) =k f, then
(M',w) = f. For the backwards direction, assurfiés satisfiable in an algo-
rithmic knowledge structur@/ = (W, V, w, A). Construct the epistemic structure
M' = (W, X, ) by takingKX =~. Itis immediate to check by induction on the
structure off that if (M, w) E f, then(M’,w) Ex f, from which the result is
immediate. O

There is a similar relationship between satisfiability of a formglin L%,
and satisfiability inC*. More precisely, givenp € L**(d), let ¢ be defined
as follows. The set of formula§Xvy | ¢ € L¥X(T¥)} is countable, so let
Q) = {qy | ¥ € L*(Pg)} be a countable set of primitive propositions dis-
joint from ®(, whereg,, corresponds to the formuld+). Let ¢ be the translation
of ¢ obtained by replacing every occurrence of a formhila by the correspond-
ing gy, in conjunction with formulag,, < Kqy for all X+ appearing inp. This
translation is essentially composition@lWQ is logically equivalent t@s;, A @a,
—p is logically equivalent to~¢, andff\g/o is logically equivalent td< . Note that
|| is polynomial in|¢p|.

Lemma B.3. If ¢ € L¥¥(®dy), theny is satisfiable inM*= if and only if ¢ is
satisfiable in an epistemic structure.

Proof. Assumey is satisfiable irlM®¢, that is, there is an algorithmic knowledge
structureM = (W,V,n,A) such that M, w) = ¢ for somew € W. Construct
an epistemic structuré/’ = (W, X, r’) by takingn'(w)(p) = w(w)(p), if p €
Py, andn’(w)(gy) = true if and only if (M,w) = X, if ¢, € @, and by
takingX =~ on W. It is easy to check by induction on the structurecathat if
(M,w) E ¢, then(M', w) Ex @.

Conversely, assumg is satisfied in some epistemic structure. By Lemma B.1,
we know that there exists an epistemic structufe= (W, X, 7) where|W| < ||
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and (M,w) Ex ¢ for somew € W. Let [wi]x, ..., [wi]x be an enumeration
of the equivalence classes &f, of which there are at mosp|, a polynomial in
l¢|. Construct the algorithmic knowledge structuv€ = (W, V,x’,A), where
V(w) = i (such thatw € [w;]«), wherer’ is the restriction ofr to the primitive
propositions in®(, and wherei(v, ) is a lookup algorithm that returns “Yes” if
and only if X4 is a subformula o, andr (w;)(gy) = true. Itis easy to check by
induction on the structure @f that if (M, w) =x @, then(M', w) E . 0

Theorem 2.11. The problem of deciding whether a formylaf L5 is satisfiable
in an algorithmic knowledge structure far agents is NP-completeif = 1 and
PSPACE-complete if > 1.

Proof. Consider first the case = 1. For the lower bound, we show how to reduce
from the decision problem di¥*. Let f be a formula ofL*. By Lemma B.2,f is
satisfiable in an epistemic structure if and only i satisfiable ifV(*«. Thus, the
complexity of the decision problem fdt™ is a lower bound for our decidability
problem, that is, NP. For the upper bound, we need to exhibit a nondeterministic
polynomial time algorithm that decidesif € L** is satisfiable. We will use the
decision problem fol¥ itself as an algorithm. By Lemma B.3; is satisfiable

if and only if ¢ is satisfiable, so we can simply invoke the NP algorithm&ér
satisfiability ong.

The proof for the case > 1 is entirely analogous, except that we use the
modal logicLX rather thanl*. Let f be a formula ofLY. We can prove the
analogue of Lemma B.2, thdtis satisfiable in Kripke structures for agents if
and only if f is satisfiable irfV(%'2, with a proof similar to that of Proposition B.2.
This gives us an immediate lower bound, as follows. [die anL? formula.
We know f is satisfiable if and only iff is satisfiable imM#= structures. Since
the decision problem fol? (n > 2) is PSPACE-complete, the lower bound of
PSPACE follows.

Let ¢ be a formula ofLE* (). For everyi, the set of formulag X;¢ | ¢ €
L%} is countable, so leb, = {q;, | ¥ € L;*} be a countable set of primitive
propositions, disjoint fromb, Whereqfﬁ corresponds to the formul&;. Let @
be the translation gp obtained by replacing every occurrence of a form¥ija by
the corresponding,, in conjunction with formulag), < Kqj, for all formulas
X, appearing inp. Note that/| is polynomial in|p|. We can prove an analogue
of Lemma B.3, thatp is satisfiable iM% if and only if ¢ is satisfiable in an
epistemic structure far agents, using a proof similar to that of Lemma B.3. This
gives us an immediate upper bound for our decision problens satisfiable if
and only if¢ is satisfiable, so we can simply invoke the PSPACE algorithni.fpr
satisfiability ong. O
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Theorem 3.5. The axiomatizatiotAX** is sound and complete fé@r**(7¥) with
respect tav(**!(X).

Proof. Proving soundness is straightforward. For completeness, we prove the
equivalent statement that §f is consistent (i.e., if-p is not provable from the
axioms inAX*“) theny is satisfiable in some structure vi“=¢(X). The proof is
similar to that of Theorem 2.2.

First, given a sel” of formulas, letV/K = {¢ | K¢ € V}. LetC be the set
of all maximal consistent sets of formulas©f*(7%.). ForV € €, let Obs(V) =
{ob € Obs | 0ob € V'}. Define the relation: overC by takingV” ~ U if and only if
V/K C U. We first check that this is an equivalence relation, assuming the axioms
K1-KS5. For reflexivity, we show’/K C V. Assumep € V/K. ThenKy € V,
by definition of V/ K. By axiom K3,¢ € V, as desired. For symmetry, we show
thatV/K C U impliesU/K C V. Lety € U/K. By definition, K¢ € U.
Assume, by way of contradiction, that¢ V. Then by maximality oV, —¢ € V.
By K3, we have-Ky € V. By K5, K—K¢p € V, sothat-K¢ € V/K C U,
so that—=K¢ € U, but this contradictd{y € U andU consistent. Thusy € V,
so thatU/K C V, as desired. Finally, for transitivity, we show tHBf K C U,
assumindgl’/K C V andV/K C U. Lety € T/K. By definition,Kp € T.
By K4, KKp € T. Thus,Ky € T/K C V. Thereforep € V/K C U, and
T/K C U, as desired. Se is an equivalence relation.

The following properties of will turn out to be important. First, i¥ ~ U, then
V ~ U (i.e.,, 0bs(V) = Obs(U)). Let ob € Obs(V') C V. SinceV is maximally
consistent, all instances of X3 areifi and thusob = Kob is in V, so by MP,
Kob e V,andthusb € V/K C U. Thereforepb € U, andObs(V) C Obs(U).
Sincex is an equivalence relatioft; ~ U implies thatU ~ V/, and by the above
result, we ge0bs(U) C Obs(V). Thus,V ~ U, as desired.

The second property of interest is that for alin L**(T¢), if V' =~ U, then
Xy € Vifand only if X+ € U. This follows easily from X1. Assum&y € V.
ThenK X+ € V by X1, and thusXy € V/K, and sincd/ ~ U, X1 € U. The
converse direction follows from the fact thatis symmetric.

Let ¢ be a consistent formula &**(7¥), and letSub(y) be the set of subfor-
mulas ofy (including ¢ itself). Sincey is consistent, there is a sEt* € C with
p € V¥ with |Obs(V¥)| < oo: construct the se§ starting withy, addingob for
every observationsb appearing inp if ob A ¢ is consistent, and addingob for
every observatiowb either not appearing ip or inconsistent withp; it easy to
establish thab' is consistent, s is extensible to a maximally consistent $&t
with |Obs(V¥)| < oo. Let obs? = Obs(V¥). Let [V¥]. be thex-equivalence
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class that contain¥¥. We will use[V¥] to define the states of our canonical
structure. More specifically, define the canonical deductive algorithmic knowledge
structureM ¥ = (W%, ¥, D¥) by taking:

W2 = {(wy, 0bs?) |V € [V¥]x}
ifpeV
7 ((wy, 0bs?)) (p) = {;;LI‘; ) z Z y
D? = {(@,¢1) | X¢p € Sub(p), Xep € V¥ T & Obs}.

To simplify the discussion, and becausks? is fixed in M¥, we refer to the
state (wy, 0bs¥) as simplywy; for instance, we freely writevy, € W¥. We
can check thaD¥ defines a KD deductive system, singé cannot be an ob-
servation, nor a variable that can be substituted with an observation. Decidabil-
ity of D¥ holds trivially, since D¥ contains finitely many deduction rules, as
Sub(y) is finite. We can also check that’ respects the observation made at
a state, sincer?(wy, obs¥)(0ob) = true if and only if ob € V if and only
ob € 0bs(V) = obs?. Thus,M¥ is a deductive algorithmic knowledge struc-
ture.

We now show that for alloy,, € W# and all subformulag € Sub(y), we have
(M?,wy) = ifand only if ¢ € V, by induction on the structure of formulas.

For true and false, the result is immediate, sindeue is in every maximally
consistent set, anfllse is in none. For a primitive propositign which is recall a
term inTY, the result follows immediately.M ¥, s) |= p if and only 7 (s)(p) =
true (by definition) if and only ifp € V' (by definition of7¥). For a conjunction
Y1 AN, we have(M ¥, s) =1 Ao ifand only if (M¥, s) =1 and(M¥, s) =
9 if and only (by the induction hypothesig) € V andy, € V if and only; A
1o € V (by maximal consistency df). For a negationi, we have(M¥, s) =
- ifand only if (M¥, s) [~ « if and only if¢» & V' (by the induction hypothesis)
if and only if =) € V' (by maximal consistency df).

Now, consider a deductive algorithmic knowledge formila. First, assume
that we haveg M¥,wy) = X4. By definition, obs? Fpe ¢, If 4 is an ob-
servation, then by construction &%, it is easy to see that” = ob for some
ob € obs?, and thus) € obs? C V. By axiom X2, we haveXy € V. If 97 is
not an observation, then again by constructioM@f there must exist a rutey” in
D¢?. In otherwords X« € V¥. Sincel = V¥ by choice ofiW ¥, we getXvy € V,
following the result we established above. Conversely, assumekthhat V. If
¥ is an observation, then € V by axiom X2, meaning that € obs¥, meaning
that(M¥, wy) = X+ immediately. If)” is not an observation, then by definition
of D%, (@,9T) € D¥, and thusobs? Fpe ¥, meaning thatM ¥, wy) = X1p.

For a knowledge formul# v, we have the result following from essentially the
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same proof as that of Halpern and Moses [1992]. First, asgifite wy ) = K.
It follows that (V/K) U {—%} is not consistent. (Otherwise, it would be con-
tained in some maximal consistent g&in €, and by construction, we would have
V/K C U, and thusV ~ U, and hencd’ ~ U; but since we have € U,
we havey ¢ U, and by the induction hypothesi&)M ¥, wy) = 1, contradict-
ing (M?,wy) = Kv.) Since(V/K) U {—} is not consistent, there must be
some finite subsefys, ..., ¢, ~10} which is not consistent. By propositional
reasoning, we can derive that = (p2 = (... = (¢ = ¢)...)) is prov-
able, and thud((p1 = (g2 = (... = (¢x = ¥)...))) is provable by K2. It
is straightforward to derive from this by induction, propositional reasoning, and
K1, that K1 = (Kp2 = (... = (K¢ = K1v)...)) is provable. Thus,
Ko = (Ko = (... = (Kypr, = Kv)...)) € V. Becausepy,...,pr € V,
we haveKy1,..., Ky € V, and by MP, we havé(y € V, as desired. Con-
versely, if we assumé&’y) € V, theny € V/K. Letwy be an arbitrary state
of W®. By construction ofM¥®, V' ~ U and thusV/K C U. Therefore, we
havey € w, and by the induction hypothesi&M/ ¥, wy) | . Sincewy was
arbitrary, and sinc&/ ~ V (sinceU =~ V by choice ofi¥¥), this means that
(M?,wy) E K.

Completeness oAX?? now follows immediately. Since € V¥ andy €
Sub(p), we have(M ¥, wy+) = ¢, and thusp is satisfiable. 0

Theorem 3.6. The axiomatizatio’dX“! + {AzP} is sound and complete for
LIX(T3) with respect taV 5L (X).

Proof. Soundness is again straightforward. For completeness, we prove the equiv-
alent statement that if is consistent (i.e., ifxp is not provable from the axioms in
AX*y AzP) theny is satisfiable in some structureids? (X). The procedure is
exactly the one that is used to prove Theorem 3.5, except with a different deductive
systemD?.

We simply indicate where the proof differs from that of Theorem 3.5, and let
the reader fill in the details. We construct, for a givena deductive algorithmic
knowledge structurd/¥ = (W%, n¥, D¥), whereW? and=¥ are constructed as
in Theorem 3.5, and? is given by

DU{(2,9") | Xy € Sub(p), Xy € V¥, 9" & Obs}.

