
Object-Oriented Design Lecture 9
CSU 370 Fall 2007 (Pucella) Friday, Oct 5, 2007

Inheritance Subtleties

Last time, we saw inheritance as a way to re-use code in a subclass.

Ther are some general rules for what is accessible from an inheriting subclass, and what is
not.

Given an object A of a class T inheriting from S. The basic idea is that object A has all the
fields and methods of T , as well as all the public and protected fields and methods of S.

• The constructor of T , when constructing A, will invoke the constructor of S, meaning
that the latter has to be protected or public. This invocation can be explicit by using
the syntax super (arg1,...,argk); as the first line in the constructor body in T .
If not such call is made, then the constructor of S is invoked automatically by the
compiler, with no arguments. (Meaning that S must implement a protected or public
constructor taking no arguments for this to compile.)

• Every time you invoke a method on A, the method code is looked up in the definition
of T . If there is no such definition, then the method is looked for in S, and it is
found only if it is protected or public. It is important that the first definition found
is executed. This lets you overwrite a definition of a method in a subclass. (This is
what happens for the canonical methods; the defaults are defined in class Object, but
you are welcome to overwrite.) The overwriting defintion can invoke the superclass’s
method by invoking super.method (. . . ).

• Fields are more complicated. An object of class T can refer to a field defined in S, as
long as that field is protected or public. Field shadowing—defining a field in a subclass
that is also defined in the superclass—is the field-equivalent of method overwriting,
except that the rules are much more painful to remember. Don’t shadow fields unless
you know what you are doing.1

Method overwriting, in combination with dynamic method lookup, is very powerful. It lets
you, for instance, have an array of objects and iterate over the array invoking a particular
method, and possibly get different behaviors based on the object actually stored in the array.

Recall the Person/Student/Faculty example of several lectures back. Suppose that add a
field and method to the Faculty class, to keep track of salary:

1See http://articles.techrepublic.com.com/5100-22 11-5031837.html, for instance.

1



public class Faculty extends Person {

...

private int salary = 20000;

public int getSalary () {

return this.salary;

}

...

}

and suppose that we create a subclass SeniorFaculty that inherits from Faculty:

public class SeniorFaculty extends Faculty {

...

public int getSalary() {

return super.getSalary() + 10000;

}

}

If we have an array Faculty[] department; initialized with some Faculty objects and
some SeniorFaculty objects, we can write code to sum up all the salaries:

int total = 0;

for (int i=0; i<department.length;i++)

total = total + department[i].getSalary();

and, most importantly, the right getSalary method will be invoked, depending on the actual
class of the object being looked at.

There are some subtleties with how inheritance works in general, and in Java in particular.
We already saw the issues with method and field access, requiring the need for a protected
qualifier, and the difficulty with field shadowing.

For another subtlety, let’s build up another example.

Recall the stack signature we had in lecture 7. Here is an implementation, a rather dirty
one at that. (We’ll see a better one in a bit.)

public class Stack {

private Integer topVal;

private Stack rest;

2



protected Stack (Stack s, Integer i) {

topVal = i;

rest = s;

}

public static emptyStack () {

return new Stack (null, null);

}

public static push (Stack s, int i) {

return new Stack (s,i);

}

public boolean isEmpty () {

return (this.topVal==null);

}

public int top () {

if (this.isEmpty ())

throw new RuntimeException ("top of empty stack");

return this.topVal;

}

public Stack pop () {

if (this.isEmpty ())

throw new RuntimeException ("pop of empty stack");

return this.rest;

}

}

Let’s extend the Stack ADT. Suppose we really cared about keeping track of length of stacks
in some application. A measurable stack has the following interface, an extension of the
Stack ADT.

public static MStack emptyStack ();

public static MStack push (MStack, int);

public boolean isEmpty ();

public int top ();

public MStack pop ();

public int length ();

MStack.push(s,i).top() == i

3



MStack.push(s,i).pop() == s

MStack.push(s,i).isEmpty() == false

MStack.emptyStack().isEmpty() == true

MStack.emptyStack().length() = 0

MStack.push(s,i).length() = 1 + s.length()

The naive implementation of a length method by simply counting how many elements are
in the stack can be inefficient if the stack is large. There is no way to make the “count how
many elements are in the stack” algorithm more efficient, but there is a way to implement
measurable stacks to make the length method more efficient: keep a count of the current
stack size alongside the stack content, and simply increment the count upon a push. The
length method now simply returns the current stack size, a constant-time field lookup
operation. This is an example of an augmented data structure, a data structure augmented
with information that make some operations more efficient.

It makes sense to want to implement measurable stacks, which clearly should be a subclass
of stacks, by inheriting from stacks:

public class MStack extends Stack {

private int count;

private MStack (MStack s, Integer i, int c) {

super (i,s);

count = c;

}

public static MStack emptyStack () {

return new MStack (null,null,0);

}

public static MStack push (MStack s, int i) {

return new MStack (s,i,1+s.length());

}

public int length () {

return this.count;

}

public MStack pop () {

return (MStack) super.pop ();

}

}

It all goes as expected, except for the pop method. That method does nothing special in

4



the MStack class—all the action is in the Stack class. But the types are not right. The pop

method should return an MStack. But we know by construction that what gets stored in
the rest field when constructing an MStack is a measurable stack (although the field it is
stored in has type Stack), so we need to re-implement the pop method in MStack to simply
“correct” the type of the returned value.

