
Object-Oriented Design Lecture 12
CS 3500 Spring 2010 (Pucella) Friday, Feb 19, 2010

12 Polymorphism (Continued)

Last time, we saw that we can parameterize both interfaces and methods — today we
complete the picture by showing that we can also parameterize classes, naturally enough.

Before doing that, though, let me revisit the issue of information loss we saw back in lecture
8 when we saw the difference between compile-time types and run-time types, and see how
polymorphic methods can help us reduce that information loss.

12.1 Information Loss and Polymorphic Methods

Recall the example from lecture 8. We had Point and CPoint, where the latter is a subclass
of the former, and we were considering the following pair of functions:

public static Point identity (Point p) {

return p;

}

public static Point clone (Point p) {

return Point.create(p.xPos(),p.yPos());

}

We saw that these two functions have the same signature — they both take a Point as an
argument, and they return a Point. At run time, though, they behave quite differently:
while identity returns its argument untouched, clone returns a new Point constructed
from its argument.

it is perfectly safe to pass a CPoint to both of those functions, but how does the type
system treat the result? We saw that the type system, because it only uses the signature
of a function when type checking, cannot distinguish between the above two functions, and
therefore to be conservative must assume that the result is always a Point.

We illustrated this using the following function:

public static Color extractColor1 (CPoint cp) {

??? newcp = identity(cp);

return newcp.color();

}
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We saw that the only thing we can write in place of ??? is Point, which leads to the type
system rejecting the call to newcp.color() because newcp, being considered a Point, is not
known to have a color() method at compile time. We’ve lost compile-time type information
about the result of identity. Even though we know full well that it should return a CPoint.
We know that. The type system doesn’t. To solve the problem, solution 1 was to use a cast:

public static Color extractColor (CPoint cp) {

Point newcp_temp = identity(cp);

CPoint newcp = (CPoint) newcp_temp;

return newcp.color();

}

But that’s annoying. The cast is a hack to compensate for the loss of information. Now
that we have polymorphic functions, though, we can do much better. We can give a more
precise type to identity(). The problem with the current type for identity() is that it is
not precise enough: it says that it accepts a Point (or one of its subclasses) and returns a
Point. That’s not precise enough because we know that at run time, the type of the result
is always the type of its argument. Polymorphic function let us write exactly that:

public static <T extends Point> T identityBetter (T p) {

return p;

}

Read this out: for any type T that happens to be a subclass of Point, identity can take
a value of type T and return a value of that exact type T. That’s much better. We can now
write:

public static Color extractColor (CPoint cp) {

CPoint newcp = identityBetter(cp);

return newcp.color();

}

Now that type system looks at identityBetter, sees that it is polymorphic, determines
what type you want identityBetter at, in this case from the argument of the call, which
is CPoint, so it sees if it can type checks the call taking T=CPoint in the signature of
identityBetter, which then says that the result has type CPoint, which agrees with the
declared type CPoint of newcp, and everything works great. No need for a cast, because
we’ve managed to give a better, more precise type to the function.

12.2 Polymorphic Classes

We now turn to the final bit of parameterization that I have not yet mentioned, polymorphic
classes. This would be useful certainly for lists, which should be defined for some type T of
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underlying values, instead of fixing a type such as Integer or AInteger in the definition. A
class can be parameterized just like an interface, using a similar declaration.

12.2.1 Polymorphic Lists

Here is the definition of List<A>, a parameterized version of List, with the following sig-
nature, and the same specification as earlier — we may call this a parameterized or a poly-
morphic ADT:

CREATORS List<A> empty ()

List<A> cons (A, List<A>)

ACCESSORS boolean isEmpty ()

A first ()

List<A> rest ()

String toString ()

with the expected specification. I’m dropping functional iterators for now.

Following the design pattern we have for deriving an implementation from an ADT, we get
the following code:� �
/∗ ABSTRACT CLASS FOR LISTS ∗/
public abstract class List<A> {

public static <B> List<B> empty () {
return new EmptyList<B>();

}

public static <B> List<B> cons (B i, List<B> l) {
return new ConsList<B>(i,l);

}

public abstract boolean isEmpty ();

public abstract A first ();

public abstract List<A> rest ();

public abstract String toString ();
}
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/∗ CONCRETE CLASS FOR EMPTY CREATOR ∗/
class EmptyList<A> extends List<A> {

public EmptyList () {}

public boolean isEmpty () {
return true;

}

public A first () {
throw new Error ("EmptyList.first()");

}

public List<A> rest () {
throw new Error ("EmptyList.rest()");

}

public String toString () {
return "";