We can check that/# is a deductive algorithmic knowledge structuréviijst (X).
The deductive syste®? has the following interesting property: ébs¥ +p 7,
then there is a ruley)” in D¥. In other words, every term” derivable from the
rules inD is derivable directly with a single rule ib¥. Here is the proof of this
property. Assumebs? p ¢ Clearly, it is sufficient to show thaXy € V%, If
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¥ is an observation, then becauds a KD deductive system, we hayé = ob
for someob € 0bs?, and thusg) € obs? C V. By axiom X2, we haveXvy € V¥,
If 7 is not an observation, then there must exist a deduttian. , ¢,, in D such
thatt,, = ' is a conclusion of the deduction. We show by induction on the
length of the deduction that for everyX (;)* € V¥. If i = 1, then eithet; is an
observation in/#, and thus we havé:)® = t;, andXt, € V¥ follows from X2,
or t; follows from the application of a deduction rule i, with no antecedents.
By construction, there is an instance of this ruld/ifi, of the formtrue = X (1),
and thusX (¢;) € V. Fori > 1, again, eithet; is an observation, and the result
follows as above, or there is arul, ..., ¢, > ¢’ in D such that for some ground
substitutionp such thaip(t') = t; andp(t;-) appears in the deduction before term
t;. By construction, there is an instanceXft))® A --- A X (#)) = X (¢')® in
V¢, and by induction hypothesis, we haXe{t’ij) € V¢ for eachi; < i. Thus, by
MP, we haveX (t;)* € V¥. Sincep” = t,,, the last element of the deduction, we
getthatX (¢7)® = Xy isin V¥, as desired.

The rest of the proof follows as before. O

For the decision procedures, we can use the same ideas as in the proof of The-
orem 2.11, but adapted to deductive systems. As before, we can easily reduce the
decision problem fo£.¥ to our logic, by simply ignoring thél p formulas. One
difficulty is that we need to account for the fact that primitive propositions are
terms in a term algebra id**(T¥). Consider the following construction. Lt
be a formula ofC¥. Letpq,...,p; be the primitive proposition appearing jh
We first come up with an encoding of these primitive propositions into the lan-
guage ofX. For example, we can take to betrue, p, to benot(true), p3 to be
not(not(true)), and so forth. Let, be the term encoding the primitive proposition
p. The one restriction we make on this encoding is that,nis an observation
in Obs. Let f be the formula obtained by replacing every instance of a primitive
propositionp in f by ¢,. Note that\f| is polynomial in| f|, and thatf contains no
instance of theX operator.

Proposition B.4. Given f € L¥, and givenD an arbitrary KD deductive system
over, the following are equivalent:

(1) f is satisfiable in an epistemic structure,
(2) ‘]iiS satisfiable iV (%),
(3) fis satisfiable irv{ed(X).

Proof. (1) = (2): Assumef is satisfiable in an epistemic structure. By LemmaB.1,
we know that there exists an epistemic structufe= (I, X, =) where|IWW| < | f],
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X is an equivalence relation div and (M,w) g f for somew € W.t Let
{lwlx | w € W} be the set of equivalence classesJof of which there are

at most|f|. We encode these equivalence classes using an encoding similar to
that for primitive propositions, except we take the encoding terms to be obser-
vations. Letob(false), ob(not(false)), ob(not(not(false))), ... be an encoding of
these equivalence classes, where we denotg,the encoding ofw]y«. Thus,
(w,w") € X if and only if t,, = t,. Construct the deductive algorithmic knowl-
edge structureV/’ = (W', ', D), whereW’ = {(w,{t,}) | w € W}, and

n’ is given as follows. For a term,, 7'((w, {tw}))(t,) = m(w)(p). For a
termt,, thenz’'((w', {t./}))(tw) = true if and only if ¢,, = t,,. For all other
termst, we taken’'((w, {t,/}))(t) = false It is easy to see that’ respects
observations. It is also easy to check by induction on the structuyetbét if
(M,w) =k f, then(M’, (w,{t,})) = f. Here are the interesting cases of the
induction. If f is p, then by assumption,M,w) =k p, sow(w)(p) = true;
thus, 7’ ((w, {tw}))(t,) = true, and(M’, (w, {ty})) = tp. If fis Kg, then by
assumption(M, w) =k Kg, so that for alw’ € K(w), (M,w’) =k g. By the
induction hypothesis, we have for all € K(w), (M’, (v', {tw})) = ¢, which is
equivalent to saying that for alk’, {t,,/}) ~ (w, {tw}), (M, (v, {tw})) E g,

and thus M’, (w, {t,})) E Kg, as required.

(2) = (3): This is immediate, sincd(35!(X) € M (X).

(3) = (1): Assumef is satisfiable in a deductive algorithmic knowledge struc-
ture M = (W,r, D), that is, (M,w) |= f for somew € W. Construct the
epistemic structurd!’ = (W, X, ') by taking#’'(w)(p) = true if and only if
m(w)(tp) = true, andX =~. It is easy to check by induction on the structure of
f that if (M, w) = f, then(M’,w) =x f. Here are the interesting cases of the
induction. If f is p, then by assumptior{}/, w) = t,, so thatr(w)(t,) = true.
Thus means’(w)(p) = true, and thus/M’,w) =k p. If fis Kg, then by as-
sumption,(M,w) | Kg, thatis, for allw’ ~ w, (M,w") = §. By the induction
hypothesis, this yields for all’ ~ w, (M',w’) =k g, which is equivalent to the
fact that for alkw’ € X(w), (M',w'") Ek g, thatis,(M’,w) =k Kg, as required.

O

There is a similar relationship between satisfiability of a formuia our logic,
and satisfiability inC¥. More precisely, givenp € L**(T{), let 4 be defined
as follows. The sef¥ is countable, so lefp; | ¢t € T¢} be a countable set of
primitive propositions corresponding to the ground termgef Similarly, the
set of formulas{ X | ¢ € LKX(Tg),wT ¢ Obs} is countable, so lefq,, |
Y € LX(TE), T ¢ Obs} be a countable set of primitive propositions where
L While Proposition B.1 says that the equivalence relafiorcan be taken to be universal, we will not take

advantage of this in this proof or the proof of Proposition B.5. This is in order to simplify the generalization
of these proofs to the multiple agents case (Theorem 3.13).
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qy corresponds to the formuld+). Let ¢ be the translation of obtained by
replacing every occurrence of a tetrin 7% by p;, every occurrence of a formula
X1 wherey € Obs by pyr, and every occurrence of a formukay where
YT & Obs by the correspondingy, in conjunction with formulag,;, < Kp,, for

all observationsb appearing inp. This translation is essentially compositional:
1 A w2 is logically equivalent a5, A s, < is logically equivalent to-g, and
K is logically equivalent td< . Note that¢| is polynomial in|ep|.

Proposition B.5.If ¢ € L*¥(T¥), theny is satisfiable ilV**¢(X) if and only if
is satisfiable in an epistemic structure.

Proof. Assumey is satisfiable inM*“(X), that is, there is a deductive algo-
rithmic knowledge structurd/ = (W, r, D) such that(M,w) = ¢ for some
w € W. Construct an epistemic structur€’ = (W, X, ') by takingn’(w) (p) =
m(w)(py) and ' (w)(gy) = true if and only if (M, w) = X1y, andK =~. It
is easy to check by induction on the structuregothat if (M,w) = ¢, then
(M’ w) Ex . Here are the interesting cases of the inductiony i$ ¢, then by
assumption(M, w) = t, andn(w)(t) = true. This yieldsr’(w)(p;) = true, and
(M',w) =Kk p. If ¢ is X4, then by assumptior(,M,w) | X1, and therefore
m'(w)(gy) = true, so that(M',w) =k qy. If ¢ is K¢, then by assumption,
(M,w) E K1, thatis, for allw’ ~ w, (M,w") = 1. By the induction hypothe-
sis, and the definition dk, we have for alkv’ € X(w), (M, w') Ex 1/3 that is,
(M',w) =k K1, as required.

Conversely, assumg is satisfied in some epistemic structure. By Lemma B.1,
we know that there exists an epistemic structufe= (W, X, 7) where|W| < ||
and(M,w) Ex ¢ for somew € W. Let{[w]x | w € W} be the set of equiv-
alence classes of, of which there are at mosp|, which is polynomial inj¢p|.

Let ob(t1),0b(t2),... be an encoding of these equivalence classes using terms
t; € TZ such that none afb(t;) appears inp. We denote by,, the term encod-
ing the clasgw]. Thus,(w,w’) € X if and only if t,, = ¢,,. For every world

w € W, let obs(w) = {ob | ob € Obs,m(w)(p,s) = true, ob appears inp},
that is, the observations madetat By the construction ofp, we have that if
(w,w") € K, thenobs(w) = obs(w'). Construct the deductive algorithmic knowl-
edge structurd/’ = (W', 7', D), whereS’ = {(w, {t,} U obs(w)) | w € W},
and’ is given as follows. For a termb(¢;), 7' ((w, 0bs))(ob(t;)) = true if and
only if ob(t;) € obs. For any other term, 7’((w, obs))(t) = true if and only if
m(w)(py) = true. Itis easy to see, from the definition obs(w), thatn’ respects
observations. Finally, tak® = {({t,},¥7) | m(w)(qy) = true, v ¢ Obs)}.

It is easy to check by induction on the structuregofhat if (M, w) =g ¢, then
(M, (w,{twn} U obs(w))) = . Here are the interesting cases of the induction.
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If ¢ is a termt (not any ofob(¢;), by the choice of encoding), then by assump-
tion, (M,w) =k pt, so thatr(w)(p:) = true. Thus, we haver'((w, {t,} U
obs(w)))(t) = true, and (M’ (w,{ty} U obs(w))) = t. If ¢ is Xy where
yT € Obs, then by assumptioniM, w) =g pyr, som(w)(p,r) = true, and thus

7 ((w, {tw} U obs(w))) (1) = true, yielding (M’, (w, {t,} U obs(w))) = 7,
and thus(M’, (w, {t,} U obs(w))) = XuT. If pis Xt wherey! ¢ Obs,
then we have by assumpti¢®/, w) =x gy, and sor(w)(gy) = true, meaning
that ({t,, },%") is a deduction rule iD, and thus(M’, (w, {t,} U obs(w))) =
X, If ¢ is K1), consider an arbitrary’ such that(w”, {t,/} U obs(w’)) ~

(w, {tw} U obs(w)). This certainly implies, by the assumptions on the encoding,
thatt,, = t,, and thusw’ € X(w). By the fact that M, w) = K, we have
(M,w') = v, and by the induction hypothesis\/, {t,,} U obs(w')) = . Since

w' was arbitrary, we geth, {t,,} U obs(w)) = K1), as required. 0

Theorem 3.7. The problem of deciding whether a formulaof L**(T¥) is
satisfiable in a structure itv(**¢(X) is NP-complete.

Proof. For the lower bound, we show how to reduce from the decision problem
of L¥. Let f be a formula ofL¥. By Lemma B.4,f is satisfiable if and only if

f is satisfiable ifV(?¢(3). Thus, the complexity of the decision problem fof

is a lower bound for our decidability problem, that is, NP. For the upper bound,
we need to exhibit a nondeterministic polynomial time algorithm that decides if
¢ € LEX(TY) is satisfiable. We will use the decision problem fof itself as an
algorithm. By Lemma B.5p is satisfiable if and only i is satisfiable, so we can
simply invoke the NP algorithm fo£* satisfiability ong. O

Theorem 3.8. For any given propositional deductive systénthat is decidable
in polynomial time, the problem of deciding whether a formulaf L**(T¥) is
satisfiable in a structure idV5?(X) is NP-complete.

Proof. The lower bound follows from Lemma B.4: I¢tbe anL¥ formula, and
f is satisfiable if and only iff is satisfiable oveM ¢ (X) structures. Since the
decision problem fo£* is NP-complete, the lower bound follows.

For the upper bound, we can do something similar to what we did in Theo-
rem 3.7, except we need to keep track of the size of the objects we manipulate.
Let o be a formula ofo**(T¥). We exhibit an algorithm that nondeterministically
decides ify is satisfiable. First, we prove a small model theorem36i (7%)
over Mg (X): if ¢ is satisfiable iV € M5?(X), theny is satisfiable in a struc-
ture M’ € M%Y(X) with the set of worlds inM’ polynomial in|¢|. Assume
¢ is satisfiable in some structurd. Let M, = (Wy,%K;,m) be the epistemic
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structure obtained by the construction in Lemma B.5, With;, w1) =x &, for
somew; = (e, o0bs) in W;. By Lemma B.1, we know thap is satisfied in an
epistemic structurd/, = (Ws, Ky, m2) Where|Ws| < |g|, K is a universal rela-
tion on Wy (that is, Xy = Wy x Wh), and(Ms, we) g ¢ for somews € Wh.
We reconstruct a satisfying deductive algorithmic knowledge structure fbm
Specifically, defineM’ = (W', #’, D) by takingW’' = {(w, obs) | w € Wa}
(whereobs is the set of observations fromy), andz’((w, 0bs))(t) = m2(w)(pt)
whent is not in Obs, andr’ (w)(ob) = true if and only if ob € obs. Clearly,n’ re-
spects observations. A straightforward induction on the structupesbbws that if
(M, w) E ¢ (or equivalently, by Lemma B.§ M, w1 ) Ex ¢ for somew,), then
(M, (wa, 0bs)) = ¢, for somews. Here are the interesting cases of the induction.
If pist € Obs, then(M;,w;) = pt, With t € obs, wherew; = (e, obs), which
immediately yields that’((w2, 0bs))(t) = true, and thus(M’, (w2, obs)) = t.
If pist ¢ Obs, then(M;,w1) = pr, andmi(wr)(p:) = true; this means that
mo(we)(py) = true (by construction ofMs), so thatr’((ws, 0bs))(t) = true,
and (M’, (ws, obs)) = t. If ¢ is X4, then by the fact thatM, s) = X1, and
thats = (e, obs) whereobs = {oby,...,0b,}, we haveoby, ..., ob, Fp ¥T,
and thus,(M’, (we, 0bs)) = X1, since the same observations are used. Fi-
nally, if ¢ is K, then consider an arbitrany’ such that(w’, obs) ~ (w2, 0bs);
since all states have the same observatiafigan be arbitrary if¥,. SinceX,
was the universal relation o, we havew’ € Ky(ws). By assumption, we
know (M1, w1) Ex K, and thus(Ms, ws) Ex K, so that(Ms, w') =k 1.
By the induction hypothesig,M’, (w', obs)) E ¢, and sincew’ was arbitrary,
(M, (wo,0bs)) = K1, as required.

