
Object-Oriented Design Lecture 11
CS 3500 Fall 2010 (Pucella) Friday, Oct 22, 2010

11 Parameterized Classes

Last time, we advocated subtyping from multiple types as a way to get more reuse out
of client code (the Colored example), and because it leads to the use of “standardized
interfaces” to provide functionality in a generic way.

We continue on this track here, by showing how we can use parameterized classes in combi-
nation with traits to enable more code reuse. We focus on the Stream standardized interface
introduced last time:� �
trait Stream[A] {

def hasElement ():Boolean

def head ():A

def tail ():Stream[A]

}� �
Here are some useful functions on streams: print() to print the elements of a stream, and
sumInt() to sum the elements of an integer stream. I’ve put them in a module Stream, and
we will be adding to it below.

object Stream {

def print[A] (st:Stream[A]):Unit =

if (st.hasElement()) {

println(" " + st.head());

print(st.tail())

} else

()

def sumInt (st:Stream[Int]):Int =

if (st.hasElement())

st.head() + sumInt(st.tail())

else

0

}

Last time, we saw an implementation of the List ADT with support for Streams. That
defined lists of integers. If we wanted to define lists of strings, say, then we’d need to define

1

a new ADT. That’s stupid. We can generalize our List ADT to work with an arbitrary
element type. It’s just like we did for the parameterized trait Stream[T] — we just need to
define a parameterized List[T] ADT:

CREATORS

empty : () -> List[T]

cons : (T, List[T]) -> List[T]

ACCESSORS

isEmpty : () -> Boolean

first : () -> T

rest : () -> List[T]

length : () -> Int

append : (List[T]) -> List[T]

find : (T) -> Boolean

// stream operations

hasElement : () -> Boolean

head : () -> T

tail : () -> Stream[T]

with the usual specification – the only difference is in the signature, which is parameterized
by a type T. (Note also that I’ve left out isEqual() – equality in the presence of parame-
terization is somewhat subtle, so I’ll come back to it later.

Here is the code obtained from the usual Specification Design Pattern, except taking param-
eterization into account:� �
object List {

def empty[T] ():List[T] = new ListEmpty[T]()

def cons[T] (t:T, L:List[T]):List[T] = new ListCons[T](t,L)

// EMPTY LIST REPRESENTATION

//

private class ListEmpty[T] () extends List[T] {

def isEmpty ():Boolean = true

def first ():T =

throw new RuntimeException("empty().first()")

def rest ():List[T] =

throw new RuntimeException("empty().rest()")

def length ():Int = 0

def append (M:List[T]):List[T] = M

2

def find (f:T):Boolean = false

// canonical methods?

override def toString ():String = ""

// stream functions

def hasElement ():Boolean = false

def head ():T =

throw new RuntimeException("empty().head()")

def tail ():Stream[T] =

throw new RuntimeException("empty().tail()")

}

// CONS LIST REPRESENTATION

//

private class ListCons[T] (n:T, L:List[T]) extends List[T] {

def isEmpty ():Boolean = false

def first ():T = n

def rest ():List[T] = L

def length ():Int = 1 + L.length()

def append (M:List[T]):List[T] = List.cons(n,L.append(M))

def find (f:T):Boolean = { (f == n) || L.find(f) }

override def toString ():String = n + " " + L.toString()

// stream functions

def hasElement():Boolean = true

def head():T = n

def tail():Stream[T] = L

}

}

abstract class List[T] extends Stream[T] {

def isEmpty ():Boolean

def first ():T

def rest (): List[T]

def length ():Int

3

def append (M:List[T]):List[T]

def find (f:T):Boolean

// isEqual?

}� �
A couple of things to note. First, when defining the abstract class List, we specify the type
parameter. This is the name by which the type parameter that we use when we actually use
List will be referred to in the body of List. For instance, we see that List[T] will be a
subtype of Stream[T], for that same T. Thus, when we talk about List[Int], it is a subtype
of Stream[Int], and when we talk about List[String], it is a subtype of Stream[String].

Second, the implementation classes are also parameterized, which makes sense because they
need to subtype List[T], which is itself parameterized.

Third, the creators are generic methods – that’s because there’s a single creator function
for all lists, so it has to work no matter the element type of the list. Thus, when we invoke
cons(), we get to specify the kind of list we are working on: List.cons[Int](1,L) will tack
on integer 1 to the integer list L and produce an integer list, while List.cons[String]("hello",L’)
will tack on string "hello" to list L’.

Here are some examples:

val L1:List[Int] = List.cons(33,List.cons(66,List.cons(99,List.empty())))

println("L1 = " + L1)

println("Elements L1 = ")

Stream.print[Int](L1)

println("Sum L1 = " + Stream.sumInt(L1))

val L2:List[String] =

List.cons[String]("hello",

List.cons[String]("world",

List.empty[String]))

println("L2 = " + L2)

println("Elements L2 = ")

Stream.print[String](L2)

with output:

L1 = 33 66 99

Elements L1 =

33

66

4

99

Sum L1 = 198

L2 = hello world

Elements L2 =

hello

world

Recall that we do not usually need to explicitly specify a type when calling generic method
— the type checker will often figure out the right type for us. Accordingly, from now on, I
will leave out the type argument on calls to generic methods, with the understanding that I
can always toss them in if the type checker gets confused.

