
Review of
Control Flow Semantics∗

Riccardo Pucella

Department of Computer Science
Cornell University

April 19, 2001

I have to admit, I was looking forward to reviewing this book. It answered what was for me a 6-year old question.
Six years ago, I was pursuing a Master’s degree at McGill University. working on programming language semantics.
My training in semantics was rather traditional: lambda calculus, functional programming languages, denotational
semantics based on complete partial orders, etc. At the time, Franck van Breugel was visiting McGill, and I came
across the fact that Franck was also working on semantics of programming languages, but on semantics based on metric
spaces. For someone with an undergraduate background in mathematics, this was seriously intriguing. Unfortunately,
I never got around to asking Franck about his work. This book is an answer to that question that never was.

The purpose of the book is to describe an approach to provide semantics to imperative languages with various types
of control flow models, including concurrency. The approach handles both operational semantics and denotational
semantics, all in a topological setting. (We will come back to this later.) The issue of relating the two semantics for
any given language is a central theme of the approach. I will provide in the next section an introduction to topological
semantics. For now, let me say a word on the applicability of the approach. As stated, the main interest is in providing
semantics toimperativelanguages. Imperative programs can be thought of, for our purposes, as sequences of actions
performed on a state. Typically, states are sets of variables, and actions include modifying the value of a variable in
a state. An important characteristic of imperative programs is that they embody the notion of acomputation step: a
program being a sequence of actions, it forces a sequence of intermediates states. Typically, the intermediate states
areobservable, meaning that one can observe something about that intermediate state, either by looking up the value
of a variable, by witnessing an output operation, etc. When the intermediate states of a computation are observable, it
becomes reasonable to talk about infinite (nonterminating) computations. (The classical example of this is of course an
operating system, which at least theoretically is an infinite process; the main motivation for the topological approach,
as we shall see, is to make sense of such infinite computations.) Contrast this with functional languages, which are
often used as motivating examples for the study of semantics. In a pure functional language, all infinite programs
are equivalent, and in a traditional denotational semantics based on partial orders (à la Scott and Strachey [6]), every
nonterminating program is mapped to⊥, the least element of the appropriate partial order. This is not helpful in a
setting where we want to discuss observably different infinite behaviors.

We distinguish two kinds of imperative languages. The distinction between them is akin to the distinction between
propositional and first-order logic.1 Uniform languagesare based on a primitive, abstract notion of action, combined
with appropriate operators. For instance, a program may have the forma; b; c; (d + a) where; represents sequential
composition and+ a nondeterministic choice operator. The primitive actionsa,b,c,d are uninterpreted. The state
is implicitly defined by the actions that have been performed. On the other hand,nonuniform languageshave an
interpretation associated with the actions; typically, as we mentioned, the state is a set of variables, and actions include
modifying the value of a variable in a state.

To showcase the versatility of their approach, the authors study different languages. The main difference between
the various languages, aside from the question of uniformity, is theprogram composition operatorsconsidered. The

∗J. de Bakker, E. de Vink,Control Flow Semantics, MIT Press, 1996, 564pp, ISBN 0262041545.
1This analogy can be made precise when looking at dynamic logics, a family of logics for reasoning about programs in such languages [1].

1

following groups of related operators are studied:

• The first group consists of operators includingsequential compositionandchoice. The latter introduces nonde-
terminism in the framework, with suitable complications. Many versions of choice are investigated, including
backtracking choice.

• The second group of operators consists ofrecursionanditeration. Such operators are required to get universality
(in the computability theory sense).

• The third group of operators includesparallel compositionoperators. Modeling such operators forces one to
deal with issues such as deadlock, synchronization and communication. Languages with such operators include
CSP [2] and CCS [3].

• Related to the last group of operators, one may distinguish betweenstatic anddynamicconfiguration of pro-
cesses.

• Finally, we can investigate issues oflocality andscopeof variables.