The upper bound follows directly from this result. It suffices to nondeterministi-
cally guess a satisfying structuié with a set of worlds polynomial ifip|, which
is guaranteed to exist if and only ¢f is satisfiable. We can verify that is satis-
fied in M in time polynomial in|¢|, by adapting the polynomial time algorithm of
Theorem 2.9. Roughly speaking, the algorithm consists of enumerating all the sub-
formulas ofy, and for each subformula (in order of length), marking the every
state of M with eithers) or -y depending on whethet or —¢ holds at the state:
primitive propositions are handled by invoking the interpretation, formulas of the
form X+’ are handled by invoking the polynomial time decision procedure for the
deductive systenD, conjunctions and negations are handled in the obvious way,
and formulask’v)’ are handled by looking up whether every reachable state from
the current state is marked with. O

Corollary 3.9. For any local KD deductive system, the problem of deciding
whether a formulap of L¥*(T¥) is satisfiable in a structure ivM$5*(X) is NP-
complete.



212 Appendix B Proofs

Proof. Immediate from the property of local deductive system, and from Theo-
rem 3.8. O

Theorem 3.11. The axiomatizatiom\X;* is sound and complete fdt$*(7%)
with respect tdv(o>?(X).

Proof. This is a straightforward generalization of the proof of Theorem 3.5.
Soundness is easy to check. For completeness, we again show ¢hest ¢on-
sistent, therp is satisfiable. We give the definitions here, leaving the details of the
proof to the reader. Given a sgtof formulas, letV/K; = {¢ | K;p € V}. Let

€ be the set of all maximal consistent sets of formulag pf(7¢,). ForV € C, let
Obs;(V') = {ob € Obs; | ob € V}. We definex; overC, for everyi, by taking

V ~; Wifand only if V/K; C W. We can check that; is an equivalence rela-
tion for everyi, assuming the axioms K1-KS5, just like in the proof of Theorem 3.5.
We can also check that f =; W, thenV ~; W, and that for alk), if V' =~; W,
thenX;y € V ifand only if X;o € W.

Let ¢ be a consistent formula df;*(7¥), and letSub(¢) be the set of sub-
formulas of ¢ (including ¢ itself). Sincey is consistent, there is a s&t* <
€ with ¢ € V¥ and|Obs;(V¥)| < oo for everyi. For everyi, let obs? =
Obs;(V¥), and let[V¥]~, be the~;-equivalence class that contaifs’. We
will use [V¥]~, N --- N [V¥]s, to define the states of our canonical structure.
More specifically, define the canonical deductive algorithmic knowledge structure
M¢ = (W% 7% ,Df,...,Dy) by taking

W¢ = {(wy, 0bs],...,0bs¥) |V € [V¥]x, N---N[V¥]x,}

true fpeV
false ifpgV

Df ={(2,9") | Xip € Sub(p), Xpp € V¥, 47 & Obsi}.

7 ((wy, 0bsT, ..., 0bs¥))(p) =

We can check thafl/® is a deductive algorithmic knowledge structure with
agents.

We can prove, adapting the proof of Theorem 3.5, that fowalle W¢ and all
subformulas) € Sub(y), (M¥,wy) = ¢ if and only ifp € V. Completeness
follows from the fact thatp € V¥ andy € Sub(yp), so that(M¥, wy) = ¢, and
thusy is satisfiable. O

Theorem 3.12. The axiomatizatiolXd! + {AzP1 ... AzPn} is sound and
complete forl;;* (T%) with respect tavlgs! 1, (%)
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Proof. Soundness is again straightforward. For completeness, we prove the
equivalent statement that¢f is consistent therp is satisfiable in some structure

in Mg5¢  p (). The procedure is exactly the one that is used to prove Theo-
rem 3.11, except that we construct the deductive sysfefns. ., Dy, differently.

We simply indicate where the proof differs from that of Theorem 3.11, and let
the reader fill in the details. We construct, for a givena deductive algorithmic
knowledge structure with agentsM ¥ = (W?, 7%, DY, ..., DY), whereW ¥ and
7¥ are constructed as in Theorem 3.11, dnf, ..., D;, are obtained by taking
DY to be

D; U{(2,9T) | Xip € Sub(p), X;p € V¥, 4T & Obs;}.

M? is a deductive algorithmic knowledge structurehit}s® , ~(¥). As in the
proof of Theorem 3.6, we can show thavifs® p, 7, then there is a ruley?
in Df. The rest of the proof follows that of Theorem 3.11. 0

Theorem 3.13. If n > 2, the problem of deciding whether a formylaf L5* (T%)
is satisfiable in a structure iv(}*!(3) is PSPACE-complete.

Proof. The proof is entirely analogous to that of Theorem 3.7, except that we use
the modal logicC¥ rather thanl¥. We can define translations betwe@fy*(7%)
andL), and we can prove analogues of Lemmas B.4 and B.5. We simply give the
translations here, leaving the reader to fill in the details.

Let f be aformulaofly. Letpy, ..., px be the primitive propositions appearing
in f. We first come up with an encoding of these primitive propositions into the
language of2. For example, we can takge to betrue, py to benot(true), ps to be
not(not(true)), and so forth. Let, be the term encoding the primitive proposition
p. We again make the restriction on this encoding thatnis an observation in
Obsy,..., Obs,. Let f be the formula obtained by replacing every instance of
a primitive propositiorp in f by t,. Note that| f| is polynomial in| f|, and that
f contains no instance of th& operator. We can show thgtis satisfiable in
epistemic structures far agents if and only iff is satisfiable ifVd«(%), with
a proof similar to that of Lemma B.4. This gives us an immediate lower bound,
as follows. Letf be anl} formula. We knowf is satisfiable if and only iff is
satisfiable oveM*!(3) structures. Since the decision problem £gy (n > 2) is
PSPACE-complete, the lower bound of PSPACE follows.

Let p be a formula of25*(T¥). The sefl¥ is countable, so lefp; | ¢ € T} be
a countable set of primitive propositions corresponding to the ground teriiis of
Similarly, for everyi, the set of formulag X,y | ¢ € LEX(TL), T & Obs;} is
countable, so lefq;, | v € Li¥(T¥),4" ¢ Obs;} be a countable set of primitive
propositions Wher% corresponds to the formuld; . Let ¢ be the translation of



214 Appendix B Proofs

¢ obtained by replacing every occurrence of a teimTy. by p;, every occurrence
of a formulaX;1 wherey” € Obs; by pyr, and every occurrence of a formula
X;4» wherey® ¢ Obs; by the correspondlngw, in conjunction with formulas
Pov < K;pop for all observationswb € Obs; appearing inp. Note that|p| is
polynomial in|¢|. We can show thap is satisfiable iV{é*?(X) if and only if ¢

is satisfiable in an epistemic structure foagents, using a proof similar to that of
Lemma B.5. This gives us an immediate upper bound for our decision problem:
is satisfiable if and only i is satisfiable, so we can simply invoke the PSPACE
algorithm forL} satisfiability ong. O

B.3 Proofs for Chapter 4

Theorem 4.1. Let N = (W, Vy,...,V,,m A% ... A% v) be a probabilistic
algorithmic knowledge structure, whetg, ..., A, are deterministic. Lef\/ =
(W, V1,...,Vp,m A1, ...,A,). If there are no occurrences &% in ¢, then for all
weWandallv eV, (N,w,v) = ¢ifand only if (M, w) [ ¢.

Proof. The key observation here is that if a knowledge algorithim determin-
istic, then for allu € V, A%(p, 2, v;) = A(p,£). The result then follows eas-
ily by induction on the structure aop. If ¢ is p, then (N,w,v) [ p if and
only if 7(w)(p) = true if and only if (M,w) = p. If ¢ is ¥ A 1, then
(N,w,v) = ¢1 A 1o if and only if (N,w,v) E ¢ and (N, w,v) = v, if and
only if (M, w) = ¢ and(M,w) |= 19 (by the induction hypothesis) if and only if
(M, w) =1 Ao If pis =1, then(N,w,v) = = ifand only if (N, w, v) = ¢
if and only (M, w) F~ 4 (by the induction hypothesis) if and only(if/, w) = —.
If ¢ is K;v, consider firs N, w,v) = K;%, thatis, forall’ € V and allw’ ~; w,
(N,w’,v") | 4; by the induction hypothesis, this means that forull ~; w,
(M,w") E ¥, thatis,(M,w) E K. Conversely, assum@/, w) = K;1, SO
that for allw’ ~; w, (M, w") = ¢; by the induction hypothesis, for every ~; w,
we have(N,w’,v") = ¢ forall o' € V, and thug N, w,v) E K. If pis X;1,
then (N, w,v) & Xy if and only if Agl(w,\?i(w),vf) = “Yes” if and only if
A;i(,Vi(w)) = “Yes” (since4; is deterministic) if and only if M, w) = X;v.

O

Theorem 4.2. LetN = (W,Vy,...,V,,m A{,..., A% v) be a probabilistic al-
gorithmic knowledge structure, and 18f = (W,Vy,...,V,,7,A},...,A)) be
an algorithmic knowledge structure whet#, ..., A’ are arbitrary deterministic
knowledge algorithms. If there are no occurrencesgfand Pr in ¢, then for all
we Wandallv e V, (N,w,v) = ¢ifand only if (M, w) = ¢.
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Proof. This resultin fact follows from the proof of Theorem 4.1, since the only use
of the assumption that knowledge algorithms are deterministic is in the inductive
step for subformulas of the ford; . O

Theorem 4.3. For all ob, we havewg(ob, h;) > we(ob, he—;) if and only
if 1(ob,h;) > I(ob,ha_;), for i = 1,2, and for all k, ob, and ob’, we have
we(ob, h) > we(ob’, h) if and only ifi(ob, h) > I(ob', h).

Proof. Let ob be an arbitrary observation. The result follows from the following
observation:

wg(ob, hz) Z wg(ob, hg_i)
iff i, (0b)/(pen; (0b) + piny_;(00)) > pin,_;(0b)/(pin, (0b) + pin,_;(0b))
iff :U’hi(Ob)Nhi(Ob) > HhZ—i(Ob)lu’hQ—i(Ob)

iff lu‘hi(Ob)/:u‘h2—i(0b) > :uhzfz‘(Ob)/Mhi(Ob)
iff 1(0b, hi) > (ob, ho_s).

A similar argument establishes the result for hypotheses. O

Theorem 4.5. For all probabilistic algorithmic knowledge structuré€, worlds
w of N, and derandomizers € V, wgﬂi’%e('_Ald(go, Vi(w),v;)7, ) is defined.

Proof. Given N, w aworld of N, and a derandomizer (N, w, v) = Ev;(¢) is de-
fined if and only ifyu, v, (w) (TAL (0, Vi(w), i) ") F o v, () (TAL (0, Vi(w), 0:)7) >
0. This condition holds if and only if at Ieastonem;vvi(w)(rAf(go, Vi(w),v;)7) >
0 0 f1—p v, () (TAL (0, Vi(w), v;) ) > 0 holds.

Suppose that?(p, V;(w), v;) = “Yes”, so that™A¢(¢, Vi(w),v;) " = {“Yes"}.
Clearly, eitherW, v,y # 9, or W, v,y # 9. If W, v, # 9, then by
our assumption about derandomize,n%,vi(w = v({ | Ad(<p, Vi(w),v)) =
“Yes"}) > 0, sincev is such a derandomizer. Similarly, W, v, ., # <, then
by our assumption about derandomizers,y, ., = v({v’ | Ad(<p,\7( ),v)) =
“Yes”}) > 0. In either casey, ((“Yes”) > 0, as desired. A similar argument
applies ifA%(p, V;(w), v;) = “No” or A%(p, V;(w),v;) = “?". O

Theorem 4.6. For all probabilistic algorithmic knowledge structurés, we have
N EEvi(p) =1 = K;p.

Proof. Assume(N, w,v) |= Evi(p) = 1,s0we, ., ., (T (0, Vi(w), v:) 7, ) =
1. By definition ofwe, ., . this meansthatwv w)( 4o, Vi(w),v;)7) = 0.
First, we establish that |¢N w,v) E Evi(¢p) = 1, it must be the case that
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2, Vi(w),v;) = “Yes”. If not, then™A%(p, V;(w),v;)7 = {“No”,“?"}. By
assumptionji, v, () ({“N0”,“?" }) = 0, so thatu_, v, ., (“Yes”) = 1, and thus
v({v' | A4(p, Vi(w),v]) = “Yes"}) = 1. Equivalentlyy ({v' | A4(p, Vi(w), v]) #
“Yes”}) = 0, so that{v | A%(¢, Vi(w),v}) # “Yes”} = @, by our assumption on
v. But this contradicts the fact thatis just such a derandomizer.

