
Object-Oriented Design Lecture 16
CS 3500 Fall 2010 (Pucella) Friday, Nov 12, 2010

16 Mutation

We have been avoiding mutations until now. But they exist in most languages, including
Java and Scala. Some of the libraries rely on them. So we need to know how to deal with
them.

Recall that a class is immutable if an instance of the class never changes after it has been
created (that is, observations made on the class, such as results of operations, are always the
same). In contrast, a class is mutable if its instances may change during their lifetime.

So let’s try to get an understanding of mutation. Mutation can be problematic because an
instance can change under you without you noticing, leading to hard to find bugs. This is
the root of my advocacy for immutability — it is just plain easier to reason about immutable
classes. Immutable classes are also easier to parallelize, as well as easier to debug. The flip
side is that there are some algorithms that are much easier to implement using mutation
than without.

For the purpose of this lecture, we shall consider the following two classes. First, a class
Point representing two-dimensional points:� �
class Point (x:Int, y:Int) {

def xCoord ():Int = x

def yCoord ():Int = y

override def toString ():String = "(" + xCoord() + "," + yCoord() + ")"

}� �
Second, a class Line representing lines:� �
class Line (s:Point,e:Point) {

def start ():Point = s

def end ():Point = e

override def toString ():String = "[" + start() + " <-> " + end() + "]"

}� �
A class can be made mutable (to a first approximation) by first making some of its fields
mutable – defining them with var instead of val. (In Java, all fields are always mutable) and

1

then making sure that those fields can be updated. This can be achieved in two ways: either
by making those fields public (so that instances of the class can be modified by clients), or
by having methods change the value of fields.

For the time being, let’s make Point mutable by creating mutable fields to holds the coor-
dinates of the point, and illustrate why mutation is hard to reason about:� �
class Point (x:Int, y:Int) {

var xpos:Int = x

var ypos:Int = y

def xCoord ():Int = xpos

def yCoord ():Int = ypos

override def toString ():String = "(" + xCoord() + "," + yCoord() + ")"

}� �
Having the ability to mutate fields means that an instance may yield different observations
at different point in times. For instance: (I will be using the scala interactive interpreter for
these examples)

scala> val p = new Point(1,2)

p: Point = (1,2)

scala> p.toString()

res0: String = (1,2)

scala> p.xpos = 99

scala> p.toString()

res2: String = (99,2)

Here, the call to toString() returns different results, even though it is invoked on the same
value p. One difficulty with mutation is an update may be hidden in some other method,
which provides no indication that it is changing the instance. Suppose that we have a
function

scala> def someFunction (q:Point):Unit = { q.xpos = 999 }

someFunction: (q: Point)Unit

scala> val p = new Point(1,2)

p: Point = (1,2)

2

scala> p.toString()

res2: String = (1,2)

scala> someFunction(p)

scala> p.toString()

res4: String = (999,2)

Again, this mutates point p, but there is no indication that the call to someFunction() does
a mutation.

Another difficulty with mutability is that it is a contagious property : a class that looks
immutable may in fact be mutable if it relies on classes that are themselves mutable. Consider
the mutable implementation of Points above. What about Line though? It has no fields
(aside from the implicit fields holding the values passed as parameters) and it cannot change
the value of those fields, so as far as one can tell by looking at the class definition, it is
an immutable class. Unfortunately, the following snippet of code shows that an instance of
Line can indeed change:

scala> val p = new Point(1,2)

p: Point = (1,2)

scala> val q = new Point(100,200)

q: Point = (100,200)

scala> val l = new Line(p,q)

l: Line = [(1,2) <-> (100,200)]

scala> p.xpos = 99

scala> l

res6: Line = [(99,2) <-> (100,200)]

So l was originally [(1,2) <-> (100,200)], but after mutating p, l is now [(99,2) <->

(100,200)] — l looks different. That’s something to keep in mind: a class may be mutable
even though it looks like it is not. As soon as part of your program is mutable, it will have
a tendency to make the rest of your program mutable as well.

Part of the point of this lecture is to provide a model of mutation so that you can understand
exactly what is happening in the examples above.

3

16.1 Detour: Setters for Fields

So let’s suppose that you have understood this issue about mutability, and that you accept
the ensuing risks. In other words, you decided to have some classes with mutable state,
which generally means having mutable fields.