All in all, 27 languages are studied in the book, encompassing various features described above (and others, such
as the kernel of a logic programming language). For each language, an operational semantics is given, along with a
denotational semantics based on topological spaces. The relationship between each semantics is investigated. Here
are the chapter titles, to give an idea of the breakdown of content: 1. Recursion and Iteration, 2. Nondeterminacy,
3. Variations, 4. Uniform Parallelism, 5. Unbounded Nondeterminism, 6. Locality, 7. Nonuniform parallelism, 8.
Recursion Revisited, 9. Nested Resumptions, 10., Domain Equations and Bisimulation, 11. Branching Domains at
Work, 12. Extensions of Nonuniform Parallelism, 13. Concurrent Object-oriented Programming, 14. Atomization,
Commit, and Action Refinement, 15. The Control Flow Kernel of Logic Programming, 16. True Concurrency, 17.
Full Abstractness, 18. Second-order Assignment.

In the next section, I summarize the first chapter of the book, to give a feel for the approach.

Overview of topological semantics

GivenL a collection of programs in a language, asemanticsfor L is a mappingM : L → P taking a programp
to an elementM(p) from a domain of meaningsP. The domainP should have enough mathematical structure to
capture what we want to model. The study of semantics centers around the development of methods to specifyM and
associatedP for a range of languagesL. We can distinguish essentially two ways of specifyingM:

Operational O : L → PO, which captures the operational intuition about programs by using a transition system
(axioms and rules) describing the actions of an abstract machine. This is the structural approach to operational
semantics (SOS) advocated by Plotkin [4].

Denotational D : L → PD, which iscompositional; the meaning of a composite program is given by the meaning
of its parts. This is helpful to derive program logics, to reason about correctness, termination and equivalence.
Also, in general, denotational semantics are less “sensitive” to changes in the presentation of a language.

Consider the following simple example, to highlight the difference between the two styles of semantics. LetA be
an alphabet, andW the set of structured words overA, given by the following BNF grammar:

w ::= a | (w1 · w2)

wherea is an identifier ranging over the elements ofA. If A = {a, b, c}, then(a ·(b ·a)), ((a ·b) ·(c ·b)), (((a ·b) ·a) ·b)
are structured words overA. We choose to assign, as the meaning of an element ofW , its length. We derive both an
operational and a denotational semantics to assign such a meaning to elements ofW . We takePO = PD = N (where
N is the set of natural numbers). To define the operational semantics, we consider the slightly extended language
V = W ∪ {E}, where intuitivelyE stands for the empty word. We define a transition system with transitions of the

2

form (v, n) −→ (v′, n′) wherev, v′ ∈ V andn, n′ ∈ N. (Such a transition “counts” one letter of the wordv.) Let−→
be the least relation satisfying the following inference rules:

(a, n) −→ (E,n + 1)

(v1, n) −→ (v′1, n
′)

((v1 · v2), n) −→ ((v′1 · v2), n′)

(v1, n) −→ (E,n′)
((v1 · v2), n) −→ (v2, n

′)

We can define the operational semanticsO by:

O(w) = n if and only if (w, 0) −→ (v1, 1) −→ · · · −→ (E,n)

The denotational semanticsD is much easier to define:

D(a) = 1
D(w1 · w2) = D(w1) +D(w2)

It is straightforward to show, by structural induction, that in this case the operational and denotational semantics agree
(that is, they give the same result for every wordw ∈ W).

Let us now turn to a somewhat more realistic example. Recall that there are two kinds of imperative languages we
consider, uniform and nonuniform. Let’s define a simple uniform language with a recursive operator. This example is
taken straight from Chapter 1 of the book. The language,Lrec, is defined over an alphabetA of primitive actions. We
assume a set of program variablesPVar .

(Stat) s ::= a | x | (s1; s2)
(GStat) g ::= a | (g; s)

A statements is simply a sequence of actions; variables are bound toguarded statementsg, which are simply state-
ments that are forced to initially perform an action. When a variable is encountered during execution, the correspond-
ing guarded statement is executed. A declaration is a binding of variables to guarded statements, and the space of all
declarations is defined asDecl = PVar → GStat . The languageLrec is defined asLrec = Decl ×Stat . We write an
element ofLrec as(x1 ⇐ g1, . . . , xn ⇐ gn | s), representing the statements in a context wherex1, . . . , xn are bound
to g1, . . . , gn, respectively.

