
Object-Oriented Design Lecture 10
CS 3500 Spring 2010 (Pucella) Friday, Feb 12, 2010

10 Design Pattern: Functional Iterators

Subclassing enables the use of standardized interfacs for implementing specific functionality.
Standardized interfaces enable code reure (on the client side) because it becomes possible
to write functions against those standardized interfaces that will work for every subclass of
those interfaces.

Let’s look at an example. First, some terminology. An aggregate is a data type that contains
objects, such as a list data type, or a tree data type, or a hash table data type, or a stack
data type. Lists, arrays, and trees are exceedingly common aggregates.

A common operation that we want to do with aggregates is to get all the elements in the
aggregate and do something to them: sum them up if they’re integers, count them, find their
maximum value or their minimum value, compute their average, print them out or display
them in some meaningful way. And we want to do this in such a way that we can define
general operations for, say, sum all the elements in an aggregate, independently of the kind
of aggregate it is.

We will do so by implementing an operation in every aggregate that creates a special kind
of object called an iterator, which we can think of as a finger pointing to an element of the
aggregate, that can give you the value pointed to, and that knows how to “move” to the
next element in the aggregate. (For some aggregates, the notion of which element is next is
more natural than others.)

So what does an iterator look like? We focus for now on functional iterators over aggregates
containing integers. A functional iterator is a subclass of the following class — which we
will represent as an interface in Java:� �
public interface FuncIteratorInt {
public boolean hasElement ();
public int element ();
public FuncIteratorInt moveToNext ();

}� �
Functional is often used as a synonym for immutable. A functional iterator provides a
method hasElement() for asking whether we are done iterating over the elements of the
underlying aggregate, a method element() for getting the current element of the aggregate
we have not looked at yet, and a method moveToNext() that moves the iterator to the next
element after the current one. Note that the moveToNext() method returns a new iterator

1



that can be queried for that next element, because our functional iterators are immutable.
Once a functional iterator is created, it always points to the same element of the aggregate.1

One point here is that different aggregates will require quite different iterators — there is no
notion of a default implementation of an iterator that works for all aggregates. This is one
reason why we use an interface.

Once we have the notion (and interface) of a functional iterator, we can write functions to
use them, such as:

public static int sumElements (FuncIteratorInt it) {

if (it.hasElement())

return it.element() + sumElements(it.moveToNext());

else

return 0;

}

The function uses recursion to get at all the elements provided by the iterator. The following
function, in contrast, uses a while-loop:

public static void printElements (FuncIteratorInt it) {

FuncIteratorInt curr = it;

while (curr.hasElement()) {

System.out.println("Element = " + curr.element());

curr = curr.moveToNext();

}

}

The above functions should work independently of the aggregate we’re using (trees, lists,
graphs, etc) as long as they define a functional iterator that implements the FuncIteratorInt
interface.

Lists are aggregate, so let’s define a functional iterator for lists. In general, an aggregate
will not prescribe the order in which elements should be iterated over. Some structures have
a natural ordering (e.g., lists from first to last, arrays from first to last), while others have
many natural orders (e.g., trees in breadth-first order or depth-first order with both pre-, in-,
and postorder access to the elements), and others have no natural order at all (e.g., graphs).
For lists, the easiest order is the natural order of the list.

The first thing we need to do is add an operation to the List ADT that gives us a functional
iterator for a list. The revised signature is:

1Java comes with an iterator interface in its basic API that is mutable; it does not have an moveToNext()
method, and querying for the current element mutates the iterator so that querying it for the current element
again returns the next element. This mutability makes it somewhat more difficult to reason about iteration.
We will return to mutable iterators later.

