I Constraint Solving for Protocol Analysis

Shmatikov

- “Constraint Solving for Bounded-Process
Cryptographic Protocol Analysis”

* Presentation by James Wexler

I * Papers by Jonathan Millen and Vitaly

I Intro to Constraint Satisfaction
I Problems

* Set of variables that must be assigned values
I according to some constraints
* Constraints can constrain one variable or a
set of variables
* EX:

' New South Wales

-
I|

|~ L

N

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT = green, () =red, NSW = green, V =red, SA=blue, T = green}

I Intro to CSP continued

- Backtracking — basically depth first search of
constraint set - used in this paper

- Forward checking — eliminates impossible
search states based on current state of solution

- Constraint propagation — further eliminates
Impossible search states

I e Solution methods

I Motivation of paper

- Want to see if an undesirable state is reachable
through use of the protocol with agents
(including attacker)

* Reachability undecidable in general case

- Can be decidable given enough restrictions on

the problem
* The method will allow the analysis of
protocols with key constructed from shared

secrets (i.e. SSL)

I * Secrecy expressible as reachability

I Basics

that allows variables (parametric strands)
- Variables allow one strand to represent all
possible strands of a given role

* Attacker — Dolev-Yao attacker using term
closure operator based on Paulson's synth
and analz — doesn't use penetrator strands

* Analysis of protocol runs based on a
bounded number of agents

* No typing

I * Protocol — represented by a form of strands

[, 2]

pk(P)

Term algebra

The attacker or a principal compromused by
the attacker (constant)

Pairing

Messages encrypted with this public key can
be decrypted by P using its corresponding
private key. We assume that the private key
of a public-private key pair 15 never transmut-
ted as part of the pratocol. or compromised in
any way that might make 1t available as initial
knowledge of the aftacker. Therefore, the at-
tacker can only decrypt terms encrypted with
its own public key pris).

Hash (modeled as a one-way function)

Term ¢ encrypted with k using a symmetric
algorithm. Keys are nof required to be atomic
terms.

Term ¢ encrypted with £ using a public-key
algorithm. Any term can be used as if 1f were
a public key

Public-key signature of term ¢ that 15 vak-
dated using kev k. Since private keys of a key
pair are never leaked, the attacker can only
construct its own signatures sig . (.. .).

* Assume private keys are never leaked
* Only constructed keys using free term

algebra (hashing), can't do xor

I Example strands

_ Init(A,B,N4,Ng) =
+[A, NA];L{B) — [Na, Ng, B];]}{(A} # [NB];{(BJ

I * Needham-Schroeder-Lowe protocol

- Capital letters represent variables, lowercase letters
will represent constants

- Resp very similar — pluses and minuses reversed
- Slightly different from original NSL

* A set of strands {init, resp} is called a
semibundle

* Completable to bundle by supplying attacker
computations and communication causality
relation between messages sent and
received

I Attacker model

* A send node in a trace is realizable if it can
be synthesized by the attacker from the set
of messages sent in prior nodes

* Semibundle completable to bundle if it has a
node ordering in which every send node is
realizable.

I * Term set closure operation - F(T)

Attacker Model

ﬁﬁ'sph?{s }
G.'hpdec Lﬁ')
':,:I-]E-IiE'E (5 :I'

thw{g}
Dpenc|)
Dsenc [51}
ﬁﬁ'hash{s j
'i*‘a[g | 5]

'f.f"anﬂ (5)
e (S)

Aﬂmﬂ:ﬂs
SUzUy if[z,y] € §
o Uz if Z)ok(e) € S
Sz it [z],", 9 €S
Synthesis
S Uz, y] ifz,y €S
SUlz|, ifr.ye s
Sulz]y ifz,y €S
S U h(x) fzes
SU Sigpk[s} L) fzed
Encryption hiding
S U [z]; if [], € S

SuUz], if [1];')

Attacker model

Encryption hiding needed to support analysis
of constructed keys.

F(T) is a closure operation — idempotent,
monotonic and extensive

Same capabilities as penetrator strand
approach but allows for easy conversion to
constraint satisfaction problem

Easily extendable

I Goals of analysis

- Keeping N_' secret in NSL case
- Add one node strand (-N_') to semibundle

- Determine if semibundle is reachable

* Authentication
- Add one node strand to semibundle containing
message to be authenticated but no legit strand
that sends it.
- The paper is not clear on exactly what the strand
would look like

I * Secrecy

Origination Assumption

* Variables always occur first time in any
strand in a minus node

* Needed to prove completeness of decision
procedure and helps us state and prove
goals

* For principles, prefix a strand with received

message containing the variables that would
otherwise be sent first

- In NSL add strand -[A, B] to the semibundle for
Initiator and responder identity variables

Constraint Generation

Interleave strands in all of the possible ways
and try to solve the constraint set
One NSL merge:

_[*'1'- B T [-”'L'”ffjﬁllllj B) ﬂ *'1":-'1]],Z|I:UJ] 2y [‘ﬁ'r:-‘““"?' “".I'n.{c{ a) "

R 1—=+ [AT 1= .
v oa :”‘;1! -nif H e HJE}H l'f + ;:'H,-HJ“]{”:.‘:I g

This semibundle had 2 responder strands
Note the secret reception strand

Exponential possible number of interleavings,
optimization possible

I Constraint set

* Constraints represent the messages the
I attacker would need to synthesize in order
for the semibundle to be reachable (meaning
the security property we are testing would be
violated)