The operational semantics is defined by a transition system overDecl × Res, whereRes = Stat ∪ {E}; the
intuition is thatE denotes a statement that has finished executing. We notationally identify the sequenceE; s with
the statements. This will simplify the presentation of the reduction rules. The transitions of the system take the form
s

a−→D r wheres ∈ Stat , r ∈ Res, a ∈ A, andD ∈ Decl ; this transition should be interpreted as the program
statements rewriting into the statementr, along with a computational effecta. (For simplicity the computational effect
is taken to be the action performed.) Again, the

a−→D relation is the least relation satisfying the following inference
rules:

a
a−→D E

g
a−→D r

x
a−→D r

if D(x) = g

s1
a−→D r1

s1; s2
a−→D r1; s2

3

We take the domainPO of operational meanings to be the set of finite and infinite sequences of actions,PO =
A∞ = A∗ ∪Aω. We define the operational semanticsO : Decl × Res → PO as:

O(D | r) =

{
a1a2 · · · an if r

a1−→D r1
a2−→D · · · an−→D rn = E

a1a2 · · · if r
a1−→D r1

a2−→D · · ·

For instance, we haveO(D | a1; (a2; a3)) = a1a2a3, andO(x ⇐ (a; y), y ⇐ (b;x) | x) = (ab)ω.
Deriving a denotational semantics is slightly more complicated. A program inLrec may describe infinite compu-

tations. To make sense of those, we need the notion of the limit of a computation. In mathematical analysis, limits are
usually studied in the context of metric spaces [5]. This is the setting in which we will derive our semantics.

A metric spaceis a pair(M,d) with M a nonempty set andd : M × M → R≥0 (whereR≥0 is the set of
nonnegative real numbers) satisfying:d(x, y) = 0 iff x = y, d(x, y) = d(y, x), andd(x, y) ≤ d(x, z) + d(z, y). A
metric space(M,d) is α-bounded(for α < ∞) if d(x, y) ≤ α for all x andy in M .

We can define a metric onA∞ as follows. For anyw ∈ A∞, let w[n] be the prefix ofw of length at mostn. The
Baire-distance metricdB : A∞ ×A∞ → R≥0 is defined by

dB =
{

0 if v = w
2−n if v 6= w andn = max{k : v[k] = w[k]}

We say a sequence{xn}∞n=1 is Cauchyif for all ε > 0 there exists ani such that for allj, k ≥ i, d(xj , xk) ≤ ε. In
other words, the elements of a Cauchy sequence get arbitrary close with respect to the metric. A metric space(M,d)
is completeif every Cauchy sequence converges inM . It is easy to check that the metric space(A∞, dB) is complete.

If (M,d) is α-bounded for someα, andX is any set, let(X → M,dF) be thefunction spacemetric space
defined as follows:X → M is the set of all functions fromX to M , anddF (f, g) = sup{d(f(x), g(x)) : x ∈ X}
(α-boundedness onM guarantees that this is well-defined). One can check that if(M,d) is complete, then so is
(X → M,dF).

A central theorem of the theory of metric spaces, which is used heavily in the book, is Banach’s fixed point
theorem. Essentially, this theorem says that every functionf from a metric space to itself that decreases the distance
between any two points must have a fixed point (a pointx such thatf(x) = x). We need more definitions to make
this precise. Define a functionf : (M1, d1) → (M2, d2) to be contractive if there exists anα between 0 and 1 such
thatd2(f(x), f(y)) ≤ αd1(x, y). For example, the functionf : (A∞, dB) → (A∞, dB) defined byf(x) = a · x is
1
2 -contractive.

Theorem (Banach): Let (M,d) be a complete metric space,f : (M,d) → (M,d) a contractive function. Then

1. there exists anx in M such thatf(x) = x,

2. thisx is unique (writtenfix (f)), and

3. fix (f) = lim fn(x0) for an arbitraryx0 ∈ M , wherefn+1(x0) = f(fn(x0)).

This is the basic metric space machinery needed to get a simple denotational semantics going. Returning to our
sample languageLrec, we take as a target of our denotational semantics the domainPD = A∞ − {ε}. (We do not
allow the empty string for technical reasons. Notice that the empty string cannot be expressed by the language in any
case.) What we want is a functionD defined as follows:

D(D | a) = a

D(D | x) = D(D | D(x))
D(D | s1; s2) = ;(D(D | s1),D(D | s2))

(for some function; defined overA∞, meant to represent sequential composition, and to be defined shortly.) Notice
that this definition ofD is not inductive. We will use Banach’s theorem to define the function; overA∞, and to define
the functionD.

