
Xiaohai Yu

Dec. 11, 2009

Background
 In recent years, the speed and capacity gap between

processor and memory continues to widen

 Methods for efficient usage of space resource are
becoming increasingly important

 Rather than pursuing extreme time efficiency as the
previous decade

Multiple Virtual Machines
 Case: running multiple virtual machine instances on

one single workstation

 Want: share memory across these VM instances to
improve the memory usage efficiency.

 Observe: many pages are identical across the VMs,
such as system kernel, device drivers, TCP/IP stack and
etc.

VMware ESX Server
 VMware ESX Server allocates one single memory space

for each instance.

 Each memory page in such spaces has its own PPN
(Physical Page Number).

 VMware ESX Server maps these pages into the
memory of the host machine, which maps the PPN to
MPN(Machine Page Number).

Content-based page sharing

Key problem: Hash function
 Key problem: to construct a hash function mapping

the length L long identifier to hash value of O(log L)
length.

 Modern memory pages are usually 4K to 512K bits,
which is a very long input for the hash function.

 Moreover we want the description length of this hash
function should also be O(log L).

Hash Basics
 A universe U with some subset N∈U. We want to store

the subset N using as little space as possible

 This function h: U -> {1,2,……M} is defined as the hash
function.

 Definition: A collision occurs when h(x) = h(y) for two
distinct keys x, y.

Hash function
 Claim: Let F be a hash function, that maps n elements

to table [m], with proper m, then the expected number
of collisions will be at most ½

 Proof:

Universal Hashing
 A universal hash function is one in which the

probability of a collision between any two keys is
provably 1/M.

 Definition: A randomized algorithm H for
constructing hash function h: U -> {1,2,……M} is
universal if for all x<>y in U, we have

Recall: Finite Fields
 A finite field F is a set of objects with operations + and

* that behave as you would expect as real space.

 Example: In a field F={0,1,2……12} with operation +, *
and mod 13:

 Observe: For every prime P the above field with mod P
is a finite field.

Polynomial over Finite Fields
 A polynomial over finite fields is an expression of the

form

 For some non-negative integer n and where the
coefficients are drawn from some designated set S.

 S is called the coefficient set. When a≠0, we have a
polynomial of degree n.

Polynomial arithmetic
 We can add two polynomials:

 We can multiply two polynomials:

 Theorem: Non-zero polynomial P(x) over a finite field
F, with degree d, has at most d roots.

Hash function for long identifiers
 Find a prime P slightly larger than L^2

 Using modular P to define a hash function like
following:

 Where ID[i] denotes the i-th bit of Iong identifier ID,
and x is picked at random in [1..P].

 Represent the identifier as a polynomial over a finite
field with modular P.

Proof: Universal Hashing
 Claim: For any two distinct IDs, the probability, over

the choice of the hash function that their hashes
coincide is at most 1/L.

 Approximately consider that this hash function
hashes L-bit ID to a number in [1..L^2] ,which is of
length 2*log(L)

Proof (cont’)
 For any two different ID and ID’, both of length L, will

show that the probability that = can be induced to the
probability taken over random x on . The equation ∗:

 Assume ID and ID’ have s bits common from the
beginning, it will be a polynomial mod P of degree L-1-
s.

Proof (cont’)
 So will be the number of x’s roots in the

equation ∗ over the size of original ID set.

 (Note: P is a prime and we showed polynomial over a
finite field with operation modular P has most degree
d roots)

 Thus we prove the collision is at most 1/L.

Perfect Hashing
 The above construction is the first step of my hash

function construction. What we want next is Perfect
Hashing, with zero collision.

 Idea: two level hashing. For all the buckets with
collision, we generate another hash function which
will give no collisions for the items in such buckets.

 Still bound the total space of the hash function.

Future Work

Thank You!