Therefore, we must hav (¢, V;(w), v;) = “Yes”, so that A%(¢, V;(w),v;) 7 =
{"Yes"}. Since i, v,w)(“Yes”) = 0, we must have{(w',v") | Vi(w') =
Vi(w), (N,w',v") | =¢} = @. (Otherwisey ({v' | A(p, Vi(w),v]) = “Yes"}) =
0, which means thafv’ | A%(p, V;(w),v]) = “Yes’} = @, contradicting the fact
that v is just such a derandomizer.) Lei’,v') be such that’;(w') = V;(w).
By the above, we cannot hay&/, w’,v") = —p, and thug N, w’,v") = . This
simply means thatV, w, v) = K;¢, as desired. 0

To prove Theorems 4.7, 4.9, and 4.10, the following lemma, alluded to in the
text, is useful. It describes the relationship between the reliability of a knowledge
algorithm and the properties of the probability measurgs and .-, . appearing
in the evidence spadg,, ., ,, as defined in Section 4.3.

Lemma B.6. If A; is («, 3)-reliable for ¢ in N, then we have, ,(“Yes”)
/J/@’[({“NO” ’u?n }) S 1_a1 /Jz—wp,f(“YeS”) S /8, and”_‘@j({uNou ’u?u }) Z
for all local statest of agenti in V.

>
1—

g

Proof. Let be a local state of agenin N, and letW, = {(w,v) | V;(w) = ¢},
which is nonempty by assumption. Note tiét = W, , U W_ ;.

Considerji, o(“Yes”). If Wy, = @, pye(*Yes”) = 1 > a. If Wy, #
@, let (w,v) € Wy, so that(N,w,v) = ¢, and sincel; is («, 3)-reliable,
Hor(Yes™) = v({v) | Ak(p, £,v]) = “Yes™}) > a. Thus,u,¢({"No",“?"}) =
1 —pgpe("Yes”) <1 —a.

A completely symmetric argument applies for,, .. We leave the details to the
reader. 0

The following lemma captures the algebraic relationships that are useful in as-
sessing the evidence in Theorems 4.7, 4.9, and 4.10.

Lemma B.7.Suppose:, y, a, b are real numbers if0, 1], such thatz, y) # (0,0),
and (a,b) # (0,0). If x > aandy < b, thenz/(x +y) > a/(a + b) and
y/(z+y) <b/(a+b).

Proof. Note thatr(a +b) = za + zb > za+ ay = a(z +y), so thate/(x +y) >
a/(a +b). Similarly, y(a +b) = ya + yb < zb+ yb = b(z + y), so that
y/(x+y) <bla+b). 0
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Theorem 4.7. If 4; is («, 3)-reliable for ¢ in N then
@) N |= Xip = Evi(p) > 355 if (o, 5) # (0,0);
(b) N |= Xip = Evi(p) = 11f ( B) = (0,0);
(©) N F ~Xip = Evi(p) < o085 i (@, 8) # (1,1);
(d) N |= ~Xip = Evi(p) = 0if (o, ) = (1,1).

Proof. For part (a), suppose thét, 5) # (0,0). Letw be a world of N and
let v be a derandomizer. [fN,w,v) = Xip, thenAd(p, V;(w),v;) = “Yes”, so
"AY (¢, Vi(w),v;)" = {“Yes"}. By Lemma B.6, we have,, v, ({Yes"}) > «
andyi-, v, ({“Yes"}) < 3. Therefore, by Lemma B.7, we have

Wey, v (w) ({"Yes"}, ¢)
= “%Vi(w)({"Yes"})/(/lgo,vi(w)({"Yes"}) + /L—\%vi(w)({"YeS"}))
> af(a+B).

Thus, we havé N, w,v) = Ev;(¢) > a/(a + 3). Sincew andv were arbitrary,
we haveN = X,;p = Ev;(¢) > a/(a+ ().

For part (c), suppose thét, 5) # (1,1), so that(l — o, 1 — 3) # (0,0). If
(N,w,v) = =X;p, then eithend(p, V;(w),v;) = “No” or A(p, V;(w),v;) =
“?”. Thus, we havé A%(p, V;(w),v;)” = {*No”,“?"}. By Lemma B.6, we have
Ho vy (w)({*NO", %27 1) < 1 — avand i, v, () ({*NO”, “?" }) > 1 — 3. Therefore,
by Lemma B.7, we have

Wey v, ({NO, 527}, )
= 1. 9,(0) ({NO”, 271/ (1,9, a0) ({NO” “27}) - g vy ) ({'NO7,“27}))
<1l—-a/(2=(a+ ).
Thus, we havé N, w,v) = Evi(¢) <1—a/(2 - (a + 3)). Sincew andv were
arbitrary, we have
N | ~Xip = Evi(p) <1-a/(2 - (a+ ).

The proofs of parts (b) and (d) are similar and left to the reader. O

Theorem 4.8. If A; weakly respects negation aagis («, 3)-reliable fory in NV,
thena; is (0,1 — «)-reliable for—¢ in N. If A; strongly respects negation, then
is (a, B)-reliable for ¢ in NV if and only ifA; is (1 — 3,1 — «)-reliable for —¢ in
N.
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Proof. Suppose that; weakly respects negation andis, 3)-reliable forp in N.
Consider the reliability of; with respect to-p. If (N, w,v) = ¢, then

v({v' | Af (=g, Vi(w), v}) = “Yes"})

— 1 v({' | A (0, Vi(w), of) # “Yes'})

— 1 o({o | A, Vilw), o) = “No"}) — v({v' | &(—p, Vi(w), o)) = “2})
— 1 o({o | A, Vilw), v]) = “Yes"}) — v({v' | A=, Vi(w),f) = “2°})
< 1— ({0 | (g, Vilw),v)) = “Yes’})

<1l-—oa.

Thus,4; is (0,1 — «)-reliable for—¢ in N.
Now suppose that; strongly respects negation and(is, 3)-reliable fory in
N. Consider the reliability of; with respect to-p. If (N, w,v) = —p, then

v({v' | A (=g, Vi(w),v]) = “Yes"})
=1—v({v' | AY(~p, Vi(w), v}) # “Yes"})
= 1 ({0 | A, ViCw), o) = "Yes™})
>1-4.
Similarly, if (N, w,v) [= ¢, then
v({v' | A (=g, Vi(w),v]) = “Yes"})

— 1 (| K Va(w). o)) £ YesT))

= 1—v({v' | A (p, Vi(w), v}) = “Yes”)

<l—-a.
Thus,A; is (1 — 3,1 — a)-reliable for—p in N.

Conversely, suppose thatis (1 — 3,1 — «)-reliable for-¢ in N, and consider

the reliability of A; with respect tap. If (N, w,v) |= ¢, then

v({v" | A, Vi(w),v}) = “Yes"})
=1—v({v' | &4(p,Vs(w),v]) # “Yes"})
= 1—v({v' | A{(=p, Vi(w), vj) = “Yes"})
>1-(1-a)
= Q.

Similarly, if (N, w,v) = -, then

v({v' | Ad(p, Vi(w),v]) = “Yes"})

=1—v({v' | A (p, Vs(w), v]) # “Yes"})
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=1—v({v' | (=g, Vi(w), v) = “Yes"})

<1-(1-p)
= 4.
Thus,4; is («a, §)-reliable fore in N. 0

To prove Theorems 4.9 and 4.10, we need a result similar to Theorem 2.6.

Lemma B.8.If N is a probabilistic algorithmic knowledge structure where agent
uses a knowledge algorithm that weakly (resp., strongly) respects negation, then
the formulaX;y = - X;—p (resp.,X;p & = X;—) is valid in N.

Proof. A straightforward adaptation of the proof of Theorem 2.6. O

Theorem 4.9. If 4; is («, §)-reliable for p in N andA; weakly respects negation,
then

(@ N = Xip = (Bvip) 2 385 A Bvi(—) < gl ) f (2. B) # (0,0);
(b) N E Xip = Evi(p) =1if (o, B) = (0,0);

(€) N | Ximp = Evi(p) < 5% (a+ﬂ)lfoz;é1
(d) N = Xi—~¢ = (Evi(-¢p) =1 AEv;(¢) =0) if a = 1.

Proof. Suppose thak; is («, 5)-reliable fory in N. For part (a), suppose that
(o, B) # 0. SinceA; weakly respects negation, by Theorem 48is (0,1 — «)-
reliable for—¢ in N. Letw be a world of N and letv be a derandomizer. By
Theorem 4.7 applied t@, (N, w,v) = X;¢ = Evi(p) > a/(a+ ). By
Lemma B.8,(N,w,v) E X;¢ = —X;—¢. By Theorem 4.7 applied te,
(N,w,v) = =X;7¢ = Evi(~¢) < (1-0)/(1 = (1 —a)+1-0), that is,
(N,w,v) = -X;—-¢ = Evi(—¢) < 1/(1 + «). Putting this together, we get

(N, w,v) = Xip = (Bvi(p) = o/ (a+ B) NEvi(-p) <1/(1+a)).
Sincew andwv are arbitrary,

N = Xip = (Evi(p) = a/(a+ 8) AEvi(—p) <1/(1+a)).

For part (c), suppose that# 1. By Lemma B.8(N,w,v) = X;—¢ = =X .
By Theorem 4.7 applied tp, (N, w,v) = —~X;¢ = Evi(¢) < (1—a)/(2— (a+
(3)). Thus, we get

(N, w,v) | Xi=p = Evi(p) < (1 -a/(2— (a+p)).
Sincew andwv are arbitrary, it follows that

N | Ximp = Evi(p) < (1 —a/(2 - (a+0)).
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The proof of parts (b) and (d) are similar and left to the reader. O

Theorem 4.10. If A; is («, 3)-reliable for ¢ in N and A; strongly respects nega-
tion, then

(8) N = Xip = (Evi(p) 2 325 ABvi(~9) < 225

|
(b) N = Xip = (Evi(p) =1 AEvi(—¢) = 0) if (o, 5)

f
() N E X;—p = <Evi(ﬁg0) > 2—1(_-?-5) A Evi(p) <
(1,1);

(A) N = X = (Bvi(~g) > 5 ABvi(p) < 1) if (0, 8) = (1,1).

Proof. Suppose that; is («, 3)-reliable for ¢ in N. For part (a), suppose
that (o, ) # (0,0). SinceA; strongly respects negation, by Theorem 48is
(1 —f,1— «)-reliable for—¢ in N. Letw be a world ofN and letv be a deran-
domizer. By Theorem 4.7 applied¢g (N, w,v) = X;¢ = Evi(p) > o/(a+03).
By Lemma B.8,(N,w,v) &= X;p = —=X,;—p. By Theorem 4.7 applied toyp,
(N,w,0) £ ~Xi~p = Evi(~¢) < (1— (1= ))/(1 - (1 —a) +1— (1 - B)),
that is,(N, w,v) = - X;—¢ = Ev;(-¢) < /(a + (). Putting this together, we
get

(N, w,v) = Xip = (Bvi(¢) = a/(a+ B) ABvi(=p) < B/(a+ §)) .
Sincew andwv are arbitrary,
N | Xip = (Evi(p) > a/(a+ 8) NEvi(—p) < B/(a+ ).

For part (c), suppose thdty, 5) # (1,1). By Theorem 4.7 applied tep,
(N,w,v) E X;=¢ = Evi(p) > (1 —0)/(2 - (o« + (). By Lemma B.8,
(N,w,v) E Xi~¢ = —-X;p. By Theorem 4.7 applied t®, (N,w,v) =
-Xip = Evi(p) < (1 —a)/(2— (a+ [)). Putting this together, we get

(N, w,v) | Ximp = (Evi(=p) 2 (1= 5)/(2 = (a4 ) A
Evi(p) < (1 - /2= (a+3)).

Sincew andwv are arbitrary,

N = Ximp = (Bvi(-p) = (1= 8)/(2 = (a+ B))A
Evi(p) < (1 - /2= (a+3))).

Again, we leave the proof of parts (b) and (d) to the reader. O
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Theorem 5.3. LetH = {h1,...,h,} @andO = {oby,...,0b,}, and letf be a
real-valued function with domaifd x 3 such thatf(ob, h) € [0,1]. Then there
exists an evidence spaée= (H, O, up,, - - ., pin,,) Such thatf = we if and only
if f satisfies the following properties:

WF1. For everyob € O, f(o0b,-) is a probability measure ofx(.

WF2. There exists,...,z, > 0suchthat, forallh € 3, > " | f(ob;, h)z; =
1.

Proof. (=) Assume thaf = we for an evidence spad&= (3, O, up,, .- ., tn,, )-
It is routine to verify WF1, that for a fixedb € O, we(0b, ) is a probability mea-
sure or{. To verify WF2, note that we can simply take = >,/ 4. 1 (0b;).

(<) Let f be a function from9 x J to [0, 1] that satisfies WF1 and WF2. Let

ri, ...,z bethe positive reals guaranteed by WF2. Itis straightforward to verify
that takingu, (ob;) = f(ob;, h)/x} for eachh € I yields an evidence spade
such thatf = we. O

The following lemmas are useful to prove the completeness of the axiomatiza-
tions in this section. These results depend on the soundness of the axiomatization
AXTev (D, ®,).

Lemma B.9. AX/°"¢(®,,, ®,) is a sound axiomatization fat/*"¢" (®},, ®,) with
respect to evidential structures.

Proof. Itis easy to see that each axiom is valid in evidential structures. O

Lemma B.10. For all hypothesis formulag, if [p] = {h1,..., s}, thenp <
hiV ---V hy is provable inAX/°¢" (&, ®,,).

Proof. Using Taut, we can show thatis provably equivalent to a formulal in
disjunctive normal form. Moreover, by axiom H2, we can assume without loss of
generality that each of the disjunctsdhconsists of a single hypothesis. Thyss

h1 V ---V hg. An easy induction on structure shows that for a hypothesis formula
p, evidential structurd/, and worldw, we have thatM, w) | piff (M,w) E h

for someh € [p]. Moreover, it follows immediately from the soundness of the
axiom system (Lemma B.9) thate hy V...V hy is provable iff for all evidential
strucuresV/ and worldsw, (M, w) = piff (M,w) | h; forsomei € {1,...,k}.
Thus,p < hy V...V hy is provable iff[p] = {h1,..., h}. 0



222 Appendix B Proofs

An easy consequence of Lemma B.10 is thats provably equivalent t@. if
and only if [p1] = [p2].

