
Public Key Cryptography

CSG 252 Fall 2006

Riccardo Pucella

All cryptosystems until now have used a shared key between senders and receivers.

Disadvantage: need to somehow share a key before communicating.

In 1976, Diffie and Hellman proposed a scheme where this was not necessary. The idea: provide
each agent with two keys, one to encrypt, one to decrypt.

• publish the key to encrypt

• keep secret the key to decrypt

Anybody can send Alice an encrypted message, only Alice can read it.

Need that the decryption key not be derivable from the encryption key!

Diffie and Hellman formalized the above as follows.

They said to get a public key cryptosystem, you need a one-way trapdoor function:

• one-way: a function whose inverse is hard to compute

• trapdoor: if you have a specific hint, however, you can invert the function easily.

(To encrypt, apply the one-way function; to decrypt, use the hint to invert function.)

Problem became: can you find one-way trapdoor functions?

2 most likely candidates:

1. Factorization (leads to RSA cryptosystem)

2. Discrete Log problem (leads to ElGamal cryptosystem)

But no one has ever proved that these are one-way trapdoor functions.

In fact, no one knows if a one-way function (let alone trapdoor) actually exists.

All candidates tend to involve number theory or algebra.

1



Number Theory Background

Recall ax ≡ 1 mod n has a solution for x if and only if gcd(a, n) = 1 (a and n are relatively prime).

φ(n) is the number of elements in Zn relatively prime to n.

Define Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

(Note if p is prime, Z∗p = {1, . . . , p− 1}, which is isomorphic to Zp−1.)

Z∗n has some interesting properties with respect to multiplication; Define a1 · a2 to be a1a2 mod n

• (a1 · a2) · a3 = a1 · (a2 · a3)

• a1 · a2 = a2 · a1

• a · 1 = a

• For all a ∈ Z∗n, ∃a−1 ∈ Z∗n such that a · a−1 = 1

Z∗n forms an Abelian group under multiplication.

Theorem: If b ∈ Z∗n, then bφ(n) ≡ 1 mod n.

Theorem: If p is prime and b ∈ Zp, then bp ≡ b mod p.

RSA Cryptosystem

Let n = pq, where p and q are primes.

Let P = C = Zn.

Let K = {(n, p, q, a, b) | ab ≡ 1 mod φ(n)}.

To encrypt with k = (n, p, q, a, b), use ek(x) = xb mod n.

To decrypt with k = (n, p, q, a, b), use dk(y) = ya mod n.

To use: choose p and q large primes, compute n = pq. Can check that φ(n) = (p−1)(q−1). Choose
b such that gcd(b, φ(n)) = 1. (Just choose randomly until you find one.) Let a ≡ b−1 mod φ(n).
Publish n and b, keep p, q, a private.

Check: encryption and decryption are inverses. Let x ∈ Z∗n. (A different argument is needed if

2



x ∈ Zn − Z∗n; see Stinson.) We know ab ≡ 1 mod φ(n). Thus, ab = tφ(n) + 1 for some t ≥ 1.

dk(ek(x)) = (xb)a mod n

≡ xab mod n

≡ xtφ(n)+1 mod n

≡ (xφ(n))tx mod n

≡ 1tx mod n

≡ x mod n

Security of the cryptosystem based on the belief that ek is a one way function.

It is a trapdoor function. What’s the hint? Have factorization n = pq. With a, n, p, q, can recover
b, because b ≡ a−1 mod φ(n).

For this to be secure, need to have n be hard to factor into p and q; thus, need p and q to be large
enough (in practice, larger than 512 bits).

Mmm: how do you find primes of size greater than 512 bits? Best approach: generate randomly
and test primality. Change of finding a prime: 1/ ln 2512 ≈ 1/355. Lots of algorithms for testing
primality. Cf Stinson §5.4.

Attacks against RSA:

1. Factoring — huge literature. Cf Stinson §5.6.

2. Compute φ(n) directly.

No easier than factoring: if you have n and φ(n), it is almost trivial to get a factorization.
You have the equations:

n = pq

φ(n) = (p− 1)(q − 1)

Putting q = n/p, we get φ(n) = (p− 1)(n/p− 1), that is, p2 − (n− φ(n) + 1)p + n = 0. Solve
for p, and get q = n/p.

3. What about discovering a directly?

Can similarly prove that given a and n, can factor n. This is done via a randomized algorithm
that uses a and n to factor n.

ElGamal Cryptosystem

Let G be a multiplicative group, e.g., Z∗n.

3



Order of an element α ∈ G is the smallest n such that αn = 1 in G.

Given α ∈ G of order n, define 〈α〉 = {α0, α1, . . . , αn−1}. 〈α〉 is a subgroup of G.

Definition: given G a multiplicative group, α ∈ G an element of order n, and β ∈ 〈α〉, the discrete
log of β is the unique integer a (0 ≤ a ≤ n− 1) such that

αa = b in G.

Why is this interesting? Computing discrete logs is believed to be hard when G is well chosen.

The ElGamal cryptosystem is based on discrete logs in Z∗p for a prime p.

Theorem: Z∗p = 〈α〉 for some α ∈ Z∗p. Such an α is called a primitive element, it has order p− 1,
since

∣∣Z∗p∣∣ = p− 1.

The ElGamal cryptosystem is defined as follows.

Let p be a prime such that the discrete log is believed hard in Z∗
p (p > 300 digits, p− 1 has at least

one “large” prime factor).

Let α ∈ Z∗p be a primitive element.

P = Z∗p

C = Z∗p × Z∗p.

K = {(p, α, a, β) | β ≡ αa mod p}. Public part of key is p, α, β, private part is a.

To encrypt using K = (p, α, a, β), choose a random (secret) k ∈ Zp−1, and

eK(x, k) = (αk mod p, xβk mod p).

Idea: plaintext x is marked by βk. Send along αk to tell receiver what k to use.

To decrypt using K = (p, α, a, β):

dK(y1, y2) = y2(ya
1)−1 mod p.

Check:

dK(αk mod p, xβk mod p) = xβk(αka)−1 mod p

≡ xβk((αa)k)−1 mod p

≡ xβk(βk)−1 mod p

≡ x mod p.

Given p, α, β, the attacker “needs” to compute a such that αa ≡ β mod p; that is, he needs to find
the discrete log. Stinson §6.2 and §6.3 presents algorithms to attack the discrete log problem.

4



Elliptic Curves

ElGamal cryptosystem can be implemented in any group where the discrete log problem is believed
to be difficult.

In the above, we used Z∗p.

Other groups are popular. One such is elliptic curves modulo a prime p > 3. Let a, b ∈ Zp be such
that 4a3 + 27b2 6= 0. A (nonsingular) elliptic curve modulo p is the set E of all x, y ∈ Zp such that
y2 ≡ x3 + ax + bmodp, together with a special point O called the point at infinity.

We can make E into a group by definition an operation + on points. See Stinson for details.

Lots of research on elliptice curves. They occur in many places. (Fermat’s Last Theorem can be
recast as a problem over elliptic curves, and in fact was finally proved in that way.)

Summary

Public key cryptography solves the key distribution problem.

Trade off: computational cost. It is more expensive to perform number-theoretic manipulations as
required by RSA or ElGamal than to perform bit-twiddling operations like DES or AES.

Obvious solution: use both!

1. Use public key cryptography to exchange a secret (temporary) shared key.

2. Use the shared key and an efficient cryptosystem to exchange data.

5