}
}

/∗ CONCRETE CLASS FOR CONS CREATOR ∗/
class ConsList<A> extends List<A> {

private A firstElement;
private List<A> restElements;

public ConsList (A f, List<A> r) {
firstElement = f;
restElements = r;

}

public boolean isEmpty () {
return false;

}

public A first () {
return firstElement;

}
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public List<A> rest () {
return restElements;

}

public String toString () {
return firstElement.toString() + " " + restElements.toString();

}
}� �
A few things to note. First, the definition/use distinction: the declaration class EmptyList<A>...

defines the type variable A, while everything else is a use of A. Once the type checker fig-
ures out the type for A that you want, every use of A is taken to be that type. Thus, for
instance, in class EmptyList<A> extends List<A>, the second <A> is a use, it says that
EmptyList<A> that you create extends List<A> for that exact same A that you need. Thus,
if A=Integer because you’re creating an instance of EmptyList at type Integer — by in-
voking the appropriate constructor, see below — the resulting EmptyList<Integer> will be
a subclass of List<Integer>.

Second, to invoke a constructors for a polymorphic class, you need to supply the type at
which you want to instantiate the class. For instance, new EmptyList<Integer>(). If you
forget that, the system will use Object as a type, which generally will not do what you want.

The other thing to notice is that static methods are polymorphic. That’s needed because
of the way Java deals with polymorphic classes. More specifically, the way Java deals with
type parameters — they are technically associated with an instance of a class, and because
what is associated with an instance of a class is not accessible from static elements in the
class, the static methods in a class cannot refer to the parameter. Meaning that in order to
write a creator cons() that takes an element of type B and a list of Bs and returns a list of
Bs, we need to say that the type of that creator is: for all types B, the cons creators takes
an B and a List<B> and produces a List<B>, which gives us the above method definitions.1

This means, in particular, that the type variable used in a static method has nothing to do
with the type parameter in the class implementing that static method. To emphasize this,
I usually use a different type variable name in static methods in parameterized classes.

Easy Exercise: Add a method funcIterator() to the above signature, with type FuncIterator<A>
funcIterator (), where A is the type variable for class List<A>. Implement those func-
tional iterators — which should be implemented similarly as for class List earlier in the

1Here is an explanation, if you’re curious. In Java, the code for a polymorphic class is not actually
duplicated, there is really only one definition of List around, and so the type parameter of a polymorphic
class is thought of as kind-of-special field, And fields in an object are not visible from static methods in
the class. And indeed, you should be able to invoke empty even if you have no lists around. Another
consequence of the Java handling of polymorphism is that type parameters, as soon as type checking is done,
do not actually exist at runtime. This means, in particular, that we cannot use a type argument in places
where the type would have a runtime existence, such as in a cast; uses such as T x = (T) foo are disallowed,
as well as instanceof checks.)
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course, except using polymorphic classes.

Once you’ve defined iterators for polymorphic lists, then you can still reuse the iterator
functions we defined last time, like:

List<Integer> nothing = List.empty();

List<Integer> onetwothree = List.cons(1, List.cons(2, List.cons(3, nothing)));

FuncIterator<Integer> iterator = onetwothree.funcIterator();

printElements(iterator);

which yields

Element = 1

Element = 2

Element = 3

as expected.

12.3 Polymorphic Pairs

At the end of last lecture, we defined list of pairs of integers, as its own special implementation
of lists. We can now define list of pairs by instantiating the polymorphic list implementation
above using a type for pairs of integers. In order to do that, we need an ADT for pairs. For
generality, let’s define a polymorphic ADT for pairs, the Pair<T,U> ADT of pairs of type T

and U, with signature:

CREATORS Pair<T,U> create (T, U)

ACCESSORS T first ()

U second ()

String toString ()

with specification:

create(f,s).first() = f

create(f,s).second() = s

create(f,s).toString() = "(" + f + "," + s + ")"

I’m keeping this ADT very simple. The implementation of the ADT is completely straight-
forward:
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� �
public class Pair<T,U> {

private T first;
private U second;

protected Pair () {}

private Pair (T f, U s) {
first = f;
second = s;

}

public static <V,W> Pair<V,W> create (V f, W s) {
return new Pair<V,W>(f,s);

}

public T first () {
return first;

}

public U second () {
return second;

}

public String toString () {
return "(" + first().toString() + "," + second().toString() + ")";

}
}� �
Once you have this, is is a simple matter to define lists of pairs of integers, and if you have
correctly defined iterators for lists, you can print all the elements of a list of pairs of integers
using the polymorphic printElements function:

List<Pair<Integer,Integer>> nothing2 = List.empty();

List<Pair<Integer,Integer>> l2 =

List.cons(pi(1,2),

List.cons(pi(3,4),

List.cons(pi(5,6), nothing2)));

printElements(l2.funcIterator());

where pi() is defined to be:
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public static Pair<Integer,Integer> pi (int i, int j) {

return Pair.create(new Integer(i),new Integer(j));

}

and which outputs:

Element = (1,2)

Element = (3,4)

Element = (5,6)

A nice example of reuse: we’ve reused the polymorphic class List (by having it implement
lists of pairs of integers instead of just lists of pairs), and we’ve reused the polymorphic
function printElements.