Even if you are okay with having mutable fields, I strongly suggest you make your fields
private, and provide getters and setters for each field that can mutate – that is, methods to
get the value of those fields, and methods to set the value of those fields. Why? Because
this lets us enforce invariants. Suppose we only want to work with points in the positive
quadrant, that is, points whose coordinates are nonnegative. That’s easy to enforce with the
above Point class by adding some code that checks that the coordinates are positive when
an instance of the class is created:� �
class Point (x:Int, y:Int) {

// executed whenever you create a Point instance

if (x < 0 || y < 0)

throw new IllegalArgumentException("Point not positive")

var xpos:Int = x

var ypos:Int = y

def xCoord ():Int = xpos

def yCoord ():Int = ypos

override def toString ():String = "(" + xCoord() + "," + yCoord() + ")"

}� �
(Note that the code to check the parameters is free floating in the class — any code that
does not belong to a method in a class is executed when an instance of a class is created.)

If we allow unrestricted field access, however, then anyone can just change one of the co-
ordinates and break the invariant. Which, in this case, can lead to points having negative
coordinates, invalidating the invariant we want to preserve.

By forcing users to use setters, we can check that the invariant is maintained whenever state
is changed.:� �
class Point (x:Int, y:Int) {

// executed whenever you create a Point instance

if (x < 0 || y < 0)

throw new IllegalArgumentException("Point not positive")

private var xpos:Int = x

4

private var ypos:Int = y

def xCoord ():Int = xpos

def yCoord ():Int = ypos

def setXCoord (x:Int):Unit =

if (x >= 0)

xpos = x

else

throw new IllegalArgumentException("Point not positive")

def setYCoord (y:Int):Unit =

if (y >= 0)

ypos = y

else

throw new IllegalArgumentException("Point not positive")

override def toString ():String = "(" + xCoord() + "," + yCoord() + ")"

}� �
Therefore, I will expect you all to keep fields private and use explicit setters, instead of
making fields public when you want a class to be mutable. For completeness, even though
we saw that Line is already mutable by virtue of Point being mutable, let’s make Line

directly mutable by making the start and end points mutable fields, and adding setters.� �
class Line (s:Point,e:Point) {

private var sp : Point = s

private var ep : Point = e

def start ():Point = sp

def end ():Point = ep

def setStart (p:Point):Unit = (sp=p)

def setEnd (p:Point):Unit = (ep=p)

override def toString ():String = "[" + start() + " <-> " + end() + "]"

}� �

5

16.2 Instance Creation and Manipulation

To work with mutation correctly, and help you track down bugs, you need to have a good
understanding of what changes when something changes! You update some field in some
instance of a class, what actually gets changed, and who else can see it? The problem is that
when the state of an instance can change, it becomes very important to understand when
instances are shared between different instances, so that we can track when a change can be
seen from another instance.

To pick a silly example, if we write:

val p1 = new Point(0,0)

p1: Point = (0,0)

scala> val p2 = new Point(0,0)

p2: Point = (0,0)

Then computing with p1 and p2 both give the same result, and if we mutate p1 by calling
setXCoord(), p2 is unaffected:

scala> p1.setXCoord(99)

scala> p1

res10: Point = (99,0)

scala> p2

res11: Point = (0,0)

Contrast that to:

scala> val p3 = new Point(0,0)

p3: Point = (0,0)

scala> val p4 = p3

p4: Point = (0,0)

where again computing with p3 and p4 both give the same result, but if we mutate p3

anywhere, then p4 is changed as well:

scala> p3.setXCoord(99)

scala> p3

6

res1: Point = (99,0)

scala> p4

res2: Point = (99,0)

That’s because p3 and p4 point to the same instance — they share that instance. In contrast,
p1 and p2 both point to different instances (even though those instances look the same).
Tracking this kind of sharing is what makes working with mutation error prone.

My claim is that to understand mutation, you need to have a working model of how a
language represents instances internally. It does not need to be an accurate model; it just
needs to have good predictive power. Let me describe a basic model that answers the
question: where do variables live? (The question ‘where do methods live?’ is less interesting
because methods are not mutable.)

