
Strand Spaces
Ryan Culpepper

Strand Spaces – p. 1/46



Outline

Strand spaces

Concepts and intuitions

Modeling protocols

Specifying and verifying properties

Applications

Strand Spaces – p. 2/46



Concepts and intuitions

Strand Spaces – p. 3/46



Traces

Protocols are often modeled with traces:

Hamlet : The air bites shrewdly; it is very cold.
Horatio : It is a nipping and an eager air.
Hamlet : What hour now?
Horatio : I think it lacks of twelve.

Marcellus : No, it is struck.

Strand Spaces – p. 4/46



Strands

A strand is a perspective on a protocol interaction.

Hamlet’s role:

say : The air bites shrewdly; it is very cold.
cue : It is a nipping and eager air.
say : What hour now?

Marcellus’s role:

cue : I think it lacks of twelve.
say : No, it is struck.

Strand Spaces – p. 5/46



Bundles

Strands combine to form bundles

Bundles represent actual protocol interactions

�

-

�

-

Horatio

say: It is a nipping and an eager air.

cue: The air bites shrewdly; it is very cold.

cue: What hour now?

say: I think it lacks of twelve.

say: The air bites shrewdly; it is very cold.

cue: It is a nipping and an eager air.

say: What hour now?

Hamlet Marcellus

say: No, it is struck.

cue: I think it lacks of twelve.

Strand Spaces – p. 6/46



Strand space

A strand space is a set of strands of

the initiator and responder roles

the penetrator (attacker)

Strand Spaces – p. 7/46



Protocols

Protocol
⇓

Strand space specification

Strand Spaces – p. 8/46



Protocols

Protocol property
⇓

Mathematical proposition
about bundles over strand space

Strand Spaces – p. 9/46



Protocols

Verification
⇓

Proof of proposition

Strand Spaces – p. 10/46



Formalism

Strand Spaces – p. 11/46



Terms

There is a set A of terms.

contains the set T of atomic terms

contains the set K of cryptographic keys

closed under concatenation

closed under encryption/decryption

free algebra

A signed term is a pair of a sign σ ∈ {+,−} and a term t,
written either 〈σ, t〉 or +t or −t.
(±A)∗ is the set of finite sequences of signed terms.

Strand Spaces – p. 12/46



Strand spaces

A strand space Σ is a set of strands.

Each strand has a trace:

tr : Σ → (±A)∗

Many strands may share the same trace.

Many traces share the same shape.

Strand Spaces – p. 13/46



Definitions

Let Σ be a strand space.

A node is a pair 〈s, i〉 of a strand s ∈ Σ and an index i
where 1 ≤ i ≤ length(tr(s)).

N is the set of nodes.

term : N → Signed terms

→ is a relation on nodes where

n→ n′ iff term(n) = +t and term(n′) = −t

⇒ is a relation on nodes where

〈s, i〉 ⇒ 〈s, i+ 1〉

Strand Spaces – p. 14/46



Definitions

Let I ⊆ A be a set of unsigned terms. Then n ∈ N is an
entry point for I iff:

t ∈ I

term(n) = +t

∀n′ ⇒+ n : term(n′) 6∈ I

An unsigned term t originates on n ∈ N if n is an entry point
for the set of all terms containing t.

An unsigned term t is uniquely originating if it originates on
a unique node.

Strand Spaces – p. 15/46



Bundles

A bundle C is a graph of nodes 〈NC ,→C ,⇒C〉.

C is finite and acyclic

NC ⊆ N

→C⊆→

⇒C⊆⇒

A node with a negative term has a unique →-edge
coming into it

If n2 ∈ NC and n1 ⇒ n2, then n1 ⇒C n2.

Strand Spaces – p. 16/46



Bundles

Here is an example bundle:

-

�

-

�

-

�

-a
+c
-d
-e
+f
+g

+b
-c
+d

+a

-f

-c

+e

Strand Spaces – p. 17/46



Bundles

Causal precedence

Edges generate partial order �

n � n′ means n may influence terms of n′

Induction

Every non-empty set of nodes has a non-empty
�-minimal subset

“Who knew what when?”

