
Object-Oriented Design Lecture 17
CS 3500 Spring 2010 (Pucella) Friday, Mar 19, 2010

17 Multiple Inheritance and ADT Extensions

We looked last time at inheritance and delegation as two ways to reuse implementation code.
We also finished with an implementation of measurable lists, that uses delegation to extend
a standard implementation for lists. We will revisit measurable lists here. First, we will rely
on the following implementation of lists, obtained using the Specification design pattern.� �
public abstract class List<A> {

public static List empty () {
return new EmptyList();

}
public static List cons (B i, List l) {
return new ConsList(i,l);

}

public abstract boolean isEmpty ();
public abstract A first ();
public abstract List<A> rest ();

}

class EmptyList<A> extends List<A> {

public EmptyList () {}

public boolean isEmpty () {
return true;

}
public A first () {
throw new Error ("first() on an empty list");

}
public List<A> rest () {
throw new Error ("rest() on an empty list");

}
}

1

class ConsList<A> extends List<A> {
private A first;
private List<A> rest;

public ConsList (A f, List<A> r) {
first = f;
rest = r;

}

public boolean isEmpty () {
return false;

}
public A first () {

return first;
}
public List<A> rest () {
return rest;

}
}� �
17.1 Multiple Inheritance

Recall measurable lists, with the following signature and specification for the MList<A> ADT:

CREATORS: static MList empty ()

static MList cons (B, MList)

OPERATIONS: boolean isEmpty ()

A first ()

MList<A> rest ()

int length ()

SPECIFICATIONS:

empty().isEmpty() = true

cons(i,s).isEmpty() = false

cons(i,s).first() = i

cons(i,s).rest() = s

empty().length() = 0

cons(i,s).length() = 1 + s.length()

2

As we said last time, there is no problem whatsoever applying the Specification Design
Pattern to the measurable list ADT. Last time, we saw that we could extend the list ADT
to obtain an implementation of the measurable list ADT.

That extension was rather ad hoc, however. In particular, it doesn’t follow the Specification
design pattern. Suppose we wanted to implement the measurable list ADT following the
Specification design pattern (so that we have a base class MList<A> and two concrete sub-
classes EmptyMList<A> and ConsMList<A>) and still reuse code from the implementation of
lists.

What would the structure of the classes looks like though? It makes sense to want to have
MList be a subclass of List, because after all, any operation that works on lists should work
perfectly fine on MLists. But there is more. Much of the code in EmptyMList duplicates
code in EmptyList, and similarly for ConsMList duplicating code in ConsList. Is there a
way we can inherit from EmptyList in EmptyMList and from ConsList in ConsMList? Let’s
draw a picture — the resulting subclassing hierarchy (because inheritance in Java can only
be done by also subclassing) would look like this:

List

/ | \

/ | \

EmptyList | ConsList

| | |

| MList |

| / \ |

| / \ |

EmptyMList ConsMList

This hierarchy is not a tree, but a dag — a directed acyclic graph. We saw that Java doesn’t
like non-tree hierarchies, and that it forces us to use interfaces.

Let’s see why. Non-tree hierarchies are not a problem for subclassing, we saw that. The
problem is that Java conflates subclassing and inheritance. Subclassing allows you to reuse
code on the client side, while inheritance allows you to reuse code on the implementation
side. In other words, inheritance is an implementation technique (generally for subclassing)
that lets us reuse code. In Java, the way to define subclasses is to extend from a superclass
using the extends keyword, and this extension not only defines a subclass, but also allows
inheritance from the superclass. There is no nice way to just say “subclass” without allowing
the possibility of inheriting in Java.

Why is this the problem? Because multiple inheritance—inheriting from multiple super-
classes, is ambiguous. Consider the following classes A, B, C, D, defined in some hypothetical
extension of Java with multiple inheritance. (I’ve elided the constructors of the classes,
because I really care about the foo method anyways.)

3

class A {

public int foo () { return 1; }

}

class B extends A { }

class C extends A {

public int foo () { return 2; }

}

class D extends B,C { }

Class B inherits method foo from A, while C overwrites A’s foo method with its own. Now,
suppose we have d an object of class D, and suppose that we invoke d.foo(). What do we get
as a result. Because D does not define foo, we must look for it in its superclasses from which
it inherits. But it inherits one foo method returning 1 from B, and one foo method returning
2 from C. Which one do we pick? There must be a way to choose one or the other. This
is called the diamond problem (because the hierachy above looks like a diamond) Different
languages that support multiple inheritance have made different choices. The most natural
is to simply look in the classes in the order in which they occur in the extends declaration.
But that’s a bit fragile, since a small change (flipping the order of superclasses) can make a
big difference, and the small change can be hard to track down. There is also the problem
of whether we look up in the hierarchy before looking right in the hierarchy. (We did not
find foo in B; do we look for it in A before looking for it in C, or the other way around?) The
point is, it becomes complicated very fast.

