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6 Software Testing

We saw last time a classification of errors that can occur in programs. As I stated, logical
errors — programs not behaving as expected — are the most difficult to catch and correct,
if only because languages do not offer any facilities for identifying those errors. They rely on
the notion of “expected program behavior”, which is really only in the head of the designer
or the programmer.

As far as ADTs are concerned, we know what behavior to expect: it’s exactly the behavior
described by the specification. So how do we check that a program satisfies its specification
(i.e., behaves as expected)? There are two main ways: formal verification, and software
testing.

6.1 Testing versus Formal Verification

Formal verification, what you learned in CSU 290, is the process of verifying using logic
or other means that a program satisfies its specification. As you will remember from CSU
290, formal verification is usually difficult. The purpose of formal verification is proving a
program correct (i.e., satisfies its specification) for all possible inputs. The point of testing,
on the other hand, is to find bugs, and not to prove programs correct. Why?

To prove that a program is correct using tests, we need to exercise all the inputs to the
program. This can be a problem if there many inputs to test. For instance, a program that
takes two 64-bit integers as input, that is, 128 bits of input total, would require 1022 years
to run through tests for all inputs, even if we allow a millon tests to be performed every
second. That’s clearly infeasible. Things get worse, of course, because some programs can
take one of infinitely many inputs — for instance, programs manipulating lists.

So we cannot in general exercise all inputs, and therefore need to focus only on a few. This
leaves the possibility of bugs for the other inputs.

Consider the well-publicized story of the Intel FDIV bug. In 1994, Intel recalled its Pentium
processors to repair a bug in its floating point division instruction, FDIV. Intel has estimated
that this recall cost the company 475 million dollars.

Here is an example of the bug:

4195835.0/3145727.0 = 1.333 820 449 136 241 000 (Correct value)

4195835.0/3145727.0 = 1.333 739 068 902 037 589 (Flawed Pentium)
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Intel estimated that the result of the FDIV instruction was incorrect a little more often than
once in every 9 billion floating point divisions. An IBM study found, however, that the
values that occur most often in spreadsheet and scientific computations are more likely to
trigger the bug.

After the Intel debacle, AMD, Intel’s chief competitor, was worried about their own chip.
They turned to the automatic theorem proving community, and Moore, a leading researcher
in the area, proved with his team that the algorithm used to implement the FDIV instruction
in AMD’s chip was correct using a mechanical theorem prover. They in fact managed to
prove the correctness of the entire floating-point kernel (not just the FDIV instruction). In
the process, they found and repaired two design errors that had not been caught by any of
the 80 million separate tests that had been run.

Unfortunately, as I said, proving programs correct is quite hard, so testing is often advocated
as a first approach to debugging. We may return to proving programs correct towards the
end of the course, but for the time being, we focus on testing.

6.2 White-Box (or Glass-Box) Testing

Testing techniques can be classified along several orthogonal dimensions.

White-box testing relies on knowing the internals of the implementation. For instance, test-
ing by inserting print statements or something similar to get a sense of what gets executed
is a form of white-box testing. This is useful when you are debugging a particular imple-
mentation of an ADT, but it of course specific to that particular implementation.

A particularly useful technique for white-box testing is to use assertions. Let’s take assertions
in Java as an example. An assertion takes the following form:

assert BooleanExpression;

or
assert BooleanExpression : ValueExpression;

When Java encounters an assert during execution, it does one of two things, depending on
whether or not assertion checking is turned on or off. (It is off by default.)

• If assertion checking is turned on, it will evaluate the BooleanExpression in the asser-
tion; if it evaluates to true, then execution proceeds to whatever statement follows the
assertion; if it evaluates to false, then an exception AssertError is thrown (with a
value given by ValueExpression, if one is provided).

• If assertion checking is turned off, then the assertion is skipped altogether.

Thus, assertions provide a way to put in “sanity checks” within your own code, that you
can enable by running the code with assertion checking turned on, with the property that if
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you run the code with assertion checking turned off, it behaves just like you never had put
in any assertions in the first place. (There is no runtime penalty, either.)

To execute a Java program with assertion checking turned on, use:

java -ea Program

(assuming Program.class is the compiled class containing the main method).

