Block Ciphers

CSG 252 Fall 2006

Riccardo Pucella

Product Ciphers

A way to combine cryptosystems
 For simplicity, assume endomorphic cryptosystems
 Where C=P

S₁ = (P, P, K₁, E₁, D₁)
S₂ = (P, P, K₂, E₂, D₂)

Product cryptosystem S₁×S₂ is defined to be (P, P, K₁×K₂, E, D)

where

 $e_{(k_1,k_2)}(x) = e_{k_2}(e_{k_1}(x))$ $d_{(k_1,k_2)}(y) = d_{k_1}(d_{k_2}(y))$

Product Ciphers

If Pr1 and Pr2 are probability distributions over the keys of S1 and S2 (resp.)
Take Pr on S1×S2 to be Pr(<k1,k2>) = Pr1(k1)Pr2(k2)
That is, keys are chosen independently

Some cryptosystems commute, S₁×S₂ = S₂×S₁
 Not all cryptosystems commute, but some do

Some cryptosystems can be decomposed into S₁×S₂
 Need key probabilities to match too
 Affine cipher can be decomposed into S×M=M×S

Product Ciphers

A cryptosystem is idempotent if S×S=S
 Again, key probabilities must agree
 E.g. shift cipher, substitution cipher, Vigenère cipher...

An idempotent cryptosystem does not gain additional security by iterating it

But iterating a nonidempotent cryptosystem does!

A Nonidempotent Cryptosystem

Let S_{sub} the substitution cipher

Solution Let S_{perm} be the permutation cipher:
Solution Fix m > 1
C = P = (Z₂₆)^m
K = { π | π a permutation {1,...,m} → {1,...,m} }
C = n (<x₁, ..., x_m>) = <x_{π(1)}, ..., x_{π(m)}>
d_π (<y₁, ..., y_m>) = <y_η(1), ..., y_η(m)>, where η=π⁻¹

 \odot Theorem: $S_{sub} \times S_{perm}$ is not idempotent

Iterated Ciphers

A form of product ciphers

Idea: given S a cryptosystem, an iterated cipher is S×S×...×S
N = number of iterations (= rounds)
A key is of the form <k₁, ..., k_N>
Only useful if S is not idempotent

Generally, the key is derived from an initial key K
 K is used to derive k₁, ..., k_N = key schedule
 Derivation is via a fixed and known algorithm

Iterated Ciphers

Iterated ciphers are often described using a function g: P × K → C
g is the round function
g (w, k) gives the encryption of w using key k

To encrypt x using key schedule <k₁, ..., k_N>: $w_0 \leftarrow x$ $w_1 \leftarrow g(w_0, k_1)$ $w_2 \leftarrow g(w_1, k_2)$... $w_N \leftarrow g(w_{N-1}, k_N)$ $y \leftarrow w_N$

Iterated Ciphers

To decrypt, require g to be invertible when key argument is fixed
 There exists g⁻¹ such that g⁻¹ (g (w, k), k) = w
 g injective in its first argument

To decrypt cipher y using key schedule <k₁, ..., k_N> w_N ← y w_{N-1} ← g⁻¹ (w_N, k_N) w_{N-2} ← g⁻¹ (w_{N-1}, k_{N-1}) ... w₀ ← g⁻¹ (w₁, k₁) x ← w₀

Substitution-Permutation Networks

A form of iterated cipher
Foundation for DES and AES

Plaintext/ciphertext: binary vectors of length l×m
 (Z₂)^{l×m}

Substitution π_s : (Z₂)^l → (Z₂)^l
 Replace l bits by new l bits
 Often called an S-box
 Creates confusion

Ø Permutation π_P : (Z₂)^{lm} → (Z₂)^{lm}
 Ø Reorder lm bits
 Ø Creates diffusion

Substitution-Permutation Networks

N rounds

Assume a key schedule for key k = <k₁, ..., k_{N+1}>
 Don't care how it is produced
 Round keys of length l×m

Write string x of length l×m as x_{<1>} || ... || x_{<m>}
 Where x_{<i>} = <x_{(i-1)l+1}, ..., x_{il}> of length l

At each round but the last:

 Add round key bits to x
 Perform π_s substitution to each x_{<i>}
 Apply permutation π_P to result

Permutation not applied on the last round
 Allows the "same" algorithm to be used for decryption

Substitution-Permutation Networks

Algorithmically (with key schedule $\langle k_1, ..., k_{N+1} \rangle$):

 $w_0 \leftarrow x$ for $r \leftarrow 1$ to N-1 $u^r \leftarrow w_{r-1} \oplus k_r$ for $i \leftarrow 1$ to m $v_{i}^{r} \leftarrow \pi_{s} (u_{i}^{r})$ $W_r \leftarrow \langle V^r_{\pi P(1)}, ..., V^r_{\pi P(l \times m)} \rangle$ $u^{N} \leftarrow w_{N-1} \oplus k_{N}$ for $i \leftarrow 1$ to m $v_{i}^{N} \leftarrow \pi_{s} (u_{i}^{N})$ $\mathbf{v} \leftarrow \mathbf{v}^{\mathsf{N}} \oplus \mathbf{k}_{\mathsf{N+1}}$

Example

Stinson, Example 3.1

So plaintexts are 16 bits strings

Fixed π_S that substitutes four bits into four bits
 Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)
 Fixed π_P that permutes 16 bits
 Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16

Key schedule:
Initial key: 32 bits key K
Round key (round r): 16 bits of K from pos 1, 5, 9, 13

Comments

We could use different S-boxes at each round

Example not very secure
 Key space too small: 2³²

Could improve:
Larger key size
Larger block length
More rounds
Larger S-boxes

Linear Cryptanalysis

Known-plaintext attack
Aim: find some bits of the key

Basic idea: Try to find a linear approximation to the action of a cipher

Can you find a (probabilistic) linear relationship between some plaintext bits and some bits of the string produced in the last round (before the last substitution)?