12.4 Addable Pairs

What about the polymorphic function sumElements? Remember that we wanted to use
is to sum the elements provided by an iterator that yields elements of a type that has an
add() method defined. We defined a form of integers, called AInteger that implements the
Addable interface, and that could be used for this purpose. For instance, we can construct
an instance of a list of AInteger (using the polymorphic list implementation), and invoke
sumElements on it:

List<AInteger> nothing3 = List.empty();

List<AInteger> l3 = List.cons(AInteger.create(1),

List.cons(AInteger.create(2),

List.cons(AInteger.create(3),

nothing3)));

IteratorLib.printElements(l3.funcIterator());

System.out.println("Sum = " + IteratorLib.sumElements(AInteger.create(0),

l3.funcIterator()));

which outputs:

Element = 1

Element = 2

Element = 3

Sum = 6

So defining lists of AIntegers and calling sumElements works, because AInteger is a subclass
of Addable. But what about summing elements of an iterator that returns pairs of integers.
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Last time we defined PairAI which implemented the Addable interface by having an add()

method. Our pairs, defined above, do not have an add() method — nor should it have one,
because an add() method should only make sense if the underlying types of the pair (that
is, the type of the first component of the pair and the type of the second component of the
pair) themselves have an add() method.

The solution is to define an AddablePair, that is a form of Pair (i.e., a subclass), which
defines an add() method, as long as its component types have an add() method as well —
that is, as long as its component types are subclasses of Addable. The way to do that is to
define the AddablePair class to be parameterized, and to put constraints on those bounds,
a bit like when we put constraints on the type of a polymorphic function, in sumElements

for example. Here is the implementation of AddablePair:� �
public class AddablePair<T extends Addable<T>, U extends Addable<U>>

extends Pair<T,U> implements Addable<AddablePair<T,U>> {

private T first;
private U second;

private AddablePair (T f, U s) {
first = f;
second = s;

}

public static <V extends Addable<V>, W extends Addable<W>>
AddablePair<V,W> create (V f, W s) {

return new AddablePair<V,W>(f,s);
}

public T first () {
return first;

}

public U second () {
return second;

}

public AddablePair<T,U> add (AddablePair<T,U> p) {
return create(first().add(p.first()),second().add(p.second()));

}

public String toString () {
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return "(" + first().toString() + "," + second().toString() + ")";
}

}� �
Look at the declaration of the class, and make sure you understand what it is saying. It
is saying a lot, and everything it is saying is important: it says that AddablePair is a
polymorphic class that is a subclass of Pair, it is parameterized by two types, those two
types better be subclasses of Addable, and the resulting class AddablePair itself is also a
subclass of Addable.

This means that if we define a list that stores elements of type AddablePair, then an iterator
for that list can be given to sumElements() so that it can sum its elements. Let’s define a
sample list of pairs of AIntegers, which are Addable as we already saw:

List<AddablePair<AInteger,AInteger>> nothing4 = List.empty();

List<AddablePair<AInteger,AInteger>> l4 =

List.cons(pai(1,2),

List.cons(pai(3,4),

List.cons(pai(5,6), nothing4)));

IteratorLib.printElements(l4.funcIterator());

System.out.println("Sum = " + IteratorLib.sumElements(pai(0,0),

l4.funcIterator()));

where pai() is a helper function to create addable pairs of integers:

public static AddablePair<AInteger,AInteger> pai (int i, int j) {

return AddablePair.create(AInteger.create(i),AInteger.create(j));

}

and the result is the output:

Element = (1,2)

Element = (3,4)

Element = (5,6)

Sum = (9,12)

Again, we’ve managed to reuse a lot of code. And now that we have the notion of an addable
pair, we can construct more complex addable pairs by pairing addable stuff, for instance, we
can construct an instance of AddablePair<AInteger,AddablePair<AInteger,AInteger>>,
which are addable pairs of an addable integer and an addable pair of addable integers — in
other words, a triple of addable integers. Make sure you understand how addition for such
triples would work.
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