Here’s another example of a parameterized ADT, binary trees. Those also provide a nice
example of nontrivial stream (which is good because streams for lists are somewhat unexit-
ing).

Here is the BinTree[T] ADT:

CREATORS

empty : () -> BinTree[T]

node : (T,BinTree[T],BinTree[T]) -> BinTree[T]

OPERATIONS

isEmpty : () -> Boolean

root : () -> T

left : () -> BinTree[T]

right : () -> BinTree[T]

size : () -> Int

with specification

empty().isEmpty() = true

node(v,l,r).isEmpty() = false

node(v,l,r).root() = v

node(v,l,r).left() = l

node(v,l,r).right() = r

empty().size() = 0

node(v,l,r).size() = 1 + l.size() + r.size()

I will not describe the specification of the stream operations, but will simply say that they
should deliver all the elements of the tree, in some order. (It’s that last bit, the “in some
order” one, that is a pain to specify.)

Here is the code obtained from the Specification Design Pattern, with the stream operations
added in as well:

5

� �
object BinTree {

def empty[T] ():BinTree[T] = new Empty[T]()

def node[T] (n:T, l:BinTree[T], r:BinTree[T]):BinTree[T] =

new Node[T](n,l,r)

private class Empty[T] extends BinTree[T] {

def isEmpty ():Boolean = true

def root ():T =

throw new RuntimeException("BinTree.empty().root()")

def left ():BinTree[T] =

throw new RuntimeException("BinTree.empty().left()")

def right ():BinTree[T] =

throw new RuntimeException("BinTree.empty().right()")

def size ():Int = 0

// canonical methods?

override def toString ():String = "-"

// stream methods

def hasElement ():Boolean = false

def head ():T =

throw new RuntimeException("BinTree.empty().head()")

def tail ():Stream[T] =

throw new RuntimeException("BinTree.empty().tail()")

}

private class Node[T] (n:T, l:BinTree[T], r:BinTree[T])

extends BinTree[T] {

def isEmpty ():Boolean = false

def root ():T = n

def left ():BinTree[T] = l

def right ():BinTree[T] = r

def size ():Int = 1 + l.size() + r.size()

// canonical methods?

6

override def toString ():String = n + "[" + l + "," + r + "]"

// stream methods

def hasElement ():Boolean = true

def head ():T = n

def tail ():Stream[T] = new Pair[T](l,r)

}

private class Pair[T] (fst:Stream[T],snd:Stream[T]) extends Stream[T] {

// stream methods

def hasElement ():Boolean = {

fst.hasElement() || snd.hasElement()

}

def head ():T =

if (fst.hasElement())

fst.head()

else

snd.head()

def tail ():Stream[T] =

if (fst.hasElement())

new Pair[T](fst.tail(),snd)

else

snd.tail()

}

}

abstract class BinTree[T] extends Stream[T] {

def isEmpty ():Boolean

def root ():T

def left ():BinTree[T]

def right ():BinTree[T]

def size ():Int

}� �
Just as in the List[T] case, the parameterization carries over to the implementation classes,
and the creators are generic methods.

7

What’s more interesting is the implementation of the stream operations. The stream oper-
ations for empty() are straightforward, but for node(), not so much. The head() of the
stream clearly should be the root of the tree, but what about the tail()? We want to return
a stream that will deliver all the elements of the tree without its root. One way to do that is
to have tail() return a new tree surgically altered so that it doesn’t have its root anymore.
You can come up with a way to do that. An alternative, which is what I used here, is to
realize that since tail() only needs to return a Stream[T], there is no reason why it should
return a binary tree. It can return anything that is a subtype of Stream[T], and as long
as that anything can deliver the rest of the elements stored in the tree (without the root),
it’s good enough for us. So I use an auxiliary class Pair that basically takes two streams
(which will be the left and right subtrees of the node under consideration) and deliver all
the elements of the first stream follower by all the elements of the second stream.

Here is an example:

val T = BinTree // convenient abbreviation for BinTree module

val T1:BinTree[Int] = T.node(33,

T.node(66,

T.node(99,T.empty(),T.empty()),

T.empty()),

T.node(11,

T.node(22,T.empty(),T.empty()),

T.node(44,T.empty(),T.empty())))

println("T1 = " + T1)

println("Elements T1 = ")

Stream.print(T1)

println("Sum T1 = " + Stream.sumInt(T1))

which yields:

T1 = 33[66[99[-,-],-],11[22[-,-],44[-,-]]]

Elements T1 =

33

66

99

11

22

44

Sum T1 = 275

Let’s look at the sumInt function a bit more carefully. It works only on streams of integers
(and subtypes, of course). Intuitively, though, there are other classes with a concept of

8

“summing elements”. Let’s illustrate this using pairs of integers, where the sum of (x1, y1)
and (x2, y2) is just pointwise addition, (x1 + x2, y1 + y2).