Strand Spaces – p. 18/46



Proof tools

Proofs involve arguments about:

Entry points, origination, and unique origination

Causality and �-minimal nodes

Case analysis on strand shapes

Strand Spaces – p. 19/46



Modeling Protocols

Strand Spaces – p. 20/46



Needham-Schroeder-Lowe

Needham-Schroeder protocol as fixed by Lowe:

1. A −→ B : {Na, A}KB

2. B −→ A : {Na, Nb, B}KA

3. A −→ B : {Nb}KB

Strand Spaces – p. 21/46



Modeling the protocol

Protocols are modeled as strand spaces

An NSL strand space is the union of three kinds of strands:

Initiator strands

Responder strands

Penetrator (attacker) strands

Initiator and responder strands are called “regular strands”,
and their nodes are called “regular nodes.”

Strand Spaces – p. 22/46



Initiator strands
⋃
{Init[A,B,Na, Nb] | A,B ∈ Tnames, Na, Nb ∈ T − Tnames}

Each strand in Init[A,B,Na, Nb] has the trace:

+{Na, A}KB

−{Na, Nb, B}KA

+{Nb}KB

Strand Spaces – p. 23/46



Responder strands
⋃
{Resp[A,B,Na, Nb] | A,B ∈ Tnames, Na, Nb ∈ T − Tnames}

Each strand in Resp[A,B,Na, Nb] has the trace:

−{Na, A}KB

+{Na, Nb, B}KA

−{Nb}KB

Strand Spaces – p. 24/46



Penetrator strands

Penetrators

have initial information: compromised keys Kp

have many capabilities, and they can combine those
capabilities in many ways.

are patient; they can watch through many protocol
interactions until they gather enough information.

Penetrator strands sound like they could be complex and
arbitrarily long:

“Our villain watches three protocol interactions, injects a
message into a fourth, watches a fifth, initiates an
interaction using data from the second, and ...”

Strand Spaces – p. 25/46



Penetrator strands

Characterize penetrator capabilities rather than attacks.
Model a beaurocracy of penetrators!

One class of strand per capability

Many penetrator strands may be combined in a bundle

Considering “all possible bundles” automatically creates
“all possible penetrators”

Reusable definition: “penetrator standard library”
Reusable theorems about standard penetrators

Strand Spaces – p. 26/46



Penetrator capabilities

Dolev-Yao attacker:

M : 〈+t〉, where t ∈ T

F : 〈−g〉, where g ∈ Terms

T : 〈−g,+g,+g〉

C : 〈−g,−h,+gh〉

S : 〈−gh,+g,+h〉

E : 〈−K0,−h,+{h}K0
〉

D : 〈−K0,−{h}K0
,+h〉

Strand Spaces – p. 27/46



Standard penetrators

Standard penetrators have standard limits

If the penetrator doesn’t start out with a key K, and that
key never originates on a regular node, then K is not a
subterm of any penetrator node’s term.

Suppose it does occur in some set of nodes. Take
the �-minimal base; those must all be penetrator
nodes. Do case analysis of penetrator nodes.

Strand Spaces – p. 28/46



Stating and Verifying Protocol
Properties

Strand Spaces – p. 29/46



Needham-Schroeder-Lowe properties

Authentication of initiator to responder

Authentication of responder to initiator

Secrecy of nonces

Strand Spaces – p. 30/46



Weak agreement

One form of authentication:

Whenever B completes a run as responder using Na, Nb

with A as apparent initiator, there is a run of the
protocol with A as initiator using Na, Nb with B as
apparent responder.

Strand Spaces – p. 31/46



Weak agreement as proposition

Suppose the following:

Σ is an NSL space, C is a bundle in Σ, and
s ∈ Resp[A,B,Na, Nb] is a complete responder strand in
C.

K−1

A 6∈ Kp

Na 6= Nb and Nb is uniquely originating in Σ.

