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Product Ciphers
A way to combine cryptosystems
For simplicity, assume endomorphic cryptosystems

Where C=P

S1 = (P, P, K1, E1, D1)
S2 = (P, P, K2, E2, D2)

Product cryptosystem S1×S2 is defined to be
(P, P, K1×K2, E, D)

where
         e(k1,k2)(x) = ek2(ek1(x))

d(k1,k2)(y) = dk1(dk2(y))



Product Ciphers

If Pr1 and Pr2 are probability distributions over the 
keys of S1 and S2 (resp.)

Take Pr on S1×S2 to be Pr(<k1,k2>) = Pr1(k1)Pr2(k2)
That is, keys are chosen independently

Some cryptosystems commute, S1×S2 = S2×S1

Not all cryptosystems commute, but some do

Some cryptosystems can be decomposed into S1×S2

Need key probabilities to match too
Affine cipher can be decomposed into S×M=M×S



Product Ciphers

A cryptosystem is idempotent if S×S=S
Again, key probabilities must agree
E.g. shift cipher, substitution cipher, Vigenère 
cipher...

An idempotent cryptosystem does not gain additional 
security by iterating it

But iterating a nonidempotent cryptosystem does!



A Nonidempotent Cryptosystem

Let Ssub the substitution cipher

Let Sperm be the permutation cipher:
Fix m > 1
C = P = (Z26)m
K = { π | π a permutation {1,...,m} → {1,...,m} }
eπ (<x1, ..., xm>) = <xπ(1), ..., xπ(m)>
dπ (<y1, ..., ym>) = <yη(1), ..., yη(m)>, where η=π-1

Theorem: Ssub × Sperm is not idempotent



Iterated Ciphers

A form of product ciphers

Idea: given S a cryptosystem, an iterated cipher is 
S×S×...×S

N = number of iterations (= rounds)
A key is of the form <k1, ..., kN>
Only useful if S is not idempotent

Generally, the key is derived from an initial key K
K is used to derive k1, ..., kN = key schedule
Derivation is via a fixed and known algorithm



Iterated Ciphers
Iterated ciphers are often described using a function 
g : P × K → C

g is the round function
g (w, k) gives the encryption of w using key k

To encrypt x using key schedule <k1, ..., kN>:
w0 ← x
w1 ← g (w0, k1)
w2 ← g (w1, k2)
...
wN ← g (wN-1, kN)
y ← wN



Iterated Ciphers
To decrypt, require g to be invertible when key 
argument is fixed 

There exists g-1 such that g-1 (g (w, k), k) = w
g injective in its first argument

To decrypt cipher y using key schedule <k1, ..., kN>
wN ← y
wN-1 ← g-1 (wN, kN)
wN-2 ← g-1 (wN-1, kN-1)
...
w0 ← g-1 (w1, k1)
x ← w0



Substitution-Permutation Networks
A form of iterated cipher

Foundation for DES and AES

Plaintext/ciphertext: binary vectors of length l×m
(Z2)l×m

Substitution πS : (Z2)l → (Z2)l
Replace l bits by new l bits
Often called an S-box
Creates confusion

Permutation πP : (Z2)lm → (Z2)lm
Reorder lm bits
Creates diffusion



Substitution-Permutation Networks
N rounds
Assume a key schedule for key k = <k1, ..., kN+1>

Don’t care how it is produced
Round keys of length l×m

Write string x of length l×m as x<1> || ... || x<m>
Where x<i> = <x(i-1)l+1, ..., xil> of length l

At each round but the last:
1. Add round key bits to x
2.Perform πS substitution to each x<i>
3.Apply permutation πP to result

Permutation not applied on the last round
Allows the “same” algorithm to be used for decryption



Substitution-Permutation Networks
Algorithmically (with key schedule <k1, ..., kN+1>):

w0 ← x
for r ← 1 to N-1

ur ← wr-1 ⊕ kr

for i ← 1 to m
vr<i> ← πS (ur<i>)

wr ← <vrπP(1), ..., vrπP(l×m)>
uN ← wN-1 ⊕ kN

for i ← 1 to m
vN<i> ← πS (uN<i>)

y ← vN ⊕ kN+1



Example
Stinson, Example 3.1

l = m = N = 4
So plaintexts are 16 bits strings

Fixed πS that substitutes four bits into four bits
Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)

Fixed πP that permutes 16 bits
Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16

Key schedule:
Initial key: 32 bits key K
Round key (round r): 16 bits of K from pos 1, 5, 9, 13



Comments

We could use different S-boxes at each round

Example not very secure
Key space too small: 232

Could improve:
Larger key size
Larger block length
More rounds
Larger S-boxes



Linear Cryptanalysis
Known-plaintext attack

Aim: find some bits of the key

Basic idea: Try to find a linear approximation to the 
action of a cipher

Can you find a (probabilistic) linear relationship between 
some plaintext bits and some bits of the string produced 
in the last round (before the last substitution)?

