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Signatures
Signatures in “real life” have a number of properties

They specify the person “responsible” for a 
document

E.g. that it has been produced by the person, or 
that the person agrees with the document

Attached to a particular document
Easily verifiable by third parties

We want a similar mechanism for digital documents
Some difficulties:

Need to bind signature to document
Need to ensure verifiability (and avoid forgeries)



Formal Definition
A signature scheme is a tuple (P,A,K,S,V) where:

P is a finite set of possible messages
A is a finite set of possible signatures
K (the keyspace) is a finite set of possible keys
For all k, there is a signature algorithm sigk in Sand 
a verification algorithm verk in V such that

sigk : P → A
verk : P × A → {true,false}
verk(x,y) = true iff y=sigk (x)

A pair (x,y) ∈ P × A is called a signed message



Example: RSA Signatures

The RSA cryptosystem (in fact, most public key 
cryptosystems) can be used as a signature scheme

Take:
sigk (x) = dk (x)
verk (x,y) = (x =? ek (y))
Only user can sign (because decryption is private)
Anyone can verify (because encryption is public)



Signing and Encrypting
Suppose you want to sign and encrypt a piece of data

Where encryption is public key (why is this 
important?)
Public key cryptography does not say anything 
about the sender

Two possibilities:
First encrypt, then sign: x  →  (eke (x), sigks (eke (x)))

But adversary could replace by sigke’ (eke (x))
making it seem the message came from someone 
else

First sign, then encrypt:  x  →  (eke (x), sigks (x))
Better make sure signature does not leak info!



Possible Attacks

(Alice is the signer, Oscar the attacker)

Key-only attack
Oscar possesses Alice’s public verification algorithm

Known message attack
Oscar possesses a list of signed messages (xi, yi)

Chosen message attack
Oscar queries Alice for the signatures of a list of 
messages xi



Possible Adversarial Goals

Total break
Oscar can derive Alice’s private signing algorithm

Selective forgery
Oscar can create a valid signature on a message 
chosen by someone else, with some non-
negligible probability

Existential forgery
Oscar can create a valid signature for at least 
one message



Some Comments

Cannot have unconditional security, only computational or 
provable security

Attacks above are similar to those against MACs
We mostly concentrated on existential forgeries against 
chosen message attacks
What Graham was asking was for total break against 
(some) attacks

Existential forgeries against chosen message attacks:
Least damage against worst attacker
The minimum you should ask for



Security of RSA Signatures
Existential forgery using a key-only attack:

Choose a random y
Compute x = ek (y)
We have y = sigk (x), a valid signature of x

Existential forgery using a known-message attack:
Suppose y = sigk (x) and y’ = sigk (x’)
Can check ek (y y’ mod n) = x x’ mod n
So y y’ mod n = sigk (x x’ mod n)

Existential forgery using a chosen message attack:
To get a signature for x, find x1 x2 = x mod n
Query for signatures of x1 and x2

Apply previous attack



Signatures and Hashing

The easiest way to get around the above problems is 
to use a cryptographic hash function

Given message x
Produce digest h(x)
Sign digest h(x) to create (x,sigk(h(x)))

To verify:
Get (x,y)
Compute h(x)
Check verk (h(x),y)



Use of Hashing for Signatures
Existential forgery using a chosen messge attack

Oscar finds x,x’ s.t. h(x)=h(x’)
He gives x to Alice and gets her to sign h(x)
Then (x’,sigk(h(x))) is a valid signed message
Prevented by having h collision resistant

Existential forgery using a known message attack
Oscar starts with (x,y), where y = sigk(h(x))
He computes h(x) and tries to find x’ s.t. h(x’) = h(x)
Prevented by having h second preimage resistant

Existential forgery using a key-only attack
(If signature scheme has existential forgery using a key-only attack)
Oscar chooses message digest and finds a forgery z for it
Then tries to find x s.t. h(x)=z
Prevented by having h preimage resistant



Example: ElGamal Signature Scheme

Let p be a prime s.t. discrete log in Zp is hard
Let a be a primitive element in Zp*

P = Zp*, A = Zp* × Zp-1

K = {(p,α,a,β) | β= αa (mod p)}

For k = (p,α,a,β) and t ∈ Zp-1*

γ = αt mod p
sigk (x,t) = (γ, (x-aγ)t-1 (mod p-1))

verk (x,(γ,δ)) = ( βγγδ =? αx (mod p) )



Security of ElGamal Scheme
Forging a signature (γ,δ) without knowing a 

Choosing γ and finding corresponding δ amounts to 
finding discrete log
Choosing δ and finding corresponding γ amounts to 
solving βγγδ = αx (mod p)

No one knows the difficulty of this problem 
(believed to be hard)

Choosing γ and δ and solving for the message amounts 
to finding discrete log
Existential forgery with a key-only attack:

Sign a random message by choosing γ, δ and 
message simultaneously (p.289)