Recall that when you create an instance with a new statement, a block of memory is allocated
in memory (in the heap) representing the new instance. Here is how we represent an instance
in the heap:

+------------+

| class name |

|------------|

| |

| fields |

| |

+------------+

This representation does not have include the methods, because that’s not what I want to
focus on right now. The value returned by a new you can think of as the address in memory
where the instance lives. (This is sometimes called an instance reference.) Thus, for instance,
when you write

val p1 = new Point(0,10)

a new instance is created in memory, say living at some address addr , and variable p1 holds
value addr . We can represent this as follows:

+-------------+

p1 *----------> | Point |

|-------------|

| xpos = 0 |

| ypos = 10 |

+-------------+

7

Now, when you pass an instance as an argument to a method, what you end up passing is
the address of that instance (that is, the value returned by the new that create the instance
in the first place). That is how instances get manipulated.

Consider lines. When you create a Line instance, passing in two points, you get as values
of the fields sp and ep in the created line the addresses of the two points that were used to
create the line in the first place.

val p1 = new Point(0,10)

val p2 = new Point(0,20)

val l1 = new Line(p2,p1)

+-------------+

p1 *----------> | Point | <------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <--+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 20 | | |

+-------------+ | |

| |

+-------------+ | |

l1 *----------> | Line | | |

|-------------| | |

| sp = *-----------+ |

| ep = *---------------+

+-------------+

To find the value of a field, you follow the arrows to the instance that holds the field you
are trying to access. Thus, p1.xCoord() looks up the xpos field in the instance pointed to
by p1. Similarly, l1.end().yCoord() accesses the ypos field of the instance returned by
l1.end(), which itself can be found as field ep in the instance pointed to by l1.

In particular, you see why if after creating the above we write

scala> p1.setYCoord(5)

scala> l1

res10: Line = [(0,20) <-> (0,5)]

8

we get that l1 is now [(0,20) <-> (0,5)]; intuitively, because p1 is the same instance as
the point stored as the end point in l1. We call this phenomenon sharing. It is reflected by
the fact that there are two arrows pointing to the same instance in a diagram.

Compare the above by what gets constructed if we write:

val p3 = new Point(0,10)

val l2 = new Line(p3,p3)

+-------------+

p3 *----------> | Point | <------+

|-------------| <--+ |

| xpos = 0 | | |

| ypos = 10 | | |

+-------------+ | |

| |

+-------------+ | |

l2 *----------> | Line | | |

|-------------| | |

| sp = *-----------+ |

| ep = *---------------+

+-------------+

Here, the same point is used as start and end points of l2. Meaning, in particular, that if
we update field xpos of p3, both the start and end points of l2 look different.

16.3 Inheritance [Not Covered in Class]

What about inheritance? Well, when a class (say A) extends another class (say B), it allocates
not only a chunk of memory to hold the new instance of type A, but also allocates a chunk of
memory for an instance of type B that will hold the fields that are inherited from B. (This is
the implicit delegation model I presented when I talked about inheritance — the instance of
type B created is the implicit delegate for B.) Thus, in the presence of inheritance, creating
an instance actually ends up creating a chain of instances. Consider the following example,
where we define a subtype CLine of Line and inherit the Line methods:� �
class CLine (s:Point,e:Point,c:String) extends Line(s,e) {

// We inherit Line’s methods:

// start(), end(), setStart(), setEnd()

def color ():String = c

9

override def toString ():String = "[" + start() + " <-> " + end() + "]@

" + c

}� �
Here’s a sample execution with resulting diagram:

val p1 = new Point(0,10)

val p2 = new Point(0,20)

val cl = new CLine(p2,p1,"red")

+-------------+

p1 *----------> | Point | <-------------------------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <---------------------+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 20 | | |

+-------------+ | |

| |

+-------------+ +-----------+ | |

cl *----------> | CLine | +--> | Line | | |

|-------------| | |-----------| | |

| super *-------+ | sp = *--------+ |

|-------------| | ep = *------------+

| c = red | +-----------+

+-------------+

Thus, when we invoke cl.end().yPos(), we follow the arrow from cl to find the CLine

instance; it does not contain the ep field, so we follow the super arrow that points to the
inherited instance, which does contain the ep field, and to get the y-coordinate of that point,
we follow the arrow to find the appropriate point instance, and extract its ypos value.