Lemma B.11.Letp be an hypothesis formula. The formulas

Pr(p) = 3 Pr(h),

helpl
Pr%(p) = > Pr%h), and
help]
w(ob,p) = > w(ob,h), forall 0b,
kel

are provable inAX/°" (@}, @,,).

Proof. Let®y, = {h1,...,hy, } and®, = {0b1,..., 0b,, }. We prove the result
for Pr. We proceed by induction on the size[pf. For the base case, assume that
I[p]| = 0. By Lemma B.10, this implies thatis provably equivalent tgalse. By
Po4,Pr(p) = Pr(false), and it is easy to check th&r(false) = 0 is provable
using Pol, Po3, and Po4, thBs(p) = 0, as required. If[p]| = n + 1 > 0, then
] = {his---shi,,, }, @and by Lemma B.10p is provably equivalent té;, Vv
-V h;,,,. By Po4,Pr(p) = Pr(pAhi, ) +Pr(pA—h;,,, ). Itis easy to check
thatp A h;, ., is provably equivalent ta;, ., (using H2), and similarly A —h;,
is provably equivalent té;, Vv ---V h;,. Thus,Pr(p) = Pr(h;, ) + Pr(h; V
.-+ V h;, ) is provable. Sinc¢fh;, V --- V h;, ]| = n, by the induction hypothesis,
Pr(hy, V---V h; ) = Zhe{hil _____ ha, } Pr(h) = ZhE[[p]]—{hinH} Pr(h). Thus,
Pr(p) = Pr(hi,,,) + Zheﬂp]]*{hi,H,l} Pr(h), thatis,Pr(p) = > )¢, Pr(h), as
required.

The same argument appliesitatis mutandior Pr¥ andw(ob, -), using axioms
Pr1-4 and axioms E1-4 (respectively), instead of Po1-4. O

Theorem 5.5. AX/*"¢’(®,, ®,) is a sound and complete axiomatization for the
logic L/°7¢¥(®},, ®,) with respect to evidential structures.

Proof. Soundness was established in Lemma B.9. To prove completeness, re-
call the following definitions. A formulap is consistentwith the axiom system
AXTomev (@, ®,) if —y is not provable fromAX/*"¢"(®y,, ®,). To prove com-
pleteness, it is sufficient to show thatgfis consistent, then it is satisfiable, that is,
there exists an evidential structuté and valuatiorv such that M, s, u, v) = .

As in the body of the paper, l€t, = {h1, ..., hy, } and®, = {ob, ..., 0by, }.
Let ¢ be a consistent formula. By way of contradiction, assume ¢ha un-
satisfiable. We reduce the formulato an equivalent formula in the language
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of real closed fields. Lety,...,un,, V1,...,Vng, T1y---sTnps Y1, -- -, Yng, and

2,02k oo 2, ., 20 be new variables, where, intuitively,

’ Any » “nyp,

u; gets valudl if hypothesish; holds,0 otherwise;
— v; gets valudl if observationob; holds,0 otherwise;
z; represent®r® (h;);

y; represent®r(h;);

— z; j representsv(ob;, h;).

Let v represent that list of new variables. Consider the following formulasyl,et
be the formula saying that exactly one hypothesis holds:

(ur=0Vur =1)A-A(tup, =0Vuy, =1)Au+---+u, =1.
Similarly, lety, be the formula saying that exactly one observation holds:
(vi=0Vor=1A- Ay, =0Vop =1)Avi 4+ v, = 1.
Let p,, be the formula that expresses tiRaf is a probability measure:
Cpr =21 20N Az, 20ANT1 + -+ Y, = 1.
Similarly, lety,, be the formula that expresses tlratis a probability measure:
Opo=Y1 20N Ayn, 20AYy1+---+yn, =L

Finally, we need formulas saying that is a weight of evidence function. The
formula ¢,,, simply says thatv satisfies WF1, that is, it acts as a probability
measure for a fixed observation:

Z1,1 ZO/\"'/\Zl,nh ZO/\Z%J ZO/\"'Azno,nh > 0A
Z11+ 0+ 2in, :1/\--~/\zno,1—|—~~-+zno7nh =1.
The formulay,, ; says thatv satisfies WF2:
E!wl,...,wno(wl > ()/\‘--/\U)n0 > 0/\2171w1+~-+zn071wn0 = 1A
e /\ Zl7nhw1 _|_ e —|— Znomhwno = 1)
wherewy, .. ., w,, are new variables.
Finally, the formulap,, ., captures the fact that weights of evidence can be viewed

as updating a prior probability into a posterior probability, via Dempster’'s Rule of
Combination:

(i =1= (z1211 = yix1210 + - -+ + Y1%p, 21,0, N
N Ty By, = Ynp T1211 F 0+ Yng Ty Z1mp ) A

A
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(Vne = 1= (T12n,1 = Y1T12ne1 + *** + Y1Tny Zng,m, /N
A Ty, Zng,mpy = YnnT12n0,1 F - - - Y Ty 2o mh) ) -

Let ¢ be the formula in the language of real closed fields obtained frdmy
replacing each occurrence of the primitive propositigby u; = 1, each occur-
rence ofob; by v; = 1, each occurrence &t (p) by Zhiem x;, each occurrence
of Pr(p) by >, cp,) vir €ach occurrence af(ob;, p) by Zhjem z; j, and each
occurrence of an integer coefficiehby 1 + --- + 1 (k times). Finally, lety’ be
the formuladv (e, A ©o A @ A ©oo A Pup A Pus g N Guup N D).

It is easy to see that ip is unsatisfiable over evidential structures, thenis
false when interpreted over the real numbers. Therefagé must be a formula
valid in real closed fields, and hence an instance of RCF. Thusjs provable.
It is straightforward to show, using Lemma B.11, that itself is provable, con-
tradicting the fact thap is consistent. Thusy must be satisfiable, establishing
completeness. O

Lemma B.12. Let p be a formula ofl/°~¢’(®y,, ®,) that is satisfied in some
evidential structureM = (S x P,&). Theng is satisfied in a structuré/ =
(P x Do) x {u}, &), whereu € P.

Proof. Let o be a formula oft/o"?(®y,, ®,) that is satisfied in some evidential
structureM = (S x P, ). Sinceyp is satisfied inM, there exists a worldy =
(h, ob, 1) and a valuatiorv (in caseyp is not closed) such thatM, w,v) = .
Consider the model/’ = ((®,, x ®,) x {u}, E). Clearly,w is a world of M’. A
straightforward induction on the structure,@hows that M, w, v) | ¢. 0

As we saw at the beginning of Section 5(497¢" is not monotone with respect
to validity: axiom H1 depends on the set of hypotheses and observations, and will
in general no longer be valid if the set is changed. The same is true for O1, E5, and
E6. We do, however, have a form of monotonicity with respect to satisfiability, as
the following lemma shows.

Lemma B.13. Given®;, and ®,, let » be a formula ofl/o"* (®,, ®,), and let
H C ¢, andO C P, be the hypotheses and observations that occys.inf ¢

is satisfiable in an evidential structure ovéy, and ®,, theny is satisfiable in an
evidential structure ove®; and ®,, where|®; | = |H| + 1 and|®,| = |O] + 1.

Proof. We do this in two steps, to clarify the presentation. First, we show that
we can add a single hypothesis and observatiah,tand®, and preserve satisfi-
ability of p. This means that the second step below can assuméthgtH and

d, #£ 0. Assume thab is satisfied in an evidential structure ovley and®,. By
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Lemma B.12p is satisfied in an evidential structuté = ((®, x ®,) x {u}, &),
that is, there exista, ob such that( M, (h, ob, i), v) |= ¢. Let® = & U {h*},
whereh* is a new hypothesis not if?,, and let®] = &, U {ob*}, whereob* is
a new observation not if?,. Define the evidential structutel = ((®}, x ®,) x
{i'}, cE") over®; and®,. Define the probability measuyé by taking

h) ifhecbh
/h — lu(
g {o it h = .

Similarly, define the evidence spaée= (®;,®.,{y) | h € ®{}) derived from
€ = (P, @o, {n | h € n}) by taking:

un(ob) if h € &, andob € ¥,
if h € &, andob = ob*
if h=h*andob € &,
if h =h*andob € ob*.

i, (0b) =

Thus, .}, extends the existing;, by assigning a probability df to the new obser-
vation ob™; in contrast, the new probability; . assigns probability 1 to the new
observatiorvb*. We can check thatM’, (h, ob, 1), v) = .

The second step is to “collapse” all the hypotheses and observations that do not
appear inp into one of the hypotheses that do not appedtiand O, which by
the previous step are guaranteed to exist. By the previous step, we can assume that
o, # H andd, # O. Assumey is satisfiable in an evidential structure ovigy
and®,. Thus, by Lemma B.12, there exist a structie= ((P, x ®5) x {u}, &)
andh, ob such that M, (h, ob, 1), v) = ¢. Pick an hypothesis and an observation
from @, and®, as follows, depending on the word, ob, 1) wherey is satisfied.
Let b beh if h ¢ K, otherwise, leth! be an arbitrary element aby, — 3(; let
@) = H U {n'}. Similarly, letob’ be ob if ob ¢ O, otherwise, letob” be an
arbitrary element ob, — O; let &, = OU{0b'}. Let M’ = (¥} x ®L) x {p'}, ")
be an evidential structure ové@ and®, obtained from)/ as follows. Define the
probability measure’ by taking

MWOZ{MM if h e
Zh’e@hfﬂ{ p(h') i ho=ht.

Define&’ = (@}, ®,,{u), | h € ®}) from & = (Pp, Po, {1, | h € Pn}) by
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taking
pn(ob) if h e Handob e O
! (ob) S obed. o tn(0b’) if h € 3 andob = ob!
ob) = °
i e, s tinr(0b) if h — bt andob € O

> hedy -9t Sob'ed,—o Ha (00" if h=h andob = ob'.

We can check by induction thad/’, (h, ob, 1), v) = ¢, whereh, ob are taken
from the satisfiaction op in M. O

Theorem 5.6. There is a procedure that runs in space exponentiapin ||¢|| for
deciding, giverb, and®,, whether a formula of L77¢(®,,, ®,,) is satisfiable in
an evidential structure.

Proof. Let o be a formula oft/o"¢?(®y,, ®,). By Lemmas B.12 and B.13; is
satisfiable if we can construct a probability measum@n &, = H U {h*} (where
H is the set of hypotheses appearingsimandh™ ¢ H) and probability measures
Phys- -y B, ON®, = OU{0b"} (WhereO is the set of observations appearingin
andob™ ¢ O) suchthat = (O}, ®,, {pp | h € D1 }), M = (P}, x @) x {u}, E),
and(M,w,v) = ¢ for some statev of M.

The aim now is to derive a formulg’ in the language of real closed fields that
asserts the existence of these probability measures. More precisely, we can adapt
the construction of the formul@’ from ¢ in the proof of Theorem 5.5. The one
change we need to make is ensure thias polynomial in the size ap, which the
construction in the proof of Theorem 5.5 does not guarantee. The culprit is the fact
that we encode integer constaktasl + - - - + 1. It is straightforward to modify
the construction so that we use a more efficient representation of integer constants,
namely, a binary representation. For example, we can waitas2(1 + 22(1 +
22)), which can be expressed in the language of real closed fieltls-ad)(1 +
1+1)(1+ 1)+ (1+1)(1+1))). We can check that ik is a coefficient of
lengthk (when written in binary), it can be written as a term of len@tk) in the
language of real closed fields. Thus, we modify the constructigs of the proof
of Theorem 5.5 so that integer constahtare represented using the above binary
encoding. Itis easy to see that | is polynomial in|p| - ||¢|| (since|®y | and|P,|
are both polynomial ing|). We can now use the exponential space algorithm of
[Ben-Or, Kozen, and Reif 1986] agl: if ' is satisfiable, then we can construct the
required probability measures, apds satisfiable; otherwise, no such probability
measures exist, andis unsatisfiable. O
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Theorem 5.7. There is a procedure that runs in space exponentialdh- ||¢||
for deciding whether there exist sets of primitive propositibpsand &, such that
@ € LIoev(dy,, @,) and is satisfiable in an evidential structure.

Proof. Let hq,...,h,, be the hypotheses appearingynand letob, ..., ob,

be the observations appearingg#n Define the set®, = {hi,...,hy,h*} and

o, = {o0b1,...,0b,,0b"}, whereh* and ob™ are an hypothesis and observation
not appearing irp. Clearly,|®,| and|®,| are polynomial iny|. By Lemma B.13,

if ¢ is satisfiable in an evidential structure, it is satisfiable in an evidential structure
over &, and ®,. By Theorem 5.6, we have an exponential space algorithm to
determine ify is satisfied in an evidential structure ovgr and®,. O

Theorem 5.8. The problem of deciding, giveh, and®,, whether a formulg of
LY (D, Do) is satisfiable in an evidential structure is NP-complete.