Variant 1: Schnorr Signature Scheme
ElGamal requires a large modulus p to be secure
A 1024 bit modulus leads to a 2048 bit signature

Too large for some uses of signatures (smartcards)

Idea: use a subgroup of Zp of size q (q << p)
Let p be a prime s.t. discrete log is hard in Zp*

Let q be a prime that divides p-1
Let α in Zp* be a q-th root of 1 mod p
Let h : {0,1}* → Zq be a secure hash function
P = {0,1}*, A = Zq × Zq

K = {(p,q,α,a,β) | β = αa (mod p)}
For k=(p,q,α,a,β) and 1 ≤ t ≤ q-1:
γ = h(x || αt mod p)
sigk (x,t) = (γ, t+aγ mod q)
verk (x,(γ,δ)) = (h(x || αγβ-γ mod p) =? γ



Variant 2: DSA
Let p be a prime s.t. discrete log is hard in Zp

bitlength of p = 0 (mod 64), 512 ≤ bitlength ≤ 1024
Let q be a 160 bit prime that divides p-1
Let α in Zp* be a q-th root of 1 mod p
Let h : {0,1}* → Zq be a secure hash function
P = {0,1}*, A = Zq* × Zq*

K = {(p,q,α,a,β) | β = αa (mod p)}
For k=(p,q,α,a,β) and 1 ≤ t ≤ q-1:
γ = (αt mod p) mod q
sigk (x,t) = (γ, (SHA1(x)+aγ)t-1 mod q)
verk (x,(γ,δ)) = (αe1βe2 mod p) mod q =? γ

e1 = SHA1(x)δ-1 mod q
e2 = γδ-1 mod q 



Variant 3: Elliptic Curve DSA

Modification of the DSA to use elliptic curves

Instead of choosing α, β, use A and B two points on an 
elliptic curve over Zp

Roughly speaking, instead of: (αt mod p) mod q
use the x coordinate of the point tA, mod q

The rest of the computation is as before



Provably Secure Signature Schemes

The previous examples were (to the best of our 
knowledge) computationally secure signature scheme
Here is a provably secure signature scheme

As long as only one message is signed

Let m be a positive integer
Let f : Y → Z be a one-way function
P = {0,1}m,  A = Ym

Choose yi,j in Y at random for 1≤i≤m, j=0,1
Let zi,j = f(yi,j)
A key = 2m y’s and 2m z’s (y’s private, z’s public)

sigk (x1,...,xm) = (y1,x1,...,ym,xm)
verk ((x1,...,xm),(a1,...,am)) = (f (ai) =? zi,xi) for all i



Argument for Security
Argument for provable security:

Existential forgeries using a key-only attack
Assume that f is a one-way function
Show that if there is an existential forgery using a 
key-only attack, then there is an algorithm that 
finds preimage of random elements in the image of 
f with probability at least 1/2

We need the restriction to one signature only
If the attacker gets two messages signed with the 
same key, then can easily construct signatures for 
other messages
(0,1,1) and (1,0,1) can give signatures for (0,0,1), (1,1,1)



Undeniable Signature Schemes
Introduced by Chaum and van Antwerpen in 1989

A signature cannot be verified without the signer
Prevent signer from disavowing signature

Let p,q primes, p = 2q+1, and discrete log hard in Zp*

Let α in Zp* be an element of order q
G = multiplicative subgroup of Zp* of order q
P = A = G
K = {(p,α,a,β} | β = αa mod p}
For key k=(p,α,a,β) and x in G:

sigk (x) = xa mod p
To verify (x,y): pick e1,e2 at random in Zq

Compute c = ye1βe2

Signer computes d = cinv(a) mod q mod p    (where inv(a) = a-1)
y is a valid signature iff d = xe1αe2 mod p



Disavowal Protocol

Can prove that Alice cannot fool Bob into accepting a fraudulent 
signature (except with very small probability = 1/q)

What if Bob wants to make sure that a claimed forgery is one?
1. Bob chooses e1,e2 at random in Zq*

2.Bob computes c = ye1βe2 mod p; sends it to Alice
3.Alice computes d = cinv(a) mod q mod p; sends it to Bob
4.Bob verifies d ≠ xe1αe2 mod p
5.Bob chooses f1,f2 at random, in Zq*

6.Bob computes C = yf1βf2 mod p; sends it to Alice
7.Alice computes D = Cinv(a) mod q mod p; sends it to Bob
8.Bob verifies D ≠ xf1αf2 mod p
9.Bob concludes y is a forgery iff (dα-e2)f1 = (Dα-f2)e1 mod p



Why Does This Work?

Alice can convince Bob that an invalid signature is a 
forgery

If y ≠ xa mod p and Alice and Bob follow the 
protocol, then the check in last step succeeds

Alice cannot make Bob believe that a valid signature is 
a forgery except with a very small probability

Intuition: since she cannot recover e1,e2,f1,f2, she will 
have difficulty coming up with d and D that fail 
steps 4 and 8, but still pass step 9
See Stinson for details