2



public static List empty ();

public static List cons (int, List);

public boolean isEmpty ();

public int first ();

public List rest ();

public String toString ();

public FuncIteratorInt funcIterator ();

The specification for the first four operations is as before, and the specification for the
funcIterator() operation is trickier, because it creates a new “thing”, the iterator. But if
you think of an iterator as an ADT with the three operations specified by the FuncIteratorInt
interface, then there are two creators for functional iterators for lists: empty().funcIterator(),
and cons(i,L).funcIterator(). We can still apply our technique for writing specifications
to that:

empty().funcIterator().hasElement() = false

empty().funcIterator().element() ---> EXCEPTION

empty().funcIterator().moveToNext() ---> EXCEPTION

cons(i,L).funcIterator().hasElement() = true

cons(i,L).funcIterator().element() = i

cons(i,L).funcIterator().moveToNext() = L.funcIterator()

The only real tricky spec equation is the last one — if you get an iterator for a list that
starts with element i in front of L, and you move that iterator to the next element, then
that should be the same as taking L and taking its iterator.

Now that funcIterator() is an operation in our ADT, we can implement it following
the Specification Design Pattern we saw a couple of lectures ago. We already have an
implementation of List that follows that Design Pattern, so it’s a simple matter to add an
abstract method to the List abstract class, and an funcIterator() method to both the
EmptyList and ConsList concrete subclasses. Those methods simply create instances of two
new classes, implementing functional iterators for empty lists and for cons lists, respectively,
each implementing the iterator operations according to the specification above.� �
// An implementation of the List ADT using the
// Specification Design Pattern

public abstract class List { // abstract == cannot instantiate this class

public static List empty () {
return new EmptyList();

3



}

public static List cons (int i, List L) {
return new ConsList(i,L);

}

public abstract boolean isEmpty ();
public abstract int first ();
public abstract List rest ();
public abstract String toString ();

public abstract FuncIteratorInt funcIterator ();
}

class EmptyList extends List {
public EmptyList () { // the ONE place where we have public constructor
}

public boolean isEmpty () {
return true;

}

public int first () {
throw new RuntimeException("empty().first()");

}

public List rest () {
throw new RuntimeException("empty().rest()");

}

public String toString () {
return "";

}

public FuncIteratorInt funcIterator () {
return new EmptyFuncIteratorInt();

}
}

class ConsList extends List {

4



private int f;
private List r;

public ConsList (int i, List l) { // the ONE place where we have public constructor
f = i;
r = l;

}

public boolean isEmpty () {
return false;

}

public int first () {
return f;

}

public List rest () {
return r;

}

public String toString () {
return f + " " + r.toString();

}

public FuncIteratorInt funcIterator () {
return new ConsFuncIteratorInt(f,r);

}
}� �
The two new classes that are needed, EmptyFuncIteratorInt implementing functional iter-
ators for empty lists and ConsFuncIteratorInt implementing functional iterators for cons
lists, live in the same file as List:� �
class EmptyFuncIteratorInt implements FuncIteratorInt {

public EmptyFuncIteratorInt () {}

public boolean hasElement () {
return false;

}

public int element () {
throw new java.util.NoSuchElementException("EmptyIterator.element()");

5



}

public FuncIteratorInt moveToNext () {
throw new java.util.NoSuchElementException("EmptyIterator.moveToNext()");

}

}

class ConsFuncIteratorInt implements FuncIteratorInt {
private int f;
private List r;

public ConsFuncIteratorInt (int farg, List rarg) {
f = farg;
r = rarg;

}

public boolean hasElement () {
return true;

}

public int element () {
return f;

}

public FuncIteratorInt moveToNext () {
return r.funcIterator();

}
}� �
It is of course possible to nest the EmptyFuncIteratorInt class inside the EmptyList class,
and similarly nesting the ConsFuncIteratorInt class inside the ConsList class. Or we can
just nest everything inside the List class, as before.

The exception thrown when trying to get at the current element when there is no such
element, or advancing the iterator passed the end of the list is the one that the Java API
requires its iterators to throw, so I have done so here for consistency.

Exercise (hard): Can you come up with a functional iterator for lists that iterates from
the last element of the list to the first? How about a functional iterator that iterate over a
list from the first element to the last, but going through all the odd-positioned elements first,
then all the even-positioned elements?

6