Generally speaking, assertions are meant to check invariants that must be true in order for
the code to work correctly. This means, in particular, that whenever possible, you should
have assertions on when you ship your code out. (There are ways to make sure that Java
or whatever language you use executes your code with assertions turned on. Please refer to
the documentation.) Many programmers do not enable assertions on production code, for
fear generally of the run-time cost of checking all those assertions. Unless your assertions
are very heavy, however, I would recomment you keep assertions on. The benefit of having
this extra layer of checks for the important invariants your code usually outweighs the minor
inconvenience of a slightly slower execution. (And, let’s face it, if you are programming in
Java, you are alreadu more or less admitting that executing programs as fast as possible is
not your priority.)

6.3 Black-Box Testing

In contrast to white-box testing, black-box testing treats the implementation as hidden, and
can only test the code based on its interface and its specification. (It treats the ADT as a
black box — you do not get to peek inside.) The advantage of black-box testing is that it
can be used to test any implementation of the ADT.

The testing you performed in CSU 211, using test cases, is a form of black-box testing.

A black-box testing infrastructure for an ADT must be able to test any implementation of
the ADT, and any correct implementation must pass the test.

6.4 Unit Versus Integration Testing

A different axis of comparison for testing approaches, orthogonal to the white-box/black-box
axis, is to consider whether we are testing pieces of the program in isolation or as a whole.
Let me try to make that a bit more precise.

A class or a closely related set of classes (module) is often implemented by a single program-
mer. The class or module all by itself is not runnable, and generally will not do anything
useful on its own. It is used within the context of a larger piece of software. A key feature of
the ADT approach we advocate in this course is that it allows the class to be implemented
without regard to the context in which it will be used in.
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(This is in fact the whole point of specification-based design in the wider context of engi-
neering. By designing a piece according to a specification, other pieces needing to interact
with the piece need only assume that the piece satisfies its specification. The actual details
of how the specification is met — the implementation — does not matter.)

Unit testing is the process of taking a class implementation and making sure it satisfies its
specification. This requires making up test data and a test program to test the implemen-
tation against the specification.

In contrast, integration testing tests the class in a context with other classes to make sure
that the higher-level interaction between the classes works correctly.

In this course, because of our ADT design philosophy, we will concentrate on black-box unit
testing.

Yet another sort of testing that is sometimes mentioned is regression testing. Roughly
speaking, regression testing is the process of keeping old tests around; because adding a new
feature to a piece of software should not change existing behaviors, we can run the old tests
to ensure that the code still behaves as expected.

6.5 Test Coverage

Given that we can only test a finite (and in fact small) number of cases, how do we choose
those tests?

A good test is a test that finds bugs. Finding good tests therefore requires a basic under-
standing of the common bugs that can occur. This depends on the actual programming
language used, and on the kind of program being tested. Many books have been written on
common bugs in various programming languages.

In general, test coverage should include:

• Trivial cases (e.g., empty list inputs for list-processing functions)

• Typical cases (both easy and hard)

• Boundary cases (cases that are either just acceptable, or just outside acceptable; e.g.,
inputs that access an array close to its bounds)1

• Weird cases

• Error cases (if the specification mentions how error cases are treated)

What should be tested during a test? Every equation in the specification should be tested.
Remember that some methods in Java have an implicit specification. In particular, equals()

1In some cases, boundary cases may depend on the specifics of an implementation of an ADT; this sort
of boundary case has a flavor of white-box testing.

4



methods are required to be reflexive, symmetric, and transitive; the hashCode() method is
required to have the property that a.equals(b) implies a.hashCode()==b.hashCode().
Those should be tested as well.

6.6 Example: Black-Box Unit Testing Infrastructure for ADTs

Let us look at an example of a black-box unit testing class for the Point ADT in your first
homework. Recall the signature:

public static Point create (int,int);

public int xPos ();

public int yPos ();

public Point move (int,int);

public Point add (Point);

public Point scale (float);

public boolean equals (Object);

public int hashCode ();

public String toString ();

and the specification:

create(x,y).xPos() = x

create(x,y).yPos() = y

create(x,y).move(dx,dy) = create(x+dx,y+dy)

create(x,y).add(p) = create(x+p.xPos(),y+p.yPos())

create(x,y).scale(f) = create(Math.round(x*f), Math.round(y*f))

create(x,y).equals(obj)

= (x==obj.xPos() & y==obj.yPos()) if obj is a Point

= false otherwise

create(x,y).hashCode() = (x+y)*(x+y+1)/2 + y

create(x,y).toString() = "(" + x + "," + y + ")"

Assume we have a class Point implementing the above interface, to be tested.

