Public-Key Cryptosystems

CS 6750 Lecture 4

October 1, 2009

Riccardo Pucella
Problems with Shared Keys

All cryptosystems we have looked at until now have required a shared key between senders and receivers.

Problems:
- How do you establish the keys and distribute them?
- In a network of N people, need $N^2 - N$ keys total.
- Any new person joining requires creating and distributing N new keys.

Solutions:
- Figure out how to distribute keys easily.
- Find an altogether different approach.
Public-Key Cryptography

Diffie and Hellman (1976) proposed a scheme where keys need not be shared

- **Idea**: provide every agent with two different keys
- One key is used to encrypt
- One key is used to decrypt
- The key to encrypt is made public
- The key to decrypt is kept private (secret)

Anyone can send an encrypted message to Alice by using her public encryption key

Only Alice can read the encrypted message because she has the private decryption key
One-Way Trapdoor Functions

For this to work, need a way to find encryption and decryption keys such that knowing the encryption key does not let you derive the decryption key.

Diffie and Hellman’s idea: one-way trapdoor functions

- **One-way**: a function whose inverse is hard to compute
- **Trapdoor**: but if you have a specific hint, you can invert the function easily

To encrypt, apply the one-way function
To decrypt, use the hint to invert the function

Challenge: are there any one-way trapdoor functions?
Candidates

Two most likely one-way trap door function candidates:

- Factorization ➞ RSA cryptosystem
- Discrete logarithms ➞ ElGamal cryptosystem

No one has ever proved that these are one-way trapdoor functions.
It’s proving that they are one-way that’s a problem.

In fact, no one knows for sure that there exists a one-way function.

All known candidates involve number theory or algebra.
Recall: $ax \equiv 1 \mod n$ has a solution for x iff $\gcd(a,n)=1$

$\varphi(n) = \# \text{ of integers } k<n \text{ such that } \gcd(n,k)=1$

Define $\mathbb{Z}_n^* = \{a : \gcd(a,n)=1\}$

For prime p, $\mathbb{Z}_p^* = \{1,...,p-1\} = \mathbb{Z}_{p-1}$

If we define $ab = ab \mod n$, then \mathbb{Z}_n^* is an Abelian group under multiplication

i.e., behaves like integers under addition

Theorems:

If $b \in \mathbb{Z}_n^*$ then $b^{\varphi(n)} \equiv 1 \mod n$

If p is prime and $b \in \mathbb{Z}_p^*$ then $b^p \equiv b \mod p$
RSA Cryptosystem

Rivest, Shamir and Adleman (1978)
Some classified independent work in the UK in 1973

Take $n = pq$ (where p and q are primes)
$P = C = Z_n$
$K = \{(n,p,q,a,b) : ab = 1 \mod \varphi(n)\}$
For $k = (n,p,q,a,b)$
- $e_k(x) = x^b \pmod{n}$ - need only n,b
- $d_k(y) = y^a \pmod{n}$

Choose p,q large, compute $n=pq$. $\varphi(n) = (p-1)(q-1)$
Choose b with $\gcd(b,\varphi(n)) = 1$
Let $a = b^{-1} \pmod{\varphi(n)}$, publish n,b and keep p,q,a private
Sanity Check

Need to check that encryption and decryption are inverses

Let $x \in \mathbb{Z}_n^*$ (slightly different argument if $x \in \mathbb{Z}_n - \mathbb{Z}_n^*$)

Exercise: derive that $d_k(e_k(x)) = x$

Hint: Since $ab \equiv 1 \mod \varphi(n)$, then $ab = t\varphi(n)+1$ for some $t \geq 1$
Security of RSA

- Security of RSA based on the belief that e_k is a one-way function
 - Strong evidence, but we don't know for sure
 - It is a trapdoor function. What's the hint? The factorization $n=pq$. With a,n,p,q, can recover b by taking $b = a^{-1} \mod \varphi(n)$

- Need n to be hard to factor into p,q -- p and q in practice need to be large enough (512 bits and more)

- How do you find primes of this size?
 - Best: generate numbers randomly, and test primality
 - Chance of finding a prime $\sim 1/355$
 - Primality testing can be done fast (Stinson §5.4)
Attacks Against RSA

- Factoring attacks
 - HUGE literature -- see Stinson §5.6

- Compute $\phi(n)$ directly from n
 - No easier than factoring
 - If you have n and $\phi(n)$, it is almost trivial to get factorization by solving:
 \[
 n = pq \quad \rightarrow \quad q = n/p
 \]
 \[
 \phi(n) = (p-1)(q-1) \quad \rightarrow \quad \phi(n) = (p-1)(n/p-1)
 \]