Java and many other languages take a different approach: forbid multiple inheritance alto-
gether, so that you cannot inherit from more than one superclass. Then there is no problem
with determining where to look for methods if they are not in the current class: look in the
(unique) superclass. This is why the extends keyword in Java, which expresses inheritance,
can only be used to subclass a single superclass. If you want to subclass other classes as
well, those have to be interfaces. Interfaces are not a problem for inheritance, because they
do not allow inheritance: interface contain no code, so there is no code to inherit. Therefore,
when you have a non-tree hierarchy, you need to first identify which subclassing relations
between the class you want to rely on inheritance. This choice will force other classes to be
interfaces.

If we had multiple inheritance, then we could write something like this to extend the List

implementation given earlier:� �
public abstract class MList<A> extends List<A> {

public static MList empty () {
return new EmptyMList();

4

}
public static MList cons (B i, MList l) {

return new ConsMList(i,l);
}

public abstract boolean isEmpty ();
public abstract A first ();
public abstract MList<A> rest ();
public abstract int length ();

}

class EmptyMList<A> extends EmptyList<A>, MList<A> {
public EmptyMList () {}

public MList<A> rest () {
return (MList<A>) super.rest();

public int length () {
return 0;

}
}

class ConsMList<A> extends ConsMList<A>, MList<A> {
private A first;
private MList<A> rest;

public ConsMList (A f, MList<A> r) {
first =f ;
rest = r;

}

public MList<A> rest () {
return (MList<A>) super.rest();

}

public int length () {
return 1 + rest.length();

}
}� �

5

This would be ideal.1 The only thing we need to write, really, is what makes measur-
able lists different than normal lists. In particular, we only need to create an abstract
base class for MList<A> really only containing the creators, and two concrete subclasses
EmptyMList<A> and ConsMList<A>, which only really include the methods that differ from
those in EmptyList<A> and ConsList<A>. (Here I’m assuming that methods are inherited
in the order in which classes are described after extends.)

The above cannot be written in Java because we do not have multiple inheritance, but we’ll
see three ways by which we can approximate the above.

17.2 ADT Extension via Inheritance

Consider the hierarchy for lists and measurable lists. We argued above that we wanted
EmptyMList to subclass and inherit from EmptyList, and for ConsMList to subclass and
also inherit from ConsList. Inheritance relations are expressed with double lines in the the
diagrams:

List

/ | \

/ | \

EmptyList | ConsList

|| | ||

|| MList ||

|| / \ ||

|| / \ ||

EmptyMList ConsMList

This means, in particular, that if we want to do things this way, then MList must be an
interface. Because an interface in Java cannot subclass an actual class, but can only subclass
another interface, this means that List also needs to be an interface. (So we need to change
the implementation of lists.) An additional problem is that List and MList, as per the
Specification Design Pattern, should contain static methods corresponding to the creators.
We cannot put them in interfaces, because interfaces contain no code. So where do they go?
The best way to get around the problem is simply to define two new classes that implement
only the creators. Let’s call them CList and CMList. (I have no great suggestion for naming
these classes.) Interestingly, if you think about it, these do not actually need to be in any
relation, subclassing or otherwise, with the other classes. The picture we want, then, given
the constraints that Java imposes, is the following:

1Technically, we could also move the rest() method in the base class MList<A> and it would be available
in the subclasses by inheritance, but that’s minor.