Proof. To establish the lower bound, observe that we can reduce propositional
satisfiability to satisfiability inC<?(®y,, ®,). More precisely, letf be a proposi-
tional formula, where, . . . , p,, are the primitive propositions appearingfinLet
& = {hy,...,hy, h*} be a set of hypotheses, where hypothésisorresponds to
the primitive propositiorp;, andh* is another (distinct) hypothesis; Iét, be an
arbitrary set of observations. Consider the formﬁlabtained by replacing every
occurrence op; in f by Prf(h;) > 0. It is straightforward to verify thaf is sat-
isfiable if and only iff is satisfiable inLe’(®p, ,). (We need the extra primitive
propositionh* to take care of the casgis satisfiable in a a model where each of
p1,...,pp is false. In that caser’(hy) = ---Pr¥(h,) = 0, but we can take
Pr(h*) = 1.) This establishes the lower bound,

The upper bound is straightforward. By Lemma B.12pifs satisfiable, it is
satisfiable in a structure with a single probability meagur&éhe number of states
in that structure ig®,| - |®,|. We can therefore guess such a structure in time
polynomial in|®,| + |®,|. We can verify that this structure satisfiesin time
polynomial injp| + [®h| + |Ph]. 0

Theorem 5.9. The problem of deciding, for a formula whether there exists sets
of primitive propositiongy, and®, such thatp € L (4, ®,) andy is satisfiable
in an evidential structure is NP-complete.

Proof. For the lower bound, we reduce from the decision problefsf @y, ®,)
over fixed®, and®,. Let ®, = {hy,...,h,} and®, = {o0by,...,0b,}, and
let ¢ be a formula inC’(®y,, ®,). We can check thap is satisfiable in evidential
structure ove®, and®, ifand only if p A (h1 V- -V hy ) A(0b1 V- - -V hy,) IS Sat-
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isfiable in an evidential structure over arbitrarly and®,. Thus, by Theorem 5.8,
we get our lower bound.

For the upper bound, by Lemmas B.12 and B.1%; i§ satisfiable, it is satisfi-
able in a structure with a single probability measuravhere the states are taken
from @, x ®,, &, = H U {h*}, H consists of the hypotheses appearingin
d, = O U {ob™}, O consists of the observations appearingirand/* and ob*
are new hypotheses and observations. Thbig, < |¢| + 1, and|®,| < || + 1.
The number of states in that structurédg| - |®,| < (|¢| + 1)%. We can therefore
guess such a structure in time polynomialgn. We can verify that this structure
satisfiesp in time polynomial in|p|, establishing that the problemisin NP. O

Theorem 5.11. AXZ‘?J”((I)h, ®,) is a sound and complete axiomatization for

U;"y':”(@h, ®,) with respect to evidential systems.
Proof. It is easy to see that each axiom is valid in evidential systems. To prove
completeness, we follow the same procedure as in the proof of Theorem 5.5, show-
ing that if ¢ is consistent, then it is satisfiable, that is, there exists an evidential
system/ and valuatiorv such that(Z, r, m, u,v) = ¢ for some pointr, m, i) of
I.

As in the body of the paper, |€t, = {hq,..., hy, } and®, = {0b1, ..., 0by }.
Let ¢ be a consistent formula. The first step of the process is to reduce the for-
mula ¢ to a canonical form with respect to tkie¢ operator. Intuitively, we push
down every occurrence of @ to the polynomial inequality formulas present in
the formula. It is easy to see that axioms T1-T6 can be used to establishithat
provably equivalent to a formula@’ where every occurrence @ is in the form of
subformulas)™(ob) and(O"(p > ¢), wherep is a polynomial term that contains
at least one occurrence of tite operator. (As usual, we use the notat{©fty for
O ..., then-fold application ofO to .) We write Q¢ for . Let N be the
maximum coefficient of) in ¢’, when iterated application @f) are written using
then-fold notation.

By way of contradiction, assume that (and hencep) is unsatisfiable. As in
the proof of Theorem 5.5, we reduce the formylato an equivalent formula in

the language of real closed fields. Let,. .., up,,, v),..., 00 ..., o), ... o,

0 0 N N
Yoo Ungs Yl s e s Yngr @NAZ00 iy 1545 230y, oy (fOT €VETY SEQUENCE
(i1,...,1x)) be new variables, where, intuitively,

— u; gets valudl if hypothesish; holds,0 otherwise;

v gets valuel if observationob; holds at timen, 0 otherwise;
yrr represent®r(h;) at timen;

j representsv((ob;,, ..., 0b;, ), h;).

01,emip)
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The main difference with the construction in the proof of Theorem 5.5 is that we
have variables;' representing the observations at every time stepather than
variables representing observations at the only time step, varigblepresenting
each hypothesis probability at every time step, rather than variables representing
prior and posterior probabilities, and variableg _ ;,, ; representing the weight
of evidence of sequences of observations, rather than variables representing the
weight of evidence of single observations. betepresent that list of new vari-
ables. We consider the same formulas as in the proof of Theorem 5.5, modified to
account for the new variables, and the fact that we are reasoning over multiple time
steps. More specifically, the formuig, is unchanged. Instead gf,, we consider
formulasy!, ..., » saying that exactly one observation holds at each time time
step, wherep” is given by:

(v =0Vl =) A Aoy, =0Vo, =1)Av] +-+uv; =1

No ~

Lety, =i A-- Al
Similarly, instead ofp,,. andy,,, we consider formula@}), . ,gpf}v expressing
thatPr is a probability measure at each time step, whefés given by:

yr >0A - Ayp 20Ny +-+y, =1

Lety, :gpi/\'--/\gpi\[.

Similarly, we considerp,, , and ¢, ;, except where we replace variables;
by z; ;. to reflect the fact that we now consider sequences of observations. The
formula ¢, .,, capturing the update of a prior probability into a posterior proba-
bility, is replaced by the formulag! ...,goﬁup representing the update of the

w,up?

probability at each time step, whepé | is given by the obvious generalization of
Pw,up-

—1 -1 -
(W =1= (f 200 = o097 210 + - Yy e, A

— —1 —
AN ygh lzlanh = yghy? 2171 + e + yzhyzh 121,71}1))/\

-1 -1 -1
(v, = 1= (U1 Znest = YTUL Znot + -+ YTUn  Znomy A

n—1 _,mn ,n—1 n ,n—1
A ynh Rno,npy = ynhyl Zne,1 + . ynhynh Zno,”h))‘

Let 4,0:”7”? = wi,up Ao A cpfu\{up.

Finally, we need a new formula,, . capturing the relationship between the
weight of evidence of a sequence of observations, and the weight of evidence of
the individual observations, to capture axiom ES8:

/\ Z(in),h " R,k T (i) b A,k T R i) b

1<k<N 2/ . 2/ e 2
1S21Ty_1/k:§n0 + + <117~~~1Zk>7h1 <7’1>)hﬂ,h <7'k>1hnh /\
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A /\ Z<i1>7h”7«h e Z<ik>7h’ﬂh = Z<i17"'7ik>7hnh Z<il>ah1 e Z<ik>7h1
1§i11§-{€.,§ii£\[§no Tt z<i17""ik>7h"h z<i1>7h"h T Z<ik>7hnh '

Let ¢ be the formula in the language of real closed fields obtained from
by replacing each occurrence of the primitive proposittgrby u; = 1, each
occurrence ofD"ob; by v = 1, and within each polynomial inequality for-
mulaO"(p = c¢), replacing each occurrence Bt(p) by >_, <[, %'+ €ach oc-
currence ofw((ob;,, ..., 0b;, ), p) by Zhje[[p]] Z(iy,...in).5» @nd each occurrence of
an integer coefficienk by 1 + --- + 1 (k times). Finally, lety’ be the formula
ElV(gO;L A 90; NPy N Pup N Puw,f A @L,up N Qu,e N 95)

It is easy to see that if is unsatisfiable over evidential systems, théiis false
about the real numbers. Thereforey’ must be a formula valid in real closed
fields, and hence an instance of RCF. Thug), is provable. It is straightforward
to show, via the obvious variant of Lemma B.11 (which establishes, for instance,

thatw(ob, p) = > w(ob,h) is provable for allob) that - itself is provable,

help]
contradicting the fact that is consistent. Thusy, must be satisfiable, establishing

completeness. O

B.5 Proofs for Chapter 7
Theorem 7.1. R(X, A, A) is a strand system.

Proof. LetV, consist of all the historieg, (t) for r € R(X, A, A). LetR’ be the
strand system generated by the sequéige a € A). To show thatR(3, A, A)

is a strand system, it clearly suffices to show tRaE, A, A) = R'. Itis easy to
check from the construction that every rurR®, A, A) satisfies MP1-3, and thus
isinR’. This shows thaR(%, A, A) C R'.

To show thatR’ C R(X, A, A), letr be a run inR’. We know thatr satisfies
MP1-3, and that,(t) € V, for all ¢t > 0. We need to construct a chaif such
thatr,(t) = hist’(C) for all a € A. Unfortunately, we cannot simply construct
the chain inductively, bundle by bundle. While this would work if different strands
were associated with different agents, in general, making the correct choice of
strands at each step (correct in the sense that the construction will not get stuck at a
later point) turns out to require arbitrary lookahead into the run. Roughly speaking,
this is because it is not clear which combination of strands for agenthoose to
make upa’s local state in a particular bundle.

Instead, we proceed as follows. Intuitively, we want to determine for each agent
which strand prefix to extend at every step of the chain. Once we have found for
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each agent an appropriate way of extending strand prefixes at every step, it is not
hard to construct the bundles in the chain.

We start with some definitions. Given a no@ek) in X, let tr(s, k) be the prefix
of tr(s) of lengthk. Given a bundl&3 and an agent, let

Tro(B) = {{tr(s,k) | (s,k) € Np, (s,k+1) ¢ Np, k> 1, A(s) = a}},

where we use th¢{}} notation to denote multisets. Thus,TB) is the multiset
consisting of all the maximal prefixes of strands associated aithving at least
one node inB. Note that Ty (B) is a multiset, not a set. It is quite possible that
there are distinct nodes, k) and (s', k) in Nz such that tfs, k) = tr(s’, k) and
(s,k+1),(s,k +1) ¢ B. Inthis case, {5, k) is listed at least twice in the
multiset. Given a multised/ of sequences, 168, (M) = {B | Tr,(B) = M}.

That is, B, (M) consists of all bundles where the actions performed are precisely
those specified by the sequencedin

For each agent, we inductively construct the following tree, whose vertices
are labeled by multisets of sequences. The root is labeled by the empty multiset.
Suppose a vertex at levelm (that is, at distance: from the root) is labeled with
the multisetM. If r,(m+1) = ro(m), thenu has a unique successor, also labeled
with M. If, on the other handy,(m + 1) = r,(m) - e for some event, then
let ¢ be the term corresponding to(i.e., if e is send(u) thent is +u, and ife
is recv(u) thent is —u). For each sequencein M, let Mg be the multiset that
results from replacing in M by S - t. We construct a successor bf labeled
Mg if Bo(Mg) # @. (If B4(Mgs) # @ and there are several occurrences of
S in M, then we construct one successor for each occurrence.) In addition, if
B.(MU{{(t)}}) # @, we construct a successorwoiabeled)M U {{(t)}}. Note
that, for all multisets labeling a levek vertex, the set of events specified by the
sequences if/ are precisely those performedrig(m).

Our goal is to find an infinite path in this tree. That such a path exists is im-
mediate from Knig’'s Lemma, once we show that the tree has an infinitely many
vertices, each with finite outdegree.

An easy induction shows that a multiset at lewelhas at mostn elements
(counted with multiplicity). Moreover, it is immediate from the construction that
the outdegree of a vertex on the tree is at most one more than the cardinality of the
multiset labeling it. Thus, it follows that the outdegree of each vertex is finite.

Showing that the tree has an infinite number of vertices is also relatively straight-
forward. We show by induction om that for all timest, if r,(t) = hist*(C) and
C = By — B; — ..., then there is a vertex at levelin the tree labeled by
the multiset Tx(By). The base case is immediate, sincg(®r) = {{}} is the
label of the root of the tree. Now suppose that the result holds; fare prove
it for t + 1. Suppose that,(t + 1) = hist*(C). Then there must be some
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k' < k such thatr,(t) = hist® (C). Moreover, eithethist® (C) = hist®(C),
in which caser,(t) = r4(t + 1), or hist"(C) is the result of appending one
event, say, to hist” (C') andr,(t + 1) is the result of appendingto r(t). If
C = By — Bj — ... then, by the induction hypothesis, there is a vertex{ the
tree at levek labeled byM = Tr,(By/). If r4(t) = ro(t + 1), thenM = Tr,(By)
is also the label of a successorwof Otherwise, ifM’ = Tr,(By), it is clear that
M’ is the result of extending one of the strandslinby one node (corresponding
to evente). Thus, M’ is the label of some successor@f This completes the
inductive step. Since is in R, it follows that, for all¢, there exists some chair
andk such thatr,(t) = hist®(C). Thus, there are infinitely many vertices in the
tree.

It now follows from Konig’'s Lemma that there is an infinite path in the tree.
Thus, it follows that, for every agent there exists an infinite sequent&', M7, . ..
of multisets, such theB,(M}) # @ for all k. We now construct a chai@' =
By — By — ..., by building the bundl&3;, from the traces i{M} | a € A}.
For eachn andk, there is a bundlé3) such that Ty(Bj) = M}!. Let B, consists
of the nodes inJ,c 4 B} (so that the strands associated witln 5, are precisely
those associated within B}), adding— edges between corresponding nodes ac-
cording to MP2 in the rum. That By, is a bundle follows from the fact that every
node appearing in a multiséf;’ corresponds to an eventig(k), by construction.
It should be clear that for alt, B, — Bj1, since for each agent, the traces are
extended by a single node, and we can pick the bijectitmmap strands fronfy,
to By+1 so that the corresponding sequencesfifiand M’ ; match.