- Find a directly?
 - Can also show that given a and n you can find the factorization p,q
Discrete Logarithms

Let G be any multiplicative group (e.g., \mathbb{Z}_n^*)

- The order of an element $\alpha \in G$ is the smallest n with $\alpha^n = 1$ in G
- Given $\alpha \in G$ of order n, $\langle \alpha \rangle = \{\alpha^0, \alpha^1, \ldots, \alpha^{n-1}\}$
- $\langle \alpha \rangle$ is a subgroup of G
- α is a primitive element of G if $\langle \alpha \rangle = G$

- Given G a multiplicative group, $\alpha \in G$ of order n, $\beta \in \langle \alpha \rangle$:
 - the discrete logarithm of β is the unique integer $d < n$ with $\alpha^d = \beta$ in G
Discrete Logs in \mathbb{Z}_p^*

- Why are discrete logs interesting?
 Computing discrete logs is believed to be hard for some multiplicative groups

- Theorem:
 $\mathbb{Z}_n^* = \langle \alpha \rangle$ for some $\alpha \in \mathbb{Z}_n^*$

- The ElGamal cryptosystem is based on discrete logs in \mathbb{Z}_p^* for some prime p
 - Believed to be hard for \mathbb{Z}_p^* with $p > 300$ digits and $p-1$ with at least one large prime factor
ElGamal Cryptosystem

Let p be a prime such that discrete logs in \mathbb{Z}_p^* are believed hard to compute

Let α be a primitive element of \mathbb{Z}_p^*

$P = \mathbb{Z}_p^*$

$C = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$

$K = \{(p,\alpha,d,\beta) : \beta = \alpha^d \pmod{p}\}$

For $k=(p,\alpha,d,\beta)$

$e_k(x,k) = (\alpha^k \pmod{p}, x\beta^k \pmod{p})$ - need only p,α,β

for some $k\in\mathbb{Z}_p^*$ chosen at random

$d_k(y_1,y_2) = y_2(y_1^d)^{-1} \pmod{p}$

Chose α and d, compute $\beta = \alpha^d \pmod{p}$

Publish p,α,β, keep d private
ElGamal Cryptosystem

Let p be a prime such that discrete logs in \mathbb{Z}_p^* are believed hard to compute.

Let α be a primitive element of \mathbb{Z}_p^*.

$P = \mathbb{Z}_p^*$

$C = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$

$K = \{(p, \alpha, d, \beta) : \beta = \alpha^d \pmod{p}\}$

For $k = (p, \alpha, d, \beta)$

$e_k(x, k) = (\alpha^k \pmod{p}, x\beta^k \pmod{p})$ - need only p, α, β for some $k \in \mathbb{Z}_p^*$ chosen at random.

$d_k(y_1, y_2) = y_2(y_1^d)^{-1}$

Chose α and d, compute $\beta = \alpha^d \pmod{p}$.

Publish p, α, β, keep d private.

Hide x with β^k.

Pass k along as α^k.
Sanity Check

Need to check that encryption and decryption are inverses

Exercise: derive that $d_k(e_k(x,k)) = x$, for any k
 E.g., $d_k(\alpha^k \pmod{p}, x\beta^k \pmod{p}) = x$

Given p, α, β, the attacker “needs” to compute d such that $\alpha^d \equiv \beta \pmod{p}$

Stinson §6.2 and §6.3 present some of the best known algorithms to find discrete logs
Elliptic Curves

- The ElGamal cryptosystem can be implemented in any group where the discrete log problem is (believed to be) difficult.
- Historically, \mathbb{Z}_p^* has been used.

Other groups have become popular.

Elliptic curves modulo a prime $p>3$:
- Let $a, b \in \mathbb{Z}_p$ such that $4a^3 + 27b^2 \neq 0$.
- A nonsingular elliptic curve modulo p is the set of all E of all $x, y \in \mathbb{Z}_p$ such that $y^2 \equiv x^3 + ax + b \mod p$ (plus a special point O -- the point at infinity).
- E is a group by defining an operation \dagger on points.
Some Conclusions

- Public-key cryptography solves the key distribution problem by eliminating it
 - Public keys are published in some repository
 - Private keys are kept private

- Comes at a cost: public-key cryptography is much slower than shared-key cryptography (such as DES)
 - Not ideal for long messages

- Hybrid solution (PGP-style):
 - Alice wants to communicate with Bob
 - Alice creates a shared key, sends it to Bob via a public-key cryptosystem
 - Alice sends message to Bob via the shared key