The above diagram is grossly simplified, because, in particular, every instance in Scala
extends at least the Any class. Thus, if you really wanted to be accurate, you would have to
create inheritance arrows to instances of class Any, and so on, for every instance. The above
model is sufficient for quick back-of-the-envelope computations, though. In particular, it lets
you predict the obvious result:

10

scala> p1.setYCoord(99)

scala> cl

res1: CLine = [(0,20) <-> (0,99)]@red

16.4 Shallow and Deep Copies

As we saw in the first example, if we pass an instance to a method, we are really passing the
address of the instance to the method. And if the method just takes those values and store
them somewhere, then we get sharing, which may or may not be what we want.

An example of sharing was the new Line(p1,p1) example earlier. The two fields sp and ep

of the newly created Line instance end up pointing to the same instance of Point, so that
modifying that instance is reflect in both the start and end position of the line.

To make our examples more interesting, consider an additional class to represent triangles
using a base line and another point:� �
class Triangle (b:Line, p:Point) {

private var base:Line = b

private var tip:Point = p

def side1 ():Line = base

def side2 ():Line = new Line(base.start(),tip)

def side3 ():Line = new Line(base.end(),tip)

def setBase (l:Line):Unit = (base=l)

def setTip (p:Point):Unit = (tip=p)

override def toString ():String = side1() + " " + side2() + " " +

side3()

}� �
Now we can get even more interesting sharing going between lines and points.

Consider the following definitions:

scala> val p = new Point(0,0)

p: Point = (0,0)

scala> val q = new Point(100,0)

11

q: Point = (100,0)

scala> val r = new Point(50,50)

r: Point = (50,50)

scala> val l = new Line(p,q)

l: Line = [(0,0) <-> (100,0)]

scala> val t = new Triangle(l,r)

t: Triangle = [(0,0) <-> (100,0)] [(0,0) <-> (50,50)] [(100,0) <-> (50,50)]

Suppose we wanted to create another triangle that looks just like t. An easy way to do that
is to simply define:

scala> val u1 = t

u1: Triangle = [(0,0) <-> (100,0)] [(0,0) <-> (50,50)] [(100,0) <-> (50,50)]

But of course, these is maximal sharing between t and u1:

+-------------+

r *----------> | Point | <-------+

|-------------| |

| xpos = 50 | |

| ypos = 50 | |

+-------------+ |

|

|

+-------------+ |

l *----------> | Line | <-----+ |

|-------------| | |

| sp = *------------+ | |

| ep = *----------+ | | |

+-------------+ | | | |

| | | |

| | | |

+-------------+ | | | |

q *----------> | Point | <-+ | | |

|-------------| | | |

| xpos = 100 | | | |

| ypos = 0 | | | |

+-------------+ | | |

| | |

| | |

12

+-------------+ | | |

p *----------> | Point | <---+ | |

|-------------| | |

| xpos = 0 | | |

| ypos = 0 | | |

+-------------+ | |

| |

+-------------+ | |

t *----------> | Triangle | | |

+----> |-------------| | |

| | base = *------------+ |

| | tip = *---------------+

| +-------------+

|

u1 *-----+

In particular, changing any part of one changes the other:

scala> t.setTip(new Point(9,9))

scala> u1

res7: Triangle = [(0,0) <-> (100,0)] [(0,0) <-> (9,9)] [(100,0) <-> (9,9)]

What if we wanted the new triangle to look just like t but not share as much with t? Let’s
create a new method in Triangle that creates a copy of the current triangle that does not
share its fields.� �
class Triangle (b:Line, p:Point) {

private var base:Line = b

private var tip:Point = p

def side1 ():Line = base

def side2 ():Line = new Line(base.start(),tip)

def side3 ():Line = new Line(base.end(),tip)

def setBase (l:Line):Unit = (base=l)

def setTip (p:Point):Unit = (tip=p)

def copy ():Triangle = new Triangle(base,tip)

13

override def toString ():String = side1() + " " + side2() + " " +

side3()

}� �
Now, if we redefine p,q,r,l,t as above and say:

scala> val u2 = t.copy()

u2: Triangle = [(0,0) <-> (100,0)] [(0,0) <-> (9,9)] [(100,0) <-> (9,9)]

we end up with less sharing between t and u2:

+-------------+

r *----------> | Point | <-------+

|-------------| |

| xpos = 50 | |

| ypos = 50 | |

+-------------+ |

|

|

+-------------+ |

l *----------> | Line | <-----+ |

|-------------| | |

| sp = *------------+ | |

| ep = *----------+ | | |

+-------------+ | | | |

| | | |

| | | |

+-------------+ | | | |

q *----------> | Point | <-+ | | |

|-------------| | | |

| xpos = 100 | | | |

| ypos = 0 | | | |

+-------------+ | | |

| | |

| | |

+-------------+ | | |

p *----------> | Point | <---+ | |

|-------------| | |

| xpos = 0 | | |

| ypos = 0 | | |

+-------------+ | |

| |

14

+-------------+ | |

t *----------> | Triangle | | |

|-------------| | |

| base = *------------+ |

| tip = *---------------+

+-------------+ | |

| |

+-------------+ | |

u2 *----------> | Triangle | | |

|-------------| | |

| base = *------------+ |

| tip = *---------------+

+-------------+

But there is still some sharing. In fact, if we change either of l, p, q, or r, we see that change
both in t and in u2:

scala> t.side1().end().setXCoord(999)

scala> u2

res12: Triangle = [(0,0) <-> (999,0)] [(0,0) <-> (50,50)] [(999,0) <-> (50,50)]

So copy() may not be quite what we want. It does create a fresh copy of t, but because
base and tip are simply given the address of the instance pointed to by base and by tip

in t, the value of the fields end up the same in both t and u2.

So while u2 is a copy of t, they are not fully disjoint. Rather, u2 is what we call a shallow
copy of t. The “top level” of the instances are disjoint (in the sense that their fields live in
different places), but any sharing within the values held in the fields is preserved.

If we wanted a truly disjoint new line, then we need to make what is called a deep copy,
that is, a copy that recursively deep copies (creating new instances) for every instance held
in every variable, all the way down. Thus:� �
class Triangle (b:Line, p:Point) {

private var base:Line = b

private var tip:Point = p

def side1 ():Line = base

def side2 ():Line = new Line(base.start(),tip)

def side3 ():Line = new Line(base.end(),tip)

15

def setBase (l:Line):Unit = (base=l)

def setTip (p:Point):Unit = (tip=p)

def copy ():Triangle = new Triangle(base,tip)

def deepCopy ():Triangle = new Triangle(base.deepCopy(),

tip.deepCopy())

override def toString ():String = side1() + " " + side2() + " " +

side3()

}� �
So, you see, to create a deep copy of a triangle, we recursively deep copy all the values of
all the relevant fields, and create a new triangle with those new values. This means that we
need a deepCopy() method in Point and in Line — let’s do that, and add some shallow
copy() methods as well:� �
class Point (x:Int, y:Int) {

// executed whenever you create a Point instance

if (x < 0 || y < 0)

throw new IllegalArgumentException("Point not positive")

private var xpos:Int = x

private var ypos:Int = y

def xCoord ():Int = xpos

def yCoord ():Int = ypos

def setXCoord (x:Int):Unit =

if (x >= 0)

xpos = x

else

throw new IllegalArgumentException("Point not positive")

def setYCoord (y:Int):Unit =

if (y >= 0)

ypos = y

else

throw new IllegalArgumentException("Point not positive")

def copy ():Point = new Point(xCoord(),yCoord())

16

def deepCopy ():Point = new Point(xCoord(),yCoord())

override def toString ():String = "(" + xCoord() + "," + yCoord() + ")"

}

class Line (s:Point,e:Point) {

private var sp : Point = s

private var ep : Point = e

def start ():Point = sp

def end ():Point = ep

def setStart (p:Point):Unit = (sp=p)

def setEnd (p:Point):Unit = (ep=p)

def copy ():Line = new Line(start(),end())

def deepCopy ():Line = new Line (start().deepCopy(),

end().deepCopy())

override def toString ():String = "[" + start() + " <-> " + end() + "]"

}� �
Note that copy() and deepCopy() for Point are the same. That’s because copying an
integer is the same as creating a new integer. (Because Int is an immutable class!) So for
some classes, a deep copy is going to look the same as a shallow copy. For the sake of clarity,
let’s keep the two methods distinct, just to make clear that they have different roles, even
though they do the same thing.

Now, if we redefine p,q,r,l,t as before and say:

scala> val u3 = t.deepCopy()

u3: Triangle = [(0,0) <-> (100,0)] [(0,0) <-> (9,9)] [(100,0) <-> (9,9)]

You get that t and u3 are truly disjoint: each of their start and end fields point to different
instances. I will let you draw the resulting diagram.

17