The general structure of the tester is to first generate a set of instances of Point, and test
each instance. The instances, at least for the typical cases, can be usefully generated at
random.
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First off, the class definition and main method, which invokes the testRandom() method that
tests a set of random objects. Useful statistics are returned by the testRandom() method.� �
import java.util.Random;

public class PointTester {

public static void main(String[] args){
int totalInstances;
int totalErrors;

totalInstances = 100;

totalErrors = testRandom(totalInstances);

totalErrors += testExceptions();

/∗ A few Stats... ∗/

System.out.println("\nNote that this tester does not test .equals()");
System.out.println("Number of points tested: " + totalInstances);
System.out.println("Number of errors found: " + totalErrors);

}� �
The testRandom() method repeatedly generates an instance of Point using each of the
creators and tests that instance. We assume a testSingleRandomcreator () method, one
per creator. We also test various cases of interest, here borderline cases.� �

public static int testRandom (int num) {
int count = num;
int errors = 0;
while (count > 0) {

errors = errors + testSingleRandomCreate();
count = count − 1;

}

// borderline cases
Point zero = Point.create(0,0);
errors = errors + testCreate (zero,0,0);

return errors;
}� �
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The method testSingleRandomCreate() creates a new instance of Point using the create
creator, based on the inputs to the method, and invokes testCreate() to test each specifi-
cation equation. Note that we pass to testCreate() not only the newly created instance,
but also the data that was used to create the instance. Helper functions to generate random
integers and floating point numbers are provided to simplify testing.� �

public static int randomInt (int max) {
return new Random().nextInt(max)+1;

}

public static float randomFloat (int max) {
return new Random().nextFloat() ∗ max;

}

public static int testSingleRandomCreate () {
int x = randomInt(1000)−500;
int y = randomInt(1000)−500;
Point p = Point.create(x,y);
return testCreate(p,x,y);

}

public static boolean equalPoints (Point c1, Point c2) {
return (c1.xPos()==c2.xPos() && c1.yPos()==c2.yPos());

}

public static int testCreate (Point p, int x, int y) {
int errors = 0;
String front = "Point.create("+x+","+y+").";

try{
// Point.create(x,y).xPos() = x
if (!(assertT (p.xPos()==x, front+"xPos()"))) errors++;

// Point.create(x,y).yPos() = y
if (!(assertT (p.yPos()==y, front+"yPos()"))) errors++;

// Point.create(x,y).move(dx,dy) = Point.create(x+dx,y+dy)
int dx = randomInt(1000)−500;
int dy = randomInt(1000)−500;
if (!(assertT(equalPoints(p.move(dx,dy),Point.create(x+dx,y+dy)),

front+"move("+dx+","+dy+")"))) errors++;
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// Point.create(x,y).add(c) = Point.create(x+c.xPos(),y+c.yPos())
dx = randomInt(1000)−500;
dy = randomInt(1000)−500;
Point dp = Point.create(dx,dy);
if (!(assertT(equalPoints(p.add(dp),Point.create(x+dx,y+dy)),

front+"add(Point.create"+dp.toString()+")"))) errors++;

// Point.create(x,y).scale(f) =
// Point.create(Math.round(x∗f),Math.round(y∗f))
float f = randomFloat(10);
if (!(assertT(equalPoints(p.scale(f),

Point.create(Math.round(x∗f),
Math.round(y∗f))),

front+"scale("+f+")")))
errors++;

// should test equals here [ future homework! ]

// Point.create(x,y).hashCode() = (x+y)∗(x+y+1)/2 + y
if (!(assertT(p.hashCode()==(x+y)∗(x+y+1)/2 + y,

front+"hashCode()")))
errors++;

if (!(assertT(p.toString().equals("(" + x + "," + y + ")"),
front+"toString()"))) errors++;

return errors;

} catch (RuntimeException e) {

// If there was an exception anywhere in there, then we
// have a problem
assertT(false, "Exception: "+e.getMessage());
return errors+1;

}
}� �

Note that exceptions are caught and reported as failed tests.

Method testExceptions() is used to test whether the exceptions prescribed by the speci-
fication are thrown for suitable arguments. For the Point ADT, because no exceptions are
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specified, this function is pretty simple,� �
private static int testExceptions () {

return 0;
}� �

Finally, the testing code relies on a method assertT() that report whether a test succeeded
or failed.� �

/∗ Result is expected to be true for passing tests, and false for
∗ failing tests. If a test fails, we print out the provided
∗ message so the user can see what might have gone wrong.

/∗ returns true if the assertion succeeded, and false otherwise! ∗/

private static boolean assertT (boolean result, String msg) {
if (!result) {

System.out.println("\n**ERROR**: "+ msg);
}
System.out.print(".");
return result;

}
}� �
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