4

Let us concentrate on;. Intuitively, we want; to be a functionA∞ ×A∞ → A∞ satisfying

;(a, p) = a · p
;(a · p′, p) = a · ;(p′, p)

Note that the above properties do not form an inductive definition of; due to the presence of infinite words inA∞.
Instead, we will define; as the fixed point of the appropriate higher-order operator. LetOp = A∞ × A∞ → A∞ be
the complete metric space of functions.2 Define the following operatorΩ; : Op → Op:

Ω;(φ)(a, p) = a · p
Ω;(φ)(a · p′, p) = a · φ(p′, p)

Note that the above equationsdo define a functionΩ;. One can check thatΩ; is in fact a1
2 -contractive mapping from

Op to Op. Therefore, by Banach’s theorem, there exists a unique fixed point (call it;) such thatΩ;(;) = ;. It is easy
to see that this; satisfies the original equations we were aiming for.

Now that we have such a function;, let us turn to the problem of actually definingD. We proceed similarly, by
definingD as the fixed point of the appropriate higher-order operator, through an application of Banach’s theorem.
Consider the metric spaceSemD = Lrec → A∞, which is complete sinceA∞ is complete. Define the following
functionΨ : SemD → SemD by:

Ψ(S)(D | a) = a

Ψ(S)(D | x) = Ψ(S)(D | D(x))
Ψ(S)(D | s1; s2) = ;(Ψ(S)(D | s1), S(D | s2))

(There is some subtlety in coming up with the last equation; as you’ll notice from looking at the righthand side, there
is recursion overΨ in only one of the two cases. The book explains this.) Once again, we can show thatΨ is a
1
2 -contractive function (inS), and thus by Banach’s theorem there is a unique fixed point ofΨ (call if D) such that
Ψ(D) = D. It is straightforward to check that thisD satisfies our requirements for the denotational semantics function.

A final result of interest after all of these developments is the relationship betweenO, the operational semantics
based on an intuitive notion of computation, andD, the denotational semantics with its compositional properties. It
turns out that in this case,O = D, and moreover this result can be derived from a third application of Banach’s
theorem. The details can be found in the book.

Opinion

As a technical book, aimed at describing an approach to provide semantics to a wide variety of imperative language
control flow structures, this book is complete. All the examples are worked out with enough details to grasp the
subtleties arising. Let the reader be warned, however, that the book is dense—both in terms of the technical material,
and in terms of the presentation. The first few chapters should be read slowly and with pencil in hand.

The book does not require as much background knowledge of topology as one may expect. Prior exposure is
of course beneficial, but in fact, only the basics of topology and metric spaces are actually used, and whatever is
needed is presented in the first few chapters. On the other hand, the presentation does assume what may best be called
mathematical maturity.

In the grand scheme of things, a problem with this book is one of motivation and followup. This is hardly new in
the field of semantics. Specifically, the use of denotational semantics is hardly motivated, considering that most of the
machinery in the book is aimed at coming up with denotational semantics and showing that it agrees with the intuitive
operational semantics. There is a throw-away line about the fact that denotational semantics can help in developing
logics for reasoning about programs, but most of the interesting developments are buried in the bibliographical notes
at the end of the chapters. This will not deter the hardcore semanticist, but may have other readers go: “so what?”.
Sad, since denotational semanticsis useful.

And for the curious, Franck’s actual work can be found in [7].
2Strictly speaking, we need to consider the space of bounded functions to ensure that the space is complete. This will be irrelevant at our level

of discussion.

5

References

[1] D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. The MIT Press, Cambridge, Massachusetts, 2000.

[2] C. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[3] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[4] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, University of
Aarhus, 1981.

[5] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

[6] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In J. Fox, editor,Pro-
ceedings of the Symposium on Computers and Automata, New York, 1971. Polytechnic Institute of Brooklyn
Press.

[7] F. van Breugel. Comparative Metric Semantics of Programming Languages: Nondeterminism and Recursion.
Birkhäuser, 1998.

6

