
Logic and Computation Lecture 26
CSU 290 Spring 2009 (Pucella) Wednesday, Apr 1, 2009

Observational Equivalence

Last time, we saw ADTs and algebraic specifications, and we saw that when implementing
an ADT we want to ensure that it satisfies its specification. We looked last at the queue
ADT, along with a straightforward implementation in terms of a simple list.

That implementation of queues is fine and dandy, but it’s pretty inefficient. Think about it:
every time you enqueue, you need to walk over the whole list and attach the new element at
the end—using append. If we enqueue elements a lot faster than we dequeue, then the list
keeps growing, and it takes longer and longer to enqueue elements. Roughly, if we do not
dequeue and perform n enqueue operations, the time taken to do those enqueue operations
(where a time unit is the time needed to, say, visit one cell in the list) is on the order of n2.
That can get big pretty fast if the queue is long.

We can do better though, if we’re willing to be a bit clever. Let’s consider a queue imple-
mented not as a single list, but as two lists, one on which to enqueue elements, and one from
which to dequeue elements. To enqueue an element, you cons it at the head of the enqueue
list. To dequeue an element, you remove it from the head of the dequeue list. Voilà. Both
operations are fast. Of course, you may run out of elements on the dequeue list. When
you do, you just take your enqueue list, reverse it, and present it as your new dequeue list.
Think about it, draw pictures. It seems to work. Let’s convince ourselves by implementing
and proving that the implementation satisfies the specification.

The representation of a queue, now, is as a pair of lists of integers. I will use a list to holds
those two lists. Let me use a * to distinguish these operations from the ones from last time,
just so that we can compare them later.

(defun queuep* (q) (and (int-true-listp (first x))

(int-true-listp (second x))))

(defun empty* () (list nil nil))

(defun enqueue* (a q) (list (cons a (first q))

(second q)))

(defun isEmpty* (q) (and (endp (first q))

(endp (second q))))
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(defun front* (q)

(if (endp (second q))

(car (rev (first q)))

(car (second q))))

(defun dequeue* (q)

(if (endp (second q))

(list nil (cdr (rev (first q))))

(list (first q) (cdr (second q)))))

Queue equality, in this implementation, is not trivial. It is not just equality of structures. For
example, ((1 2) ()) and (() (2 1)) should be two representations of the same queue—if
we look at the front of either queue, we get 2. Similarly, ((1 2) (4 3)) and ((1) (4 3

2)) also represent the same queue: if we repeatedly look at the front and dequeue, we get
the same elements 4, 3, 2, and 1, in that order. A moment’s thought give us the following
definitions of queue equality for this representation:

(defun queue*-= (q1 q2)

(= (app (first q1) (rev (second q1)))

(app (first q2) (rev (second q2)))))

Recall the algebraic specifications for the queue ADT, re-expressed in ACL2, and using the
* operations:

(isEmpty* (empty*))

(integerp a) ∧ (queuep* q) =⇒ ¬(isEmpty* (enqueue* a q))

(integerp a) ∧ (queuep* q) ∧ (isEmpty* q)

=⇒ (= (front* (enqueue* a q)) a)

(integerp a) ∧ (queuep* q) ∧ ¬(isEmpty* q)

=⇒ (= (front* (enqueue* a q)) (front* q))

(integerp a) ∧ (queuep* q) ∧ (isEmpty* q)

=⇒ (queue*-= (dequeue* (enqueue* a q)) (empty*))

(integerp a) ∧ (queuep* q) ∧ ¬(isEmpty* q)

=⇒ (queue*-= (dequeue* (enqueue* a q)) (enqueue* a (dequeue* q)))

We can prove that these hold. Let’s try the last one, just for kicks. The context is

A1 : (integerp a)

A2 : (queuep* q)
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A3 : ¬(isEmpty* q)

Note that by expanding A3, we get:

A4 : ¬(endp (first q)) ∨ ¬(endp (second q))

and let’s prove:

(queue*-= (dequeue* (enqueue* a q)) (enqueue* a (dequeue* q)))

by definition of enqueue*

(queue*-= (dequeue* (list (cons a (first q)) (second q)))

(enqueue* a (dequeue* q)))

At this point, we do a case analysis on (endp (second q)).

First case: we add to the context:

A5 : (endp (second q))

and note that A5 and A4 together imply that ¬(endp (first q)), which we can add to
the context:

A6 : ¬(endp (first q))

and continue the proof:

(queue*-= (dequeue* (list (cons a (first q)) (second q)))

(enqueue* a (dequeue* q)))

by definition of dequeue* and A5

(queue*-= (list nil (cdr (rev (cons a (first q)))))

(enqueue* a (dequeue* q)))

by definition of rev

(queue*-= (list nil (cdr (rev (cons a (first q)))))

(enqueue* a (dequeue* q)))

by definition of dequeue* and A5

(queue*-= (list nil (cdr (rev (cons a (first q)))))

(enqueue* a (list nil (cdr (rev (first q))))))

by definition of enqueue*

3



(queue*-= (list nil (cdr (rev (cons a (first q)))))