6

List [ifc] CList

/ | \

/ | \

EmptyList | ConsList

|| | ||

|| MList [ifc] || CMList

|| / \ ||

|| / \ ||

EmptyMList ConsMList

That’s a mess. It’s implementable, but it’s a mess. Here is the resulting implementation,
first the modified List implementation:� �
public interface List<A> {
public boolean isEmpty ();
public A first ();
public List<A> rest ();

}

class EmptyList<A> implements List<A> {
public EmptyList () {}

public boolean isEmpty () {
return true;

}
public A first () {
throw new Error ("first() on an empty list");

}
public List<A> rest () {
throw new Error ("rest() on an empty list");

}
}

class ConsList<A> implements List<A> {
private A firstElement;
private List<A> restElements;

public ConsList (A f, List<A> r) {
firstElement = f;
restElements = r;

7

}

public boolean isEmpty () {
return false;

}
public A first () {

return firstElement;
}
public List<A> rest () {
return restElements;

}
}� �
with associated creators:� �
public abstract class CList {

public static List empty () {
return new EmptyList();

}
public static List cons (B i, List l) {
return new ConsList(i,l);

}
}� �
and the implementation of MList:� �
public interface MList<A> extends List<A> {
public boolean isEmpty ();
public A first ();
public MList<A> rest ();
public int length ();

}

class EmptyMList<A> extends EmptyList<A> implements MList<A> {
public EmptyMList () {}

public MList<A> rest () {
return (MList<A>) super.rest();

}
public int length () {

8

return 0;
}

}

class ConsMList<A> extends ConsList<A> implements MList<A> {
private A first;
private MList<A> rest;

public ConsMList (A val, MList<A> l) {
super(val,l);
first = val;
rest = l;

}

public MList<A> rest () {
return (MList<A>) super.rest();

}
public int length () {

return 1 + rest.length();
}

}� �
and its associated creators:� �
public abstract class CMList {

public static MList empty () {
return new EmptyMList();

}
public static MList cons (B i, MList l) {
return new ConsMList(i,l);

}
}� �
Not only does this require us to modify the implementation of List, which sometimes is not
possible because you do not have the source code available, it is also a pain to use, since now
you have to use CList to create lists, while the lists created are of type List. Yuck. There
are other ways of cleaning up that problem, but they’re equally ugly.

There are other problems. In some ADT implementations, it makes sense to use implement
methods in the abstract base class if they occur as is in all (or most) of the concrete subclasses.

9

For instance, the equals() method of an ADT is often defined in the abstract base class,
and inherited in the concrete subclasses. Similarly, we can have helper methods defined
in the base class if they are useful in the concrete subclasses. This can be useful to avoid
code duplication within an implementation of an ADT. (We will see an example of just
that below in §17.4.) Well, we cannot do that here, because MList is now an interface,
and therefore cannot define methods. So we have to chose: do we use inheritance to reduce
code duplication in the implementation of an ADT, or do we use inheritance to reduce code
duplication for extensions of an ADT? We can’t have it both ways.

17.3 ADT Extension via Delegation

Here is an alternative implementation, that does not require us to change List, and that
does not require us to have a different class implementing the creators of the ADT. We
will keep MList<A> an abstract class, meaning that EmptyMList<A> and ConsMList<A> will
extend MList<A>, meaning they will not be able to inherit from the concrete subclasses of
List<A>. So instead of using inheritance, we will use delegation.

We use the original implementation of List<A> I gave at the beginning of this lecture (the
one obtained from the Specification design pattern), and implement MList<A> using the
Specification design pattern as well, except that concrete subclasses use delegation to create
an instance of List to which to delegate most of the methods except for the one that need
to be defined for measurable lists. Here is the code:� �
public abstract class MList<A> extends List<A> {

public static MList empty () {
return new EmptyMList();

}
public static MList cons (B i, MList l) {
return new ConsMList(i,l);

}

public abstract boolean isEmpty ();
public abstract A first ();
public abstract MList<A> rest ();
public abstract int length ();

}

class EmptyMList<A> extends MList<A> {
private List<A> del; // delegate

public EmptyMList () {

10

del = List.empty();
}

public boolean isEmpty() {
return del.isEmpty();

}
public A first () {

return del.first();
}
public MList<A> rest () {

return (MList<A>) del.rest();
}
public int length () {

return 0;
}

}

class ConsMList<A> extends MList<A> {
private List<A> del; // delegate
private A first;
private MList<A> rest;

public ConsMList (A f, MList<A> r) {
del = List.cons(f,r);
first = f;
rest = r;

}

public boolean isEmpty() {
return del.isEmpty();

}
public A first () {

return del.first();
}
public MList<A> rest () {

return (MList<A>) del.rest();
}
public int length () {

return 1 + rest.length();
}

}� �
11

Notice what we do: the abstract base class is standard, and the concrete subclasses as
well, except each defines a field containing the delegate, instanciates that delegate in the
constructor, and delegates most of the operations to that delegate, adjusting the type when
needed (rest()), while defining the measurable-list-specific methods.