Constraint Set

Constraints are of the form m:T

- Each receive node is an m (message)

- T is the last term set — terms originally known by the
attacker and terms attacker has seen thus far in the
protocol run (send nodes)

- T, contains ground terms

NSL example: [4,B] : Ty={a,b,epkie)}
. Nalky © Ty =ToU[A,]y}
[n.. Ng, L:’]PL o @ = Ty U {[Na.ns. 'I!’I-;ﬂc., }','-
m T3 =T U{[Np|} 45

Constraint set is solvable if attacker can synthesize
constraint messages from term set and F(T) operator

I Solving the Constraint Set

- Applies rules that replace or eliminate a
constraint

- Terminates successfully when constrain set is a
simple set — all left sides are simple variables

- Reducible in many ways — creates a tree of
possible solutions

- If one path of tree terminates successfully then
the semibundle is reachable

I * Reduction procedure

Reduction Procedure

' : = mihal constramnt sequence
a:=
repeat
let ¢* = m : T be the first constraint in C
s.t. m 1s not a varable
if ¢* not found
output Satisfiable!
apply rule felim) to ¢* until no longer applicable
Vre R
if r 1s applicable to '
(C"a') 1= r(Cha)
create node with C'; add €' — (" edge
push {C'; ¢')
{C;a) := pop
until emptvetack

Figure 2 Reduction procedure P

Reduction Procedure

* Find first constraint that is not a variable

* Apply (elim) if possible

* Branch on all allowable reduction rules

* |f path terminates in a satisfiable constraint
set, it contains variable instantiations that the
attacker has to make in order to stage a
successful attack

* Sound and complete

Reduction rules

Ce,m:T,Cs;0

(1n)
TC{.J TC:; 3 T Uo

where 7 = mgu(m, t),t € T';

Cey[mi,me] : T,Cs;0

(pair)
Ceomy:T,my:T,Csi0
Ce,h(m):T,Cs;o
(hash)
Coem:T,0s0

Cey[m}?:T,Cs;0

(penc)

ek i me T 08

Ce,[m]}? :T,Cs50

(senc)

Ceik:Tom:T,Csso

G{ﬁ Sigp]{{g}(”‘t} : T'J C} y O

(sig)
Coom:T.Cu;o
C{:Tn’ : [t]_:,t:]] U T:- C}ﬂ a
(split)
C{,’”’L . t] L tg L T,C};H
Ce,m: [t]ﬁ{:{a} U G
(pdec)
Ceom:tUT,Css0
Ce,m: [t UT,Cs;o
(fsub)

7Ce,mm : T[] UTT,7C5;TU O
where 7 = mgu(k, pk(¢)), k # pk(e)

Ce,m:TUF,Cs50

(sdec)
Cus ke TV [t c TSR Gz o

Note: [z], unifies with [z’];'ﬁ' iff 3o st.ox =o', 0y = oy

* Interleaving:

—[a, Nﬂ];; b) fob

+[Na, ny, !ﬁ;{ﬂ} frombtoa
_[B!NB]H:H} to any A from any B
+[NB':”E#A];:{B} fromAtoB

—np secrer reception

The constramt set from this interleaving 1s:

1. [{1, NA];;“:} . Tﬂ = {'ﬂ".i b:Er pk{{l)‘-' pk(bJ}
2. [B, NB];‘;{A} : T =Ty U{[Na,[ns, b]};{n}}
3. ny : TiU{[Ng,[na, A]| g}

We will follow one path leading to a solution. Note that we are treating concatenation
as a bmary night-associative operation. First, apply (penc) to (1):

1.2. [a,N4] : T,
9 [E:nNB];;{A} : Tl = Tﬂ U {[NA'.' Iﬂ'ﬁ! b]];;;{a,}}
3. ny : Ty U{[Np,[Na, A]];;;{B]I}

Example

Eliminate (1.1) with (un) and expand (1.2) with (pair).

1.2.1. a . T{]

122 Jillll'T;’i ; T}J

2 [B -'!Hl"B] pk({A) : T'l T':]' U {[JTA’ [ﬂ-ﬁ. h]]pl{ i)
3. Ny - T U{[VB [ﬂu A]] pk(B B}

Elimmate (1.2.1) with (un) and skip (1.2.2) because 1t has a variable on the left. Apply
(un) to (2) with the substitutions B — Ny, Ng — [ny, D] and A — q, eliminating (2).

lzoz. vy @ T
3. np @ Ty U{[ng,b)s [) 5oy)

Fnally, apply (ksub) to (3) with N4 ~ =. It should be clear after this that ny, will be
exposed and the solution can be finished up easily. Installing the substitutions into the

original semibundle yields the attack.

I Example attack

- Attacker name occupying a nonce field
- [n,, b] in first message occupying a nonce field

- Only works if agent names are the same length
as a nonce field and nonces can be two sizes
(single and double length)

* Not very realistic but shows the power of this
method of analysis

I * How the attack work - Type confusions:

I Negative opinions on paper

* Can't analyze encryption operations with
associative and communitive properties such
as xor, Diffie-Hellman exponentiation

* Paper doesn't show any real attacks on non-
toy protocols.

* Only proves properties about running
protocols with a fixed number of agents
interacting

I * Attacks shown in paper are not realistic

I Positive opinions on paper
* |[nteresting use of Al concept to analyze
I protocols
* Can analyze some protocols with constructed
keys
* Easily implementable — just a few pages of
prolog

* Extendable to analyze unbounded processes
— but will not terminate if attack not found

Questions??