A straightforward induction argument shows that the cl@is- By — B —
...is such that,(t) = hist! (C) for all t > 0. O

In order to prove Theorem 7.2, we first prove two lemmas about chains.

Lemma B.14.In a chainC = By — By — By +— ..., the height ofB,, is at most
2n.

Proof. We show this by induction on. Clearly, the height of3y is 0. Assume
the result holds for the bundiB,,. Consider the bundl#,, ;. SinceB,, —
B,+1, there is a bijectionf such thatB,, C; B,,+1. Consider a causal path
ny ~» ng ~> ... 1IN By,y1, Where~ is either— or =-. We claim that it contains
at most two “new nodes”, that is, it contains at most two nodds,jn ; not of the
form (f(s), i) for some nod€s, i) in B,,; moreover, the “new” nodes must come
at the end of the causal path. To see this, supposetises new node on the path
andn ~~ n/ for somen’ on the path. If2’ is not a new node, it cannot be the case
thatn — n’ (for otherwise, by B2 would not be a new node), and it cannot be
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the case that = n’ (for otherwise, by B35 would not be a new node). Thus,

n’ must be a new node. It follows that all the new nodes on the causal path must
follow the old nodes on the path. Now suppose that there are three new nodes on
the path; then it must be the case that there are three new nodes” such that

n ~ n' ~ n'. It cannot be the case that= n’, for thenn andn’ are both on

the same strand, contradicting the assumption in the construction that at most one
new event is added per agent. Similarly, it cannot be the case'tkatn”. Thus,

we must haver — n’ — n”. But then ternin’) = —u for some message, and it
cannot be the case that — »”. Thus, it follows that the causal path has at most
two new nodes. Since, by the induction hypothesis, there are amostl “old”

nodes on the path, the path has at mst+ 3 nodes and hence length at most
2m + 2, as desired. O

Note that Lemma B.14 does not depend on the assumption that each strand is
associated with a distinct agent; the following lemma does.

Lemma B.15.If B is bundle of finite height, then there exists bundbgs. .., By,
for somek such thatBy — By — ... +— Bj — B.

Proof. First note that ifn is the last node on a causal path in a bunBlef
maximum length, then either tefm) = —u for somew or termn) = +u for
someu and there is no corresponding receive nod&in

We now prove the result by induction on the heighfhfthat is the length of the
longest causal path. Clearly, if the height®fis 0, thenB = B,. Otherwise, let
B’ be the bundle derived from® in the following way: for every strand € %, if
the last term of the prefix of in B is —u for somew or if the last term is+u and
there is no correspondingu in B, then letB’ contain the prefix of that consists
of every node irs that is in B but the last one; otherwise, |& contain the same
prefix of s asB. Clearly, B’ — B. (Here we need the assumption that each strand
is associated with a different agent to ensure that in going 8o B, each agent
performs at most one action.) Moreover, by the initial observati®ngoes not
include the last node of any causal path of maximum lengt.irTherefore, the
height of B’ is one less than the height &. Applying the induction hypothesis,
we get bundle3y — B; — ... +— By — B’ — B, proving the result. O

Theorem 7.2. Every global state dR (X, 3, id) is message-equivalent to a bundle
of X of finite height, and every bundle Bfof finite height is message-equivalent
to a global state ofR (X, X2, id).

Proof. If (o5 | s € X) is a global state ifR(%, X, id), then there must be some
chainC = By ~— B; ~ ... and timet such thatr®(t) = (o5 | s € ¥). By
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construction,r¢ (t) = hist'(C), for each strand € ¥. (Recall thatd = ¥;
we are associating each strand with a different agent.) Morebisg{,(C) is just
the sequence of events performed in strand B; (that is, the prefix of {fs)
in B;, under the standard correspondence between terms and events). Therefore,
(05| s € X) is message-equivalent 18y. Moreover, by Lemma B.143, has finite
height.
Conversely, given a bundIB of finite height, by Lemma B.15, there must exist

t and bundlesBy, ..., B; such thatBy — ... — B; — B. Thus,C = By —

..+ By B B+ B ...isachain. Let be the runimk(%, ¥, id) cor-
responding t@'. By the same argument as aboxe(t + 1) is message-equivalent
to B. O

Theorem 7.3. There is no agent assignmeatand A-history preserving trans-
lation T from strand spaces to strand systems such that the strand sfstegtin
the image off".

Proof. By way of contradiction, suppose thatis a strand spaced is an agent
assignment]’ is a translation which isA-history preserving, and'(X) = R;.
SinceT is A-history preserving, the presencerqgfensures that there is a bundle
By in ¥ such that associated with agehin B, is either a strand with prefix
(+u, —v) or strands with prefiX+u) and (—v), and associated with agehtin
B there is either a strand with prefix-u, +v) or strands with prefiX—u) and
(+v). Similarly, the presence of, in R; guarantees that there is a bundigin 3
such that associated with agenin B; is either a strand with prefik+z, —y) or
strands with prefix+z) and (—y), and associated with agehis either a strand
with prefix (—x, +y) or strands with prefiXx—x) and (+y). In all those cases,
there must be a bundle containing nodes with the terms—u, +v, —v, +x, —x,
+y, and—y. The nodestu, —v, +z, and—y are all on strands associated with
agent2. SinceT is A-history preserving, there must be a rurfRi that contains
four events for agert. This is a contradiction. O

B.6 Proofs for Chapter 8

Theorem 8.1. Letd = (R, 7, Ay, ..., A,) be aninterpreted algorithmic knowledge
security system whetg = APY. Then(J,r,t) = X;(has;(m)) if and only if {m |
recv(m) € ri(t)} U initkeys(r;i(t)) Fpy m. Moreover, if(J,r,t) = X;(has;(m))
then(J,r,t) = has;(m).

Proof. Let K = keysof (r;(t)). First, note thals U {m’ | recv(m’) € r;(t)} Fpy
m ifand only if KU{m'} 5, m for somem’ such thatrecv(m’) € r;(t). The re-
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sult relies on the invariant thatif. & initkeys(r;(t)), thensubmsg(m, m’, K) =
“Yes” if and only if K U {m’} 5, m. This is established by a straightforward
induction on the structure of recursive callssimbmsg. It is easy to check that if
submsg(m,m’, K) = “Yes”, thenm C m/, which immediately yields soundness
of A?Y with respect tdhas;(m). 0

Theorem 8.2. LetJ = (R, 7w, Aq,...,A,) be aninterpreted algorithmic knowledge
security system whetg = A>. Then(J,r,t) = X;(has;(m)) if and only if {m |
recv(m) € r;(t)} U initkeys(r;(t)) F. m. Moreover, if(J,r,t) = X;(has;(m))
then(J,r,t) = has;(m).

Proof. Let K = keysof (r;(t)). The result follows readily from Theorem 8.1 and
the invariant that iin & initkeys(r;(t)) andK U{m' | reco(m’) € r;(t)} tpy m,
then guess(m,r;(t)) = “Yes” if and only if K U {m | recv(m) € ri(t)} kv
m. The details of the invariant are similar to those given by Lowe [2002], the
algorithmA} being essentially a translation of the CSP process implementing the
Lowe adversary. Again, soundness with respedtde;(m) is easy to establish.

O

Theorem 8.3. Suppose tha§ = (R, m,A?,... A% v) is an interpreted proba-
bilistic algorithmic knowledge security system with an adversary as agand
thata, = A?Y“g‘”’. Let K be the number of distinct keys used in the messages
in the adversary’s local staté (that is, the number of keys used in the messages
that the adversary has intercepted at a paintt), in local stater;(¢) = ¢). Sup-
pose that'/|X| < 1/2 and thatv is the uniform distribution on sequences of coin
tosses. {J,r,t,v) = —K;X;(has;(m)), then(d, r,t,v) = Pr(X;(has;(m))) <
1—e27K/1X Moreover, if(J, r,t,v) = X;(has;(m)) then(d, r,t,v) = has;(m).

Proof. Itis not hard to show that the keys that the adversary guesses do no good

at all if none of them match a key used in a message intercepted by the adversary.
By assumption K keys are used in messages intercepted by the adversary. The
probability that a key chosen at random is one of th&ses K /|X|, since there
are|X| keys altogether. Thus, the probability that a key chosen at random is not
one of theseX is 1 — (K/|K|). The probability that none of the keys chosen at
random is one of thesk is thereforg(1 — (K/|X|))"™. We now use some standard
approximations. Note thall — (K/|X|))" = e"»(—(K/IX) and

In(l—z)=—-z—22/2—23/3—---
>-—xr—x2—23—---

=—z/(1—ux).
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Thus, if0 < x < 1/2, thenln(1 —z) > —2x. It follows that if K/|X| < 1/2, then
enm(1=(K/IX)) ~ ¢—2nK/IX|  Since the probability that a key chosen at random
does not help to compute algorithmic knowledge is greater thah’/I*l, the
probability that it helps is less than— e~27£/1X1,

Soundness af; with respect tdias; (m) follows from Theorem 8.1 (since sound-
ness follows for arbitrarynitkeys(¢) C X). O

B.7 Proofs for Chapter 9

Lemma B.16. For all probabilistic interpreted systenisand points(r, ¢) in J, if
(9,r.t) E KPpand(3,r,t) | K] then(d,r.t) £ K77 (0 o).

Proof. This follows from the standard properties of probability measures. For a
probability measure, if 4(U) > 1 —aandu(V) > 1 — 3, thenu(U) < o and
p(V)<B,sothatu(UUV) <a+8,u(UNV)=p(UUV)>1—(a+ ).

Now, assuméJ, r, t) = K& and(J,r,t) = wa. Therefore, for all7’, ) ~;
(ryt), (3,7, t") E Pri(¢) > 1 —caand(Jd,r,t') & Pr;(v)) > 1 — 3, which means
that

per g g (L7 87) L (3,07 ") = 0} N3G )N e(r') > 1 - a,
and
g i ({7 8") [ (00" 8") E 9y 0 IGE, E) N e(r')) > 1 - 4.

From the derivation above, we have that

Mr/,t’,i({(rllvt”) | (jv T’”,t”) ’: (p}ﬁ
{7 ") ] 0" ") e} n K@ ) ne@)) =
prr (L0 ) [ (3,77 87) B AN IGE, ) NEE)) = 1= (a+ B).

Hence,(J,r',t') = Pri(p AY) > 1—(a+ (). Since(r’,t’) was an arbitrary point
such that(r’, ') ~; (r,t), we have(d,r,t) = K27 (o A ). O

Lemma B.17. Supposéd is an an interpreted system modeling Dolev-Yao agents
with no additional prior information beyond guesses, and agéatsd j are non-

forging inJ. Then if(J,r,t) = Xi(has;({m'}x)) A (j & z’)T wherel # i and
T
(j £ i) is a possible translation of < 4, then(J, 7, t) k= send;(m).

Proof. Since agents have no additional prior information beyong guesses, the mes-
sage{m'}, is part of no agent's initial state. Thus, by definitioncaf,_compute}*,
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if (3,7,t) = X;(has;({m'})) with [ # i theni must have receive@im'},, as a
submessage of some message.tLet ¢ be the earliest time at which some agent
h sends a message with {m!};, C m’. Since all agents in the system are Dolev-
Yao, we have{m'}y € can_computeT (ry,(¢')). Since agents have no additional
prior information beyond guesses, it follows thate can_computey” (ry(t')).

Since(J,7,t) = j < i and agents have perfect recall, no agent besides

can extractt at time¢’, and it follows thath = 7 or h = j. These agents are
both nonforging Dolev-Yao agents, so we hdve'};, € can_computelT (rj,(t')).
Sincem’ is the first time a message containifg'}, is sent, and agents have no
additional prior information beyond guessésy'},, must have been constructed at
timet’ using the condition for formation of messages of this form. By nonforging-
ness, this implies thdt = j. O

Theorem 9.1. Every translatiorvg; of an instance-;; of the BAN inference rule
Rn, forn = 1, 2, is valid in systems that model Dolev-Yao agents that have no addi-
tional prior information beyond guesses and where agémisd ; are nonforging
Dolev-Yao agents. Every translati@ﬁ; of an instancer;; of the BAN inference
rule R3 is valid in systems that model Dolev-Yao agents that have no additional
prior information beyond guesses and where ageétsd j are y-honest. Finally,
every translation” of an instance: of Rn for n > 4 is valid in systems that model
Dolev-Yao agents that have no additional prior information beyond guesses.

Proof. We show that for all instances of BAN inference rules “frdm and F»
infer F3” and all interpreted systenissatisfying the assumptions of the theorem,
we have] ): FlT AN FQT = F3T.

Fix an interpreted systerh satisfying the assumptions of the theorem, and a
point (r,t) in J. We proceed to show that the translation of an instance of each
inference rule holds for that interpreted system at that point, thereby establishing
the result. We assume tHamodels Dolev-Yao agents that have no additional prior
information beyond guesses.

For instances;; of R1 and R2, we assume thhimodels Dolev-Yao agents
that have no additional prior information beyond guesses, and afants; as
nonforging Dolev-Yao agents.

Rule R1. A possible translation of an instance of R1 take the foift (good =
(G & i)T)/\Xi(hasi({FT, 1}k))) = K& (good = send;(FT)AE(=send;(FT)A
Osend;(FT) = X;(has;(FT)))), whereFT is a possible translation df, and
(G & z‘)T is a possible translation gf<: i. Assume that

. . NG . 1 T
(I,7,t) E (i believes j <> i) A (i sees {F"})

9
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with [ # i. Then(J,r,t) | X;(has;({F'}1)). Hence, using the fact that ex-
traction depends only on an agent’s local state, fofallt’) ~; (r,t), we have
T

(7,7, ') |= (i believes j < i) A X;(has;({F'}1)). By Lemma B.17, we have
(3,7, t') |= send;(F'). This shows that], r,t) = K;send;(F'), thatis,(J,r,t) =
(i believes j said F))”.