This is a limitation of Java, and a subtlety to be aware of, that it requires you to jump
through such hoops when inheriting from classes that have a method returning an object of
the class itself.

Subclassing for ADTs Implementation

Subclassing is useful for expressing related ADTs, in particular, ADTs that extend others.
Inheritance is a useful implementation technique for subclassing.

There is another useful use of subclassing and inheritance, and that is to implement some
forms of ADTs more cleanly, especially ADTs that have different representations for their
values.

Take the stack as an example. The representation we have used is ugly, and I mean that as
a technical term. Part of the problem is that there is an implicit invariant: whenever the
topVal field is not null, then the rest field better not be null either. (Can you see where
the problem lies if this is not the case?) We must make sure that the implementation always
preserves that invariant. There are ways around that, making the invariant more robust,
but they’re a bit unsatisfying.

Another problem with the implementation is that there are all kinds of checks in the code
that test whether the stack is empty or not. It would be much better to instead have two
kinds of stacks, an empty stack and a “push stack”, and have them implement their respective
methods knowing full well what their representation is. This is what we’re going to explore
now. We will use subclasses to keep track of the kind of stack we have, and the subclasses
will implement their methods in full confidence that the stack they are manipulating is of
the right kind, without needing to check the representation.

But that means that the Stack class, by itself, does not represent anything. The repre-
sentation is in the subclasses. It does not make sense to create an object of type Stack

anymore. We will only create an object of class EmptyStack or PushStack, as they will be
named. To enforce this, we are going to make the Stack class abstract. An abstract class
is a class that cannot be instantiated.2 Therefore, it does not have a Java constructor. The
only use of an abstract class is to serve as a superclass for other classes. An abstract class
also need not implement all its methods. It can have abstract methods that simply promise
that subclasses will implement those methods. (Java will enforce this, by making that all
concrete subclasses of the abstract class do provide an implementation for the methods.)

2In contrast, a class that can be instantiated is sometimes called a concrete class.

5



Here is a recipe for implementing an immutable ADT that is specified by an algebraic
specification using subclasses.

Let T be the name of the ADT.

Assumptions on the structure of the ADT interface:

• Assume that the signature is given in OO-style: except for the basic creators, each
operation of the ADT takes an implicit argument which is an object of type T .

• Except for the basic creators, each operation is specified by one or more equations. If
an operation is specified by more than one equation, then the left hand sides of the
equations differ according to which basic creator was used to create an argument of
type T .

• The equations have certain other technical properties that allow them to be used as
rewriting rules.

• We are to implement the ADT in Java.

• The creators of the ADT are to be implemented as static methods of a class named T .

• Other operations of the ADT are to be implemented as methods of a class named T .

Steps of the recipe:

• Determine which operations of the ADT are basic creators and which are other oper-
ations.

• Define an abstract class named T .

• For each basic creator c of the ADT, define a concrete subclass of T whose instance
variables correspond to the arguments that are passed to c. For each such subclass,
define a Java constructor that takes the same arguments as c and stores them into the
instance variables.

(So far we have defined the representation of T . Now we have to define the operations.)

• For each creator of the ADT, define a static method within the abstract class that
creates and returns a new instance of the subclass that corresponds to c.

• For each operation f of the ADT that is not a basic creator, define an abstract method
f .

• For each operation f of the ADT that is not a basic creator, and for each concrete
subclass C of T , define f as a dynamic method within C that takes the arguments
that were declared for the abstract method f and returns the value specified by the

6



algebraic specification for the case in which Java’s special variable this will be an
instance of C. If the algebraic specification does not specify this case, then the code
for f should throw a RuntimeException such as an IllegalArgumentException.

Following this recipe for the Stack ADT above gives the following. Can you match the steps
with what gets produced?

public abstract class Stack {

public static Stack emptyStack () {

return new EmptyStack ();

}

public static Stack push (Stack s, int i) {

return new PushStack (s,i);

}

public abstract boolean isEmpty ();

public abstract int top ();

public abstract Stack pop ();

}

class EmptyStack extends Stack {

public EmptyStack () { }

public boolean isEmpty () {

return true;

}

public int top () {

throw new IllegalArgumentException ("Invoking top() on empty stack");

}

public Stack pop () {

throw new IllegalArgumentException ("Invoking pop() on empty stack");

}

}

class PushStack extends Stack {

7



private int topVal;

private Stack rest;

public PushStack (Stack s, int v) {

topVal = v;

rest = s;

}

public boolean isEmpty () {

return false;

}

public int top () {

return this.topVal;

}

public Stack pop () {

return this.rest;

}

}

The problem with this? How do you subclass to get MStacks?

8