- If yes, then some bits occur with nonuniform probability
- By looking at a large enough number of plaintexts, can determine the most likely key for the last round

Differential Cryptanalysis

Usually a chosen-plaintext attack
Aim: find some bits of the key

Basic idea: try to find out how differences in the inputs affect differences in the output
 Many variations; usually, difference = ①

For a chosen specific difference in the inputs, can you find an expected difference for some bits in the string produced before the last substitution is applied?
If yes, then some bits occur with nonuniform probability
By looking at a large enough number of pairs of plaintexts (x1, x2) with x1

x2 = chosen difference, can determine most likely key for last round

10 minutes break

DES

Data Encryption Standard"
 Developed by IBM, from Lucifer
 Adopted as a standard for "unclassified" data: 1977

Form of iterated cipher called a Feistel cipher

- At each round, string to be encrypted is divided equally into L and R
- Sound function g takes $L_{i-1}R_{i-1}$ and K_i , and returns a new string L_iR_i given by: $L_i = R_{i-1}$ $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

 Note that f need not be invertible!
 To decrypt: R_{i-1} = L_i L_{i-1} = R_i
 f (L_i, K_i)

DES

DES is a 16 round Feistel cipher
Block length: 64 bits
Key length: 56 bits

To encrypt plaintext x:
 1. Apply fixed permutation IP to x to get L₀R₀
 2. Do 16 rounds of DES
 3. Apply fixed permutation IP⁻¹ to get ciphertext

Initial and final permutations do not affect security

Ø Key schedule:

Round keys obtained by permutation of selection of bits from key K

DES Round

To describe a round of DES, need to give function f
 Takes string A of 32-bit and a round key J of 48 bits

\odot Computing f (A, J) :

1. Expand A to 48 bits via fixed expansion E(A) 2. Compute E(A) \oplus J = B₀B₁...B₈ (each B_i 6 bits)

- 3. Use 8 fixed S-boxes S₁, ..., S₈, each $\{0,1\}^6 \rightarrow \{0,1\}^4$ Get C_i = S_i (B_i)
- 4. Set $C = C_1C_2...C_8$ of length 48 bits
- 5. Apply fixed permutation P to C

Comments on DES

Key space is too small
 Can build specialized hardware to do automatic search

Known-plaintext attack

Differential and linear cryptanalysis are difficult
 Need 2⁴³ plaintexts for linear cryptanalysis
 S-boxes resilient to differential cryptanalysis

Advanced Encryption Standard" Developed in Belgium Adopted in 2001 as a new American standard

Iterated cipher
Block length: 128 bits
3 allowed key lengths, with varying number of rounds
128 bits (N=10)
192 bits (N=12)
256 bits (N=14)

High-Level View of AES

To encrypt plaintext x with key schedule $(k_0, ..., k_N)$:

- 1. Initialize STATE to x and add (\oplus) round key k_0
- 2. For first N-1 rounds:
 - a. Substitute using S-box
 - b. Permutation SHIFT-ROWS
 - c. Substitution MIX-COLUMNS
 - d. Add (\oplus) round key k_i
- 3. Substitute using S-Box, SHIFT-ROWS, add k_N 4. Ciphertext is resulting STATE

(Next slide describes the terms)

AES Operations

STATE is a 4x4 array of bytes (= 8 bits)
 Split 128 bits into 16 bytes
 Arrange first 4 bytes into first column, then second, then third, then fourth

S-box: apply fixed substitution $\{0,1\}^8 \rightarrow \{0,1\}^8$ to each cell

SHIFT-ROWS: shift second row of STATE one cell to the left, third row of STATE two cells to the left, and fourth row of STATE four cells to the left

MIX-COLUMNS: multiply fixed matrix with each column

AES Key Schedule

For N=10, 128 bits key
16 bytes: k[0], ..., k[15]
Algorithm is word-oriented (word = 4 bytes = 32 bits)
A round key is 128 bits (= 4 words)
Key schedule produces 44 words (= 11 round keys)
w[0], w[1], ..., w[43]

w[0] = <k[0], ..., k[3]>
w[1] = <k[4], ..., k[7]>
w[2] = <k[8], ..., k[11]>
w[3] = <k[12], ..., k[15]>
w[i] = w[i-4]
 w[i-1]

Except at i multiples of 4 (more complex; see book)

How to use block ciphers when plaintext is more than block length

Second ECB (Electronic Codebook Mode):

GFB (Cipher Feedback Mode):

OBC (Cipher Block Chaining):
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

OFB (Output Feedback Mode)