(list (list a) (cdr (rev (first q)))))

by definition of rev

(queue*-= (list nil (cdr (app (rev (first q)) (list a))))

(list (list a) (cdr (rev (first q)))))

by definition of queue*-=

(= (app nil (rev (cdr (app (rev (first q)) (list a)))))

(app (list a) (rev (cdr (rev (first q))))))

by definition of app

(= (rev (cdr (app (rev (first q)) (list a)))))

(app (list a) (rev (cdr (rev (first q))))))

by definition of app and A6

(= (rev (app (cdr (rev (first q))) (list a)))

(app (list a) (rev (cdr (rev (first q))))))

by theorem for (rev (app a b))

(= (app (rev (list a)) (rev (cdr (rev (first q)))))

(app (list a) (rev (cdr (rev (first q))))))

by definition of rev

(= (app (list a) (rev (cdr (rev (first q)))))

(app (list a) (rev (cdr (rev (first q))))))

by reflexivity of =

That’s the first case.

We now go back to where we did case analysis and do the second case, by first adding to the
context:

A5 : ¬(endp (second q))

and continue the proof:

(queue*-= (dequeue* (list (cons a (first q)) (second q)))

(enqueue* a (dequeue* q)))

by definition of dequeue* and A5

(queue*-= (list (cons a (first q)) (cdr (second q)))
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(enqueue* a (dequeue* q)))

by definition of dequeue* and A5

(queue*-= (list (cons a (first q)) (cdr (second q)))

(enqueue* a (list (first q) (cdr (second q)))))

by definition of enqueue*

(queue*-= (list (cons a (first q)) (cdr (second q)))

(list (cons a (first q)) (cdr (second q))))

by definition of queue*-=

(= (app (cons a (first q)) (rev (cdr (second q))))

(app (cons a (first q)) (rev (cdr (second q)))))

by reflexivity of =

There. Not a hard proof, but somewhat long. Try to push it through in ACL2. (You’ll need
lemmas, as you realize if you work through the proofs above.) The other proofs are similar,
and in fact easier, since they do not involve queue*-=.

So this implementation of queues also satisfies the queue ADT specification. Meaning,
in particular, that if you apply any given sequence of operations starting from an empty
queue, and you observe the resulting queue, either using isEmpty or front, you will get
the same result irrespective of the queue implementation. Thus, if the queue library is
a black box that doesn’t let you look inside how queues are represented, the isEmpty and
front can be called observations, because they let you observe something concrete about the
queues. What we can conclude from the discussion above is that given two queues derived
using the same sequence of operations, but each using one of the two implementations, are
observationally equivalent : they cannot be distinguished using the observation functions.
Observational equivalence tells you can swap implementations of ADTs without affecting
what your program computes.

For the sake of completeness, let’s suppose we have both implementations of queues, but we
only have the signature of the queue ADT, but not a formal specification. I want to argue
that we can still establish that queues constructed using the same sequence of operations are
observationally equivalent.

The way to do that is to relate the representation of the queues in both implementations.
In fact, if you start from an empty queue in both implementations, and apply the same
sequence of operations, say enqueue 1, 2, 3, then dequeue once, then enqueue 4, you see
that you get the following sequence of representations, with the representation of the simple
list-based implementation in the first column and the two-lists implementation in the second
column:

(empty) () ( () () )
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(enqueue 1... (1) ( (1) () )

(enqueue 2... (1 2) ( (2 1) () )

(enqueue 3... (1 2 3) ( (3 2 1) () )

(dequeue... (2 3) ( () (2 3) )

(enqueue 4... (2 3 4) ( (4) (2 3) )

You see that there is an equivalence between the two representations: if take the second
representation as ( L M ), and you append M to the reverse of L, you get the first repre-
sentation. What we want to show now is that this equivalence is an invariant of the queue
operations in the respective implementations.

Let’s formalize the equivalence above via a function equiv:

(defun equiv (q q*)

(= q (app (second q*) (rev (first q*)))))

My claim is that all operations that return queues will return equivalent when they are given
equivalent queues. This is captured by the following formulas:

(equiv (empty) (empty*))

(integerp a) ∧ (queuep q) ∧ (queuep* q*) ∧ (equiv q q*)

=⇒ (equiv (enqueue a q) (enqueue* a q*))

(queuep q) ∧ (queuep* q*) ∧ (equiv q q*) =⇒ (equiv (dequeue q) (dequeue* q*))

As I said, these formulas say that equiv is an invariant of the queue operations. Thus, if
we start with two empty queues, one in each implementation of queues, and we apply any
sequence of enqueues and dequeues, we end up with equivalent resulting queues. Why is
this interesting? Because equivalent queues yield the same observations, as the following
provable formulas show:

(queuep q) ∧ (queuep* q*) ∧ (equiv q q*) =⇒ (= (isEmpty q) (isEmpty* q*))

(queuep q) ∧ (queuep* q*) ∧ (equiv q q*) =⇒ (= (front q) (front* q*))

Two equivalent queues yield the same observations. This is our notion of observational
equivalence, which is here established for the two implementations of queues without relying
on an externally-imposed algebraic specification.
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