That’s pretty good, although it is still more code than the “ideal” implementation in §17.1.
But it doesn’t require us to change List<A>, it doesn’t require us to put the creators in a
different class, and it is still very much a uniform design pattern that we can apply more or
less blindly.

17.4 ADT Extension via Delegation and Inheritance

In the last section, we managed to not duplicate any code from List<A> in MList<A>, thereby
achieving a good amount of code reuse. (Were List<A> a larger ADT, we would get even
more code reuse out of it.) There is still, however, a lot of code duplication between the
concrete subclasses of MList<A>. In particular, the code that does the delegation looks
exactly the same in EmptyMList<A> and in ConsMList<A>: each of the concrete subclasses
has a del field, and the methods isEmpty(), first(), and rest() in the concrete subclasses
look the same. Can we effect some code reuse there?

It turns out yes, by using the fact that the concrete subclasses of MList<A> can inherit from
MList<A>. We can move the del field and the methods isEmpty(), first() and rest()

into the abstract base class MList<A>, and provide them in the subclasses via inheritance.
The only thing we need to do in the concrete subclasses is create the appropriate delegate.
(That could also be put in the creators. It’s a minor variant.)

Here is the resulting code:� �
public abstract class MList<A> extends List<A> {

protected List<A> del; // delegate

public static MList empty () {
return new EmptyMList();

}
public static MList cons (B i, MList l) {

return new ConsMList(i,l);
}

public boolean isEmpty () {
return del.isEmpty();

}
public A first () {

return del.first();
}

12

public MList<A> rest () {
return (MList<A>) del.rest();

}

public abstract int length ();
}

class EmptyMList<A> extends MList<A> {
public EmptyMList () {

del = List.empty();
}

public int length () {
return 0;

}
}

class ConsMList<A> extends MList<A> {
private A first;
private MList<A> rest;

public ConsMList (A f, MList<A> r) {
del = List.cons(f,r);
first =f ;
rest = r;

}

public int length () {
return 1 + rest.length();

}
}� �
And that’s pretty much the best I can do. It is as close to the “ideal” implementation from
§17.1 as I can get. The only difference is that there is some additional code in the abstract
base class to delegate the methods already defined in the List<A> class, and the setting of
the delegate in the constructor of each of the concrete subclasses. Aside from that, the code
contains only what’s new in measurable lists.

13

17.5 Measurable Lists as an Augmented Data Structure

Let me close by illustrating a feature that has nothing to do with inheritance or delegation,
but is something nice that I can illustrate simply with measurable lists. It has to do with
efficiency of operations.

The naive implementation of a length method by simply counting how many elements are
in the list can be inefficient if the list is large. There is no way to make the “count how
many elements are in the list” algorithm more efficient, but there is a way to implement
measurable list to make the length() method more efficient: keep a count of the current list
size alongside the list content, and simply increment the count upon a cons(). The length()
method now simply returns the current list size, a constant-time field lookup operation. This
is an example of an augmented data structure, a data structure augmented with information
that make some operations more efficient.

There is no design pattern specifically for writing augmented data structures. It is usually
done more or less on a case-by-case basis, although general lessons usually emerge. Here is
how you can get this to work for measurable lists.� �
public abstract class MList<A> extends List<A> {

protected List<A> del; // delegate
protected int length;

public static MList empty () {
return new EmptyMList();

}

public static MList cons (B i, MList l) {
return new ConsMList(i,l);

}

public boolean isEmpty () {
return del.isEmpty();

}
public A first () {

return del.first();
}
public MList<A> rest () {

return (MList<A>) del.rest();
}
public int length () {

return this.length;
}

}

14

class EmptyMList<A> extends MList<A> {
public EmptyMList<A> () {

del = List.empty();
length = 0;

}
}

class ConsMList<A> extends MList<A> {
private A first;
private MList<A> rest;
public ConsMList (A f, MList<A> r) {

del = List.cons(v,l);
length = 1 + l.length();
first = f;
rest = r;

}
}� �
(Clearly, I could get rid of the fields in ConsMList<A> since they are not needed, but if
measurable lists had other operations that needed them, they’d be there.)

Note that the length of a list is accumulated in a field length at construction time, meaning
that when we ask for the length of a list, we can simply look it up in the field instead of
computing it from scratch every time.

15