Then:

C contains a complete initiator’s strand in
Init[A,B,Na, Nb].

Strand Spaces – p. 32/46



Proving weak agreement

A few pages of math.

Strand Spaces – p. 33/46



Secrecy as a proposition

Suppose the following:

Σ is an NSL space, C is a bundle in Σ, and
s ∈ Resp[A,B,Na, Nb] is a responder strand in C.

K−1

A 6∈ Kp

K−1

B 6∈ Kp

Na 6= Nb and Nb is uniquely originating in Σ.

Then:

For all nodes n ∈ C, term(n) 6= Nb.

Strand Spaces – p. 34/46



Proving secrecy

Another page or two of math.

Strand Spaces – p. 35/46



Applications

Strand Spaces – p. 36/46



CPPL

Cryptographic Protocol Programming Language

Based on strand space semantics

Compiles domain-specific protocol language via O’Caml

Strand Spaces – p. 37/46



Motivation

Protocol design isn’t “done.”

Different applications have different agreement and
commitment goals.

Bring implementation and analysis closer together.

Strand Spaces – p. 38/46



Example

A data server based on the Needham-Schroeder (original)
protocol:

A −→ B : {Na, A,D}KB

B −→ A : {Na, SK}KA

A −→ B : {SK}KB

B −→ A : {datais, V }SK

Strand Spaces – p. 39/46



Relies and guarantees

Idea of CPPL:

Annotate message sends with guarantees

Annotate message receives with relies

Protocol soundness:

If P receives a message apparently from P ′ and relies
on a formula φ, then P ′ previously sent the message
with a formula ψ, where ψ ⇒ φ.

Strand Spaces – p. 40/46



NSQ Code

proc server (b:text, kb:key) _
let chan = accept in
(chan recv {na:nonce, a:text, d:text} kb _

let sk:symkey = new in
(send _ chan {na, sk, b} ka
(chan recv {sk} kb _

(send _ chan {Data_is v} sk
return _))))

Strand Spaces – p. 41/46



NSQ Code

%
proc server (b:text, kb:key) [owns(b,kb)]

let chan = accept in

(chan recv {na:nonce, a:text, d:text} kb [true]

let sk:symkey = new in

(send [owns(a,ka)] chan {na,sk,b} ka

(chan recv {sk} kb [says_requests(a,a,b,d)]

(send [will_pay(a,d); curr_val(d,na,v:text)]

chan {Data_is v} sk

return [supplied(a,na,d,v)]))))

Strand Spaces – p. 42/46



Semantics

Semantics of CPPL maps processes to sets of strands.
Verify resulting strand space, or translate further to other
frameworks for verification.

Strand Spaces – p. 43/46



Conclusion

Strand Spaces – p. 44/46



References

“Strand Spaces: Proving Security Protocols Correct”,
Fábrega, Herzog, and Guttman. Journal of Computer
Security, 1999.

“Programming Cryptographic Protocols”, Guttman,
Herzog, Ramsdell, and Sniffen. Symposium on
Trustworthy Global Computing, 2005.

http://www.mitre.org/tech/strands/

Strand Spaces – p. 45/46



The End

Strand Spaces – p. 46/46


	Outline
	Concepts and intuitions
	Traces
	Strands
	Bundles
	Strand space
	Protocols
	Protocols
	Protocols
	Formalism
	Terms
	Strand spaces
	Definitions
	Definitions
	Bundles
	Bundles
	Bundles
	Proof tools
	Modeling Protocols
	Needham-Schroeder-Lowe
	Modeling the protocol
	Initiator strands
	Responder strands
	Penetrator strands
	Penetrator strands
	Penetrator capabilities
	Standard penetrators
	Stating and Verifying Protocol Properties
	Needham-Schroeder-Lowe properties
	Weak agreement
	Weak agreement as proposition
	Proving weak agreement
	Secrecy as a proposition
	Proving secrecy
	Applications
	CPPL
	Motivation
	Example
	Relies and guarantees
	NSQ Code
	NSQ Code
	Semantics
	Conclusion
	References
	The End

