Strand Spaces

Ryan Culpepper

Outline

Strand spaces

- Concepts and intuitions
- Modeling protocols
- Specifying and verifying properties
- Applications

Concepts and intuitions

Traces

Protocols are often modeled with *traces*:

Hamlet	•	The air bites shrewdly; it is very cold.
Horatio	•	It is a nipping and an eager air.
Hamlet	•	What hour now?
Horatio	•	I think it lacks of twelve.
Marcellus	•	No, it is struck.

Strands

- A strand is a perspective on a protocol interaction.
- Hamlet's role:
 - say : The air bites shrewdly; it is very cold.
 - cue : It is a nipping and eager air.
 - say : What hour now?
- Marcellus's role:
 - cue : I think it lacks of twelve.
 - say : No, it is struck.

Strands combine to form *bundles*Bundles represent actual protocol interactions

Horatio	Hamlet	Marcellus
cue: The air bites shrewdly; it is very cold.	say: The air bites shrewdly; it is very cold.	
say: It is a nipping and an eager air.	← cue: It is a nipping and an eager air.	
cue: What hour now?	say: What hour now?	
say: I think it lacks of twelve.	→	cue: I think it lacks of twelve.
		say: No, it is struck.

Strand space

A strand space is a set of strands of

- the initiator and responder roles
- the penetrator (attacker)

Protocols

Protocols

Protocol property ↓ Mathematical proposition about bundles over strand space

Protocols

Verification \downarrow Proof of proposition Formalism

Terms

There is a set \mathcal{A} of terms.

- \checkmark contains the set ${\mathcal T}$ of atomic terms
- contains the set \mathcal{K} of cryptographic keys
- closed under concatenation
- closed under encryption/decryption
- free algebra

A signed term is a pair of a sign $\sigma \in \{+, -\}$ and a term t, written either $\langle \sigma, t \rangle$ or +t or -t.

 $(\pm A)^*$ is the set of finite sequences of signed terms.

Strand spaces

- A strand space Σ is a set of strands.
- Each strand has a trace:

$$tr: \Sigma \to (\pm \mathcal{A})^*$$

- Many strands may share the same trace.
- Many traces share the same shape.

Definitions

Let Σ be a strand space.

- A node is a pair (s,i) of a strand $s \in \Sigma$ and an index iwhere $1 \le i \le length(tr(s))$.
- \checkmark \mathcal{N} is the set of nodes.
- $term : \mathcal{N} \rightarrow Signed terms$
- \blacktriangleright \rightarrow is a relation on nodes where

$$n \rightarrow n' \text{ iff } term(n) = +t \text{ and } term(n') = -t$$

 \blacksquare \Rightarrow is a relation on nodes where

$$\langle s, i \rangle \Rightarrow \langle s, i+1 \rangle$$

Definitions

Let $I \subseteq A$ be a set of unsigned terms. Then $n \in \mathcal{N}$ is an *entry point* for *I* iff:

 $t \in I$ term(n) = +t $\forall n' \Rightarrow^{+} n : term(n') \notin I$

An unsigned term t originates on $n \in \mathcal{N}$ if n is an entry point for the set of all terms containing t.

An unsigned term t is *uniquely originating* if it originates on a unique node.

A bundle \mathcal{C} is a graph of nodes $\langle \mathcal{N}_{\mathcal{C}}, \rightarrow_{\mathcal{C}}, \Rightarrow_{\mathcal{C}} \rangle$.

- $\textbf{ } \mathcal{C} \text{ is finite and acyclic }$

- A node with a negative term has a unique →-edge coming into it
- If $n_2 \in \mathcal{N}_{\mathcal{C}}$ and $n_1 \Rightarrow n_2$, then $n_1 \Rightarrow_{\mathcal{C}} n_2$.

Here is an example bundle:

Causal precedence

- \blacksquare Edges generate partial order \leq
- $n \leq n'$ means n may influence terms of n'

Induction

- "Who knew what when?"

Proof tools

Proofs involve arguments about:

- Entry points, origination, and unique origination
- Causality and \leq -minimal nodes
- Case analysis on strand shapes

Modeling Protocols

Needham-Schroeder-Lowe

Needham-Schroeder protocol as fixed by Lowe:

- **1.** $A \longrightarrow B : \{N_a, A\}_{K_B}$
- **2.** $B \longrightarrow A : \{N_a, N_b, B\}_{K_A}$
- **3.** $A \longrightarrow B : \{N_b\}_{K_B}$

Modeling the protocol

Protocols are modeled as strand spaces

An NSL strand space is the union of three kinds of strands:

- Initiator strands
- Responder strands
- Penetrator (attacker) strands

Initiator and responder strands are called "regular strands", and their nodes are called "regular nodes."