If yes, then some bits occur with nonuniform 
probability
By looking at a large enough number of plaintexts, 
can determine the most likely key for the last round



Differential Cryptanalysis
Usually a chosen-plaintext attack

Aim: find some bits of the key

Basic idea: try to find out how differences in the inputs 
affect differences in the output

Many variations; usually, difference = ⊕

For a chosen specific difference in the inputs, can you find 
an expected difference for some bits in the string 
produced before the last substitution is applied?

If yes, then some bits occur with nonuniform probability
By looking at a large enough number of pairs of 
plaintexts (x1, x2) with x1 ⊕ x2 = chosen difference, can 

determine most likely key for last round



10 minutes break



DES
“Data Encryption Standard”

Developed by IBM, from Lucifer
Adopted as a standard for “unclassified” data: 1977

Form of iterated cipher called a Feistel cipher
At each round, string to be encrypted is divided equally 
into L and R
Round function g takes Li-1Ri-1 and Ki, and returns a new 
string LiRi given by:       Li = Ri-1

                  Ri = Li-1 ⊕ f (Ri-1, Ki)

Note that f need not be invertible!
To decrypt:   Ri-1 = Li

             Li-1 = Ri ⊕ f (Li, Ki)



DES
DES is a 16 round Feistel cipher 
Block length: 64 bits
Key length: 56 bits

To encrypt plaintext x:
1.  Apply fixed permutation IP to x to get L0R0
2. Do 16 rounds of DES
3. Apply fixed permutation IP-1 to get ciphertext

Initial and final permutations do not affect security

Key schedule:
56 bits key K produces <k1, ..., k16>, 48 bits each
Round keys obtained by permutation of selection of bits 
from key K



DES Round
To describe a round of DES, need to give function f

Takes string A of 32-bit  and a round key J of 48 
bits

Computing f (A, J) :

1.  Expand A to 48 bits via fixed expansion E(A)
2. Compute E(A) ⊕ J = B0B1...B8 (each Bi 6 bits)

3. Use 8 fixed S-boxes S1, ..., S8, each {0,1}6 → {0,1}4
 Get Ci = Si (Bi)

4. Set C = C1C2...C8 of length 48 bits
5. Apply fixed permutation P to C



Comments on DES

Key space is too small
Can build specialized hardware to do automatic 
search
Known-plaintext attack

Differential and linear cryptanalysis are difficult
Need 243 plaintexts for linear cryptanalysis
S-boxes resilient to differential cryptanalysis



AES

“Advanced Encryption Standard”
Developed in Belgium
Adopted in 2001 as a new American standard

Iterated cipher
Block length: 128 bits
3 allowed key lengths, with varying number of rounds

128 bits (N=10)
192 bits (N=12)
256 bits (N=14)



High-Level View of AES
To encrypt plaintext x with key schedule (k0, ..., kN):

1.  Initialize STATE to x and add (⊕) round key k0

2. For first N-1 rounds:
a.  Substitute using S-box
b. Permutation SHIFT-ROWS
c.  Substitution MIX-COLUMNS
d.  Add (⊕) round key ki

3. Substitute using S-Box, SHIFT-ROWS, add kN

4. Ciphertext is resulting STATE

(Next slide describes the terms)



AES Operations
STATE is a 4x4 array of bytes (= 8 bits)

Split 128 bits into 16 bytes
Arrange first 4 bytes into first column, then second, 
then third, then fourth

S-box: apply fixed substitution {0,1}8 → {0,1}8 to each cell

SHIFT-ROWS: shift second row of STATE one cell to the 
left, third row of STATE two cells to the left, and fourth 
row of STATE four cells to the left

MIX-COLUMNS: multiply fixed matrix with each column



AES Key Schedule
For N=10, 128 bits key

16 bytes: k[0], ..., k[15]
Algorithm is word-oriented (word = 4 bytes = 32 bits)
A round key is 128 bits ( = 4 words)
Key schedule produces 44 words ( = 11 round keys)

w[0], w[1], ..., w[43]

w[0] = <k[0], ..., k[3]>
w[1] = <k[4], ..., k[7]>
w[2] = <k[8], ..., k[11]>
w[3] = <k[12], ..., k[15]>
w[i] = w[i-4] ⊕ w[i-1]

Except at i multiples of 4 (more complex; see book)



Modes of Operation
How to use block ciphers when plaintext is more than 
block length

ECB (Electronic Codebook Mode):

x1 x2

y2

ek

y1

ek



Modes of Operation
CFB (Cipher Feedback Mode):

x1 x2

y2

ek

y1

ek

y0=IV

+ +



Modes of Operation
CBC (Cipher Block Chaining):

x1 x2

y2

ek

y1

ek

y0=IV

+ +



Modes of Operation
OFB (Output Feedback Mode)

x1 x2

y2

ek

y1

ekz0=IV + +z1 z2


