Public-Key Cryptosystems

CS 6750 Lecture 4
October 1, 2009

Riccardo Pucella



Problems with Shared Keys

@ All cryptosystems we have looked at until now have
required a shared key between senders and receivers

@ Problems:
@ How do you establish the keys and distribute them?
@ In a network of N people, need N2-N keys total
@ Any new person joining requires creating and
distributing N new Keys.

@ Solutions:
@ Figure out how to distribute keys easily
@ Find an altogether different approach



Public-Key Cryptography

@ Diffie and Hellman (1976) proposed a scheme where
kKeys need not be shared
@ Idea: provide every agent with two different keys
@ One key is used to encrypt
@ One key is used to decrypt
@ The key fo encrypt is made public
@ The key to decrypt is kept private (secret)

@ Anyone can send an encrypted message to Alice by
using her public encryption key

@ Only Alice can read the encrypted message because
she has the private decryption key



One-Way Trapdoor Functions

@ For this to work, need a way to find encryption and
decryption keys such that knowing the encryption key
does not let you derive the decryption key

@ Diffie and Hellmans idea: one-way trapdoor functions
® One-way: a function whose inverse is hard fo compute
@ Trapdoor: but if you have a specific hint, you can
invert the function easily

@ To encrypt, apply the one-way function
@ To decrypt, use the hint to invert the function

@ Challenge: are there any one-way frapdoor functions?



Candidates

@ Two most likely one-way trap door function candidates:
@ Factorization — RSA cryptosystem
@ Discrete logarithms — ElGamal cryptosystem

@ No one has ever proved that these are one-way
trapdoor functions

@ Its proving that they are one-way thats a problem

@ In fact no one knows for sure that there exists a
one-way function

@ All known candidates involve number theory or algebra



Number Theory on a Slide

@ Recall: ax=1 mod n has a solution for x iff gcd(a,n)=1

@ @(n) =

of integers k<n such that gcd(n,k)=1

@ Define Z, = {a : gcd(a,n)=1}
@ For prime p, Zp ={1,...,p-1} = Zp

@ If we define ab = ab (mod n), then Z, is an Abelian
group under multiplication
@ i.e., behaves like integers under addition

@ Theorems:

o If beZ, then b®M"=1 mod n
@ If p is prime and beZ, then bP=b mod p



RSA Cryptosystem

@ Rivest, Shamir and Adleman (1978)
@ Some classified independent work in the UK in 1973

@ Take n = pq (where p and q are primes)
P =CEZ,
@ K = {(n,p,q,a,b) : ab=1 mod @(n)}
@ For k=(n,p,q,a,b)
@ ex(x) = x° (mod n) - need only n,b
@ dk(y) = y* (mod n)

@ Choose p,q large, compute n=pq. ®(n)=(p-1)(g-1)
Choose b with gcd(b,(n))=1
Let a=b! (mod (n)), publish n,b and keep p,q,a private



Sanity Check

@ Need to check that encryption and decryption are
inverses

o Let xeZ, (slightly different argument if xeZ,-Z,")
® Exercise: derive that dk(ek(x)) = x

@ Hint: Since ab=1 mod ®(n), then ab = t@(n)+1 for some
121



Security of RSA

@ Security of RSA based on the belief that ek is a one-
way function
@ Strong evidence, but we dont know for sure
@ It is a trapdoor function. Whats the hint? The
factorization n=pq. With a,n,p,q, can recover b by
taking b = a™! (mod ©(n))

® Need n to be hard to factor into pq -- p and q in
practice need to be large enough (512 bits and more)

® How do you find primes of this size?
@ Best: generate numbers randomly, and test primality
@ Chance of finding a prime ~ 1/355

@ Primality testing can be done fast (Stinson §5.4)



Attacks Against RSA

@ Factoring attacks
® HUGE literature -- see Stinson §5.6

@ Compute @(n) directly from n
@ No easier than factoring
@ If you have n and @(n), it is almost trivial to get
factorization by solving:
n=pq — g=n/p
@(n) = (p-1)(q-1) — @(n)=(p-1)(n/p-1)

@ Find a directly?
@ Can also show that given a and n you can find the
factorization p,q



Discrete Logarithms

@ Let G be any multiplicative group (e.g., Zn')
@ The order of an element xeG is the smallest n with
x"=1inG
@ Given oeG of order n, <c>=§a%,atl,...,x"1}
@ <> is a subgroup of G
@ X is a primitive element of G if <> = G

@ Given G a multiplicative group, ®eG of order n, Be<o>:

the discrete logarithm of B is the unique integer d<n
with od =B in G



Discrete Logs in Z,

® Why are discretfe logs interesting?
Computing discrete logs is believed to be hard for
some multiplicative groups

® Theorem:
Z. = <0> for some oezZ,

@ The ElGamal cryptosystem is based on discrete logs in
Z, for some prime p
@ Believed to be hard for Z,” with p > 300 digits and
p-1 with at least one large prime factor



ElGamal Cryptosystem

@ Let p be a prime such that discrete logs in Z, are
believed hard to compute

@ Let & be a primitive element of Z,

P = Zp*

8C=2Z, XxZ

o K = {(p,&x,d,B) : B = (mod p);

@ For k=(p,o,d,B)
@ ex(x,k) = (o (mod p), xB* (mod p)) - need only p,&,B

for some keZ, chosen at random

o dk(ynya) = ya(y1?)* (mod p)

@ Chose o and d, compute B=x¢ (mod p)
Publish p,c,B, keep d private



ElGamal Cryptosystem

@ Let p be a prime such that discrete logs in Z, are
believed hard to compute

@ Let & be a primitive element of Z,

P = Zp*

8C=2Z, XxZ , ,

o K = {(p,x,d,B) : B = & (mod p\ Hide x with B

@ For k=(p,x.d,B)
@ ex(x,k) = (o* (mod p) xRk (mod p)) - need only p,&,B

for some kg

o di(y1,y2) = ya(yi9)!

pass k along as o
@ Chose & and d, comp¥

Publish p,c,B, keep d privi



Sanity Check

@ Need to check that encryption and decryption are
Inverses

@ Exercise: derive that dk(ek(x,k)) = x, for any k
@ E.g., dk(a* (mod p), xB* (mod p)) = x

@ Given p,&,B, the attacker "needs” to compute d such
that a?=p (mod p)
@ Stinson §6.2 and §6.3 present some of the best
known algorithms to find discrete logs



Elliptic Curves

@ The ElGamal cryptosystem can be implemented in any

group where the discrete log problem is (believed to
be) difficult
@ Historically, Z, has been used

@ Other groups have become popular

@ Elliptic curves modulo a prime p>3:
@ Let a,beZ, such that 4a3+27b%#0
@ A nonsingular elliptic curve modulo p is the set of
all E of all x,yeZ, such that y? = x>+ax+b mod p
(plus a special point O -- the point at infinity)
@ E is a group by defining an operation + on points



Some Conclusions

@ Public-key cryptography solves the key distribution
problem by eliminating it
@ Public keys are published in some repository
@ Private keys are kept private

@ Comes at a cost: public-key cryptography is much slower
than shared-key cryptography (such as DES)
@ Not ideal for long messages

@ Hybrid solution (PGP-style):
@ Alice wants to communicate with Bob
@ Alice creates a shared key, sends it to Bob via a
public-key cryptosystem
@ Alice sends message to Bob via the shared key