Rule R2. A possible translation of an instance of R2 has the foift (good =

T

(G & 9) )AX;(hasi({FT, 1} 1)) = K& (good = send;(FT)AND(—send;(FT)A
Osend;(FT) = X;(has;(FT)))), whereFT is a possible translation df, and

T . _ .
(j & i) is a possible translation gf<s i. Assume that

T
(9,7,t) = (i believes j <> i) A (i sees {Fl}k.q)T,

with [ # 4. Sincek is a symmetric key witlk—! = , this rule is the same as R1.
Hence, by that argumertt], r, ) |= (i believes j said F)”.

For an instance;; of R3, we assume thdtmodels Dolev-Yao agents that have
no additional prior information beyond guesses, and agesmslj are~-honest.

Rule R3. A possible translation of an instance of R3 has the foift (good =
o /\i(E—'sendi(FT)))/\Kf(good = send;(FT)\B(=send;(FT)AOsend;(FT) =
X;(has;(FT))))) = K*(good = K] (good = FT)), whereF" is a possible
translation ofF'. Assume that

(9,7,t) = (i believes fresh(F))” A (i believes (j said F))”,

thatis, we havéd, r, t) lz Ki(/\p@lXi(hasi(FT))), (j, T, t) lz Kin(hCLSj(FT)),
(I,r,t) F Ki(-O'X;(has;(FT)) = K;FT), and(J,7,t) | K;send;(FT).
For all (r', ') ~; (r,t), we have(J,r’,t') = X;(has;(FT)) and (J,7",¢) E
send;(FT). By honesty ofj (J,7,¢') = K;FT. Hence(J,r,t) = K, K;FT, that
is, (J,7,t) = (i believes j believes F)' .

For instances of the remaining rules, we assumeJthaidels Dolev-Yao agents
that have no additional prior information beyond guesses.

Rule R4. A possible translation of an instance of R4 is of the f@#f* (good =
(K;FT & FT)) A KP(good = K;6(good = FT))) = K*F(good = FT),
whereFT is a possible translation df. Assume that

(9,7,t) = (i believes j controls F) A (i believes j believes F)”,

that is, we haved,r,t) = K;(K;FT = FT), and(J,r,t) = K,K;FT. For all
(r', ') ~;i (r,t), we have(d,r’,t') = K;FT = FT and(J,7,¢') = K;FT. This
immediately implies(J,»’,t') = FT, so that(J,r,t) = K;FT, and(J,r,t) =
(i believes F)T.

Rule R5. A possible translation of an instance of RS%ig has; ((FT, F'T))) =
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X;i(has;(FT)), where FT and F'" are possible translations df and F’. As-
sume(J,r,t) = (i sees (F, F'))T, thatis,(J,r,t) = X;(has;(FT, F'T))). This
implies that(FT, F'T) € can_compute;(ri(t)), SOFT € can_compute,(r;(t)).
Hence, we havéJ, r,t) = X;(has;(FT)), and(J,7,t) |= (i sees F)'.

Rule R6. A possible translation of an instance of R6 is of the f@#f* (good =
(G & i)T)/\Xi(hasi({FT,j}k))) = X;(has;(FT)), whereF'T is a possible trans-
lation of F. Assume(J,r,t) |= (i believes j < z’)T A (i sees {F};)T, that
is, we have(J,r,t) = K;X;(hasi(k)), (J,r,t) = K;iXj(has;(k)), (J,r,t) =
Ki(=Xy(hasy(k))) (@ # 1, 4), and(J,r, ) = X;(has;({FT}y)). Forall(r', ') ~;
(r,t), we have(d,r’, ') = X;(has;(k)) and(J,7,t') = X;(has;({FT})) (since
the interpretation of algorithmic knowledge depends only on the agent’s local state).
This implies thatk € can_compute,(ri(t')) and{FT};, € can_compute,(ri(t')),
and thereford™? € can_compute;(ri(t')),and(J, ', ') = X;(has;(FT)). Again,
since the interpretation of algorithmic knowledge depends only on the local state,
(9,7,t) = Xi(has;(FT)), and(J,7,t) |= (i sees F)T.

Rule R7. A possible translation of an instance of R7 is of the f@#f* (good =
)T) A Xi(has;({FT,7}%))) = X;(has;(FT)), whereF is a possible trans-

lation of F. Assume(J,r,t) = (i believes + z’)T A (isees {F};)T, that is,
(J>T7 t) ): KiXi(hasi(k_l))’ (J>T7 t) ): Ki(_‘Xj(haSj(k:_l))) (] 7é i), and
thus we have(d,r,t) = X;(has;({FT}x)). For all (v',t') ~; (r,t), we have
(3,7, t") = X;(has;(k~1)) and(3, 7", ') = X;(has;({FT}1)) (since the interpre-
tation of algorithmic knowledge depends only on the agent’s local state). This im-
plies thatk~! € can_compute;(ri(t')) and{FT}; € can_compute;(ri(t')), and
thereforeF?' € can_compute;(ri(t')), and (J,7',¥') = X;(has;(FT)). Again,
since the interpretation of algorithmic knowledge depends only on the local state,
(9,7,t) = Xi(has;(FT)), and(J,7,t) |= (i sees F)T.

Rule R8. A possible translation of an instance of R8 is of the f@#f* (good =
(S j)T) A Xi(has;({FT,5}p-1))) = X;(has;(FT)), where FT is a possible
translation ofF". Assume(J, r,t) |= (i believes + j)T/\(z' sees {F};—1)7, that
is, (3,7,8) | KiX;(has;(k™1)), (3,7,8) | Ki(~Xy(hasy (k7)) @ # ). and
thus we haved, r,t) = X;(has;({FT},-1)). Forall (+/,t') ~; (r,t), we have
(3,7",t") | X;(has;({FT},-1)) (since algorithmic knowledge depends only on
the agent’s local state). This implies tHa@t” '}, 1 € can_compute,(ri(t')). Un-
der the assumption of no additional prior information, the agents have in their initial
state the public keys of all other agents. Hernces can_compute;(r;(t')), and
thereforeF?' € can_compute;(ri(t')), and (J,7',¥') = X;(has;(FT)). Again,
since the interpretation of algorithmic knowledge depends only on the local state,
(9,7,t) = X;(has;(FT)), and(J, 7, t) |= (i sees F)'.

(H> i



240 Appendix B Proofs

Rule R9. A possible translation of an instance of R9 takes the ftfi{ good =
O\, (E=send;(FT))) = K&(good = /\Z-(E!ﬂsendi((FT,F’T)))), where
FT andF'" are possible translations 6fand F’. Assume that

(9,7,t) = (i believes fresh(F))”,

that is, (J,7,t) = K;(Ai—~O'X;(has;(FT))). Forall (r',¢') ~; (r,t), we have
(3,7, t") = =O'X;(has;(FT)), and(J, ", t') = O' X;(has;(FT)). If ' < I, then
foranye, (3,7, ') [ Olp. If t' > I, thenFT & can_compute,(ri(t' —1)). This
implies that(FT, F'") ¢ can_compute,(,(t' — 1)) for all F/, and(J,+',¢') |~
O'X;(has;(F, F")")). Therefore,(J,r,t) & Ki(A—O'X;(hasi((F,F")")))
and(J, r,t) = (i believes fresh(F, F))". 0

Theorem 9.2. If r is a run whereA’s key isk 4, B's key iskg, A’S honce isn 4,
and B’s nonce isng, then

(JGDY,T, 0) =O(recvp({nptiry) = (F(na,np, kA,kB))T’O).

Proof. Clearly, it is sufficient to show that for any good runfor any conjunctC
of F(na,np, ka,kp), we have(J¢PY 1 0) = O(recvp({ng}r,) = O).

The following statements are straightforward to prove by induction on the length
of a run: (a) on every good run, if k; is i’s public key ¢ = A, B), then for
allt > 0, k' € can_compute;(r;(t)) andk; ' ¢ can_compute;(r;(t)) for
j # i; (b) on every good rum, if n; is i’s nonce andk; is i's public key ¢ =
A, B), then for allt > 0, if recv({npliy) € rp(t), thensend(B,{npli,) €
ra(t), if reco({na,nplr,) € ra(t), thensend(A,{na,nplr,) € rp(t), if
recv({na, Alxy) € ra(t), thensend(B,{na, Altk,) € ra(t); (c) on every good
runr, if n; is's nonce and; is i's public key ¢ = A, B), then for allt > 0 and
alli = A, B, n; & can_compute;(r;(t)), for j # A, B. (The proofs of these facts
is essentially the same as those of Paulson [1998].)

Case: A believes +2 B. Letr be a good run wherkg is B’s public key, and
lett > 0 be a time whereecv({ngli,) € re(t). Let(r',t') ~4 (r,t) be a point
on another good rur’. Because public keys are in the initial state of the agents,
it must be the case that on ruh kg is B’s public key. By (a) abovel;];1 is only

in can_compute g(r'z(t')), and thus we hav&I“PY v/ ') = (rkg B)T0, so that
(IGDY 1) = K9 (good = (+3 B)T0), as desired.

Case: B believes 2 A. Letr be a good run wherk4 is A’s public key, and
lett > 0 be a time whereecv({nplx,) € ra(t). Let(r',t') ~p (r,t) be a point
on another good rur’. Because public keys are in the initial state of the agents,
it must be the case that on rufy k4 is A’s public key. By (a) abovelg:;l1 is only
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in can_compute 4(r'y(¥')), and thus we havg@1“PY ' ¢') = (fi‘) A0 so that
(IGDY r 1) = K9 (good = (+ A)T0), as desired.

Case: A believes A = B. Letr be a good run wherkg; is i’s public key and
n; isi's nonce ¢{ = A, B). If t > 0 is such thatecv({nglr,) € rp(t), then by
(b) above, we haveecv({na,npli,) € ra(t). Let (+',t') ~a (r,t), with " a
good run. We must haveecv({na,nglx,) € r’4(t'). Thus,”” must be a good run
that uses nonce 4. By (c) above and by the definition aéin_compute;, we have
(IGDY 1/ 1) = (A 2 B)TO, s0 that(I%PY 1. t) = K9 (good = (A = B)T0),
as desired.

Case: B believes A believes A — B. The argument is similar to the previous
case. Letr be a good run wheré; is i's public key andn; is i's nonce { =
A, B). If t > 0is such thatrecv({nglk,) € ra(t), then for any good rum’
with (7/,t') ~pg (r,t), we must haveecv({nglr,) € r5(t'). By (b) above, we
haverecv({na,nplr,) € rs(t'). Letr” be a good run withr”, t") ~4 (+',t');
we must haverecv({na,nglr,) € r4(t"). Thus,r” must be a good run that
uses noncer4. By (c) above and by the definition efin_compute;, we have

(IGDY 47 ¢ = (A = B)TO, so that(J°PY 1/ ¢') = K(good = (A =
B)T), and(IGPY 1 t) |= K% (good = K9 (good = (A == B)T'0)), as desired.

Case: B believes A = B. Letr be a good run wherk; is i's public key and
n;isi's nonce { = A, B). If t > 0 is such thatecv({nplx,) € ru(t), then we
for all good runs”’ with (', t") ~p (r,t), we must haveecv({ngl,) € rig(t').
Thus,”” must be a good run that uses nomgg By (c) above and by the definition
of can_compute;, we have(J¢PY ' ') = (A = B)TY, so that(IPY r t) =
K9 (good = (A = B)T'0), as desired.

Case: A believes B believes A — B. Letr be a good run wherg; is i’s
public key andr; is i's nonce { = A, B). If t > 0 is such thatecv({nglx,) €
rg(t), by (b) above, we haveecv({na,nglr,) € ra(t). For all good runs”’
with (r',t') ~4 (r,t), we must haveecv({na,nplr,) € m4(t'). By (b) above,
we havesend(B, {na,nplr,) € rz(t'). Letr” be a good run witl{r”,t") ~p
(r',t'); we must havesend(B, {na,nplr,) € r5(t"). Thus,r” is a good run
that uses noncep. By (c) above and by the definition eéin_compute;, we have
(IDY 7 ") = (A =2 B)TY, so that(JOPY 1/, ¢') = KY(good = (A =
B)T9), and(IPY 1 t) = K9 (good = K% (good = (A = B)T'Y)), as desired.

Case: B believes A believes B believes A — B. Letr be a good run
wherek; is i's public key andn; is i’'s nonce { = A, B). If ¢ > 0 is such that
reco({nplr,) € ra(t), then for all good runsg’ with (+',¢') ~p (r,t), we must
haverecv({nplr,) € r'5(t'). By (b) above, we haveecv ({na, npli,) € r'4(t').
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Letr” be a good run withir”, t") ~4 (', t"); we must haveecv({na,nplr,) €
'y (¢t"). By (b) above, we haveend({na,nglr,) € r%(t"). Letr” be a good
run with (+",t"") ~p (r",t"); we must havesend({na,nplr,) € rgt").
Thus, " is a good run that uses nonag. By (c) above and by the definition of

can_compute,, we havg(J&PY ¢ ") |= (A 2 B)T0, so that(J&PY v ) |=
K%(good = (A = B)T0), (3&DY o ) = KY(good = K%(good = (A =
"B

B)T9Y), and (39PY rt) = K%(good = KG(good = K%(good = (A =
B)T'%Y))), as desired. O
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