Initiator strands

 $\bigcup \{ \text{Init}[A, B, N_a, N_b] \mid A, B \in \mathcal{T}_{\text{names}}, N_a, N_b \in \mathcal{T} - \mathcal{T}_{\text{names}} \}$ Each strand in Init[A, B, N_a, N_b] has the trace:

> $+\{N_a, A\}_{K_B}$ $-\{N_a, N_b, B\}_{K_A}$ $+\{N_b\}_{K_B}$

Responder strands

 $\bigcup \{ \operatorname{Resp}[A, B, N_a, N_b] \mid A, B \in \mathcal{T}_{names}, N_a, N_b \in \mathcal{T} - \mathcal{T}_{names} \}$ Each strand in $\operatorname{Resp}[A, B, N_a, N_b]$ has the trace:

$$-\{N_a, A\}_{K_B}$$

+ $\{N_a, N_b, B\}_{K_A}$
- $\{N_b\}_{K_B}$

Penetrator strands

Penetrators

- have initial information: compromised keys \mathcal{K}_p
- have many capabilities, and they can combine those capabilities in many ways.
- are patient; they can watch through many protocol interactions until they gather enough information.

Penetrator strands sound like they could be complex and arbitrarily long:

• "Our villain watches three protocol interactions, injects a message into a fourth, watches a fifth, initiates an interaction using data from the second, and ..."

Penetrator strands

Characterize penetrator *capabilities* rather than *attacks*. Model a beaurocracy of penetrators!

- One class of strand per capability
- Many penetrator strands may be combined in a bundle
- Considering "all possible bundles" automatically creates "all possible penetrators"
- Reusable definition: "penetrator standard library" Reusable theorems about standard penetrators

Penetrator capabilities

Dolev-Yao attacker:

- $\mathbf{M}:\langle +t
 angle$, where $t\in\mathcal{T}$
- $\mathbf{F}: \langle -g \rangle$, where $g \in Terms$
- $\mathbf{T}: \langle -g, +g, +g \rangle$

Standard penetrators

Standard penetrators have standard limits

If the penetrator doesn't start out with a key K, and that key never originates on a regular node, then K is not a subterm of any penetrator node's term.

Suppose it does occur in some set of nodes. Take the \leq -minimal base; those must all be penetrator nodes. Do case analysis of penetrator nodes.

Stating and Verifying Protocol Properties

Needham-Schroeder-Lowe properties

- Authentication of initiator to responder
- Authentication of responder to initiator
- Secrecy of nonces

Weak agreement

One form of authentication:

• Whenever *B* completes a run as responder using N_a, N_b with *A* as apparent initiator, there is a run of the protocol with *A* as initiator using N_a, N_b with *B* as apparent responder.

Weak agreement as proposition

Suppose the following:

- $N_a \neq N_b$ and N_b is uniquely originating in Σ .

Then:

• C contains a complete initiator's strand in $Init[A, B, N_a, N_b]$.

Proving weak agreement

A few pages of math.

Secrecy as a proposition

Suppose the following:

- ▶ Σ is an NSL space, C is a bundle in Σ , and $s \in \text{Resp}[A, B, N_a, N_b]$ is a responder strand in C.

- $N_a \neq N_b$ and N_b is uniquely originating in Σ .

Then:

● For all nodes $n \in C$, $term(n) \neq N_b$.

Proving secrecy

Another page or two of math.

Applications

CPPL

- Cryptographic Protocol Programming Language
- Based on strand space semantics
- Compiles domain-specific protocol language via O'Caml

Motivation

- Protocol design isn't "done."
- Different applications have different agreement and commitment goals.
- Bring implementation and analysis closer together.

Example

A data server based on the Needham-Schroeder (original) protocol:

$$A \longrightarrow B : \{N_a, A, D\}_{K_B}$$
$$B \longrightarrow A : \{N_a, SK\}_{K_A}$$
$$A \longrightarrow B : \{SK\}_{K_B}$$
$$B \longrightarrow A : \{\mathbf{data_is}, V\}_{SK}$$

Relies and guarantees

Idea of CPPL:

- Annotate message sends with guarantees
- Annotate message receives with relies

Protocol soundness:

If *P* receives a message apparently from *P'* and relies on a formula ϕ , then *P'* previously sent the message with a formula ψ , where $\psi \Rightarrow \phi$.

NSQ Code

```
proc server (b:text, kb:key) _
  let chan = accept in
  (chan recv {na:nonce, a:text, d:text} kb _
    let sk:symkey = new in
    (send _ chan {na, sk, b} ka
        (chan recv {sk} kb _
            (send _ chan {Data_is v} sk
                return _))))
```

NSQ Code

```
%
proc server (b:text, kb:key) [owns(b,kb)]
let chan = accept in
  (chan recv {na:nonce, a:text, d:text} kb [true]
  let sk:symkey = new in
  (send [owns(a,ka)] chan {na,sk,b} ka
      (chan recv {sk} kb [says_requests(a,a,b,d)]
      (send [will_pay(a,d); curr_val(d,na,v:text)]
            chan {Data_is v} sk
            return [supplied(a,na,d,v)]))))
```

Semantics

Semantics of CPPL maps processes to sets of strands. Verify resulting strand space, or translate further to other frameworks for verification. Conclusion

References

- Strand Spaces: Proving Security Protocols Correct", Fábrega, Herzog, and Guttman. *Journal of Computer Security, 1999*.
- Programming Cryptographic Protocols", Guttman, Herzog, Ramsdell, and Sniffen. Symposium on Trustworthy Global Computing, 2005.
- http://www.mitre.org/tech/strands/

The End