Let’s define a simple ADT for pairs of integers, and it’s simple enough that I won’t bother
writing down the specification. (Exercise: write it!):

object PairInt {

def create (f:Int,s:Int):PairInt = new PairImpl(f,s)

private class PairImpl (f:Int,s:Int) extends PairInt {

def first ():Int = f

def second ():Int = s

def add (i:PairInt):PairInt =

new PairImpl(f+i.first(),s+i.second())

// canonical methods?

override def toString ():String = "(" + f + "," + s + ")"

}

}

abstract class PairInt {

def first ():Int

def second ():Int

def add (p:PairInt):PairInt

}

Straightforward enough. Let’s write a variant of sumInt() that works with pairs of integers:

def sumPairInt (st:Stream[PairInt]):PairInt =

if (st.hasElement())

st.head().add(sumPairInt(st.tail()))

else

PairInt.create(0,0)

Let’s try it out:

val L4:List[PairInt] =

List.cons(PairInt.create(1,2),

9

List.cons(PairInt.create(5,6),

List.cons(PairInt.create(8,9),

List.empty())))

println("L4 = " + L4)

println("Elements L4 = ")

Stream.print(L4)

println("Sum L4 = " + Stream.sumPairInt(L4))

which yields the expected output:

L4 = (1,2) (5,6) (8,9)

Elements L4 =

(1,2)

(5,6)

(8,9)

Sum L4 = (14,17)

Functions sumInt and sumPairInt are doing pretty much the same thing, but they look a bit
different because they use different methods to add streams elements (+ versus add()) and
use a different base value. We can make them more similar by first requiring that sumInt

and sumPairInt take the base value as an extra argument, and by defining a new class to
represent integers that have an add() operation on them – think of them as just a box you
can put around an integer to provide it with an add() method.� �
object AInt {

def create (i:Int):AInt = new AIntImpl(i)

private class AIntImpl (i:Int) extends AInt {

def int ():Int = i

def add (a:AInt):AInt = new AIntImpl(i+a.int())

override def toString ():String = i.toString()

}

}

abstract class AInt {

def int() : Int

def add(a:AInt):AInt

}� �
Here are the new sumAInt() and sumPairInt() functions:

10

def sumAInt (base:AInt, st:Stream[AInt]):AInt =

if (st.hasElement())

st.head().add(sumAInt(base,st.tail()))

else

base

def sumPairInt (base:PairInt, st:Stream[PairInt]):PairInt =

if (st.hasElement())

st.head().add(sumPairInt(base,st.tail()))

else

base

We can now work with lists of AInts:

def i(n:Int):AInt = AInt.create(n) // abbreviation for creator

val L5:List[AInt] =

List.cons(i(33),List.cons(i(66),List.cons(i(99),List.empty())))

println("L5 = " + L5)

println("Elements L5 = ")

Stream.print(L5)

println("Sum L5 = " + sumAInt(i(0),L5))

with output

L5 = 33 66 99

Elements L5 =

33

66

99

Sum L5 = 198

Now, both sumAInt() and sumPairInt() look exactly the same, as far as the implementation
of the function is concerned. Only the signatures are different. Presumably, we should be
able to generalize into a function sum(). Intuitively, sum() should be able to work with any
stream of values of a type that has an add() operation defined. This is the same situation
we had last time with Colored: we need to define a new trait to represent the fact that a
type has an add() method that expects a value of that same type as the class, and return a
result of the same type as the class itself. Let’s call that trait Addable:� �
trait Addable[A] {

11

def add (a:A):A

}� �
Since both AInt and PairInt implement a suitable add() method, they can both be made
subtypes of Addable, at the appropriate type:� �
abstract class AInt extends Addable[AInt] {

def int() : Int

def add(a:AInt):AInt

}

abstract class PairInt extends Addable[PairInt] {

def first ():Int

def second ():Int

def add (p:PairInt):PairInt

}� �
Let’s define a function sum() that works with any stream of addable values:

def sum[T <: Addable[T]] (u:T,st:Stream[T]):T =

if (st.hasElement())

st.head().add(sum(u,st.tail()))

else

u

Note what this says: sum() is happy to work with any stream as long as it is a stream of Ts
where T has an operation add() of the right type — this is what the [T <: Addable[T]]

constraint means).

As an example, here is sum working on a list of AInts like above:

def i(n:Int):AInt = AInt.create(n)

val L6:List[AInt] =

List.cons(i(33),List.cons(i(66),List.cons(i(99),List.empty())))

println("L6 = " + L6)

println("Elements L6 = ")

Stream.print(L6)

println("Sum L6 = " + Stream.sum(i(0),L6))

12

with output:

L6 = 33 66 99

Elements L6 =

33

66

99

Sum L6 = 198

That’s great. Can we push this further? We cannot do more for sum(), since it’s as reusable
as it can be. But we can generalize things elsewhere. In particular, our pairs are pathetic.
Let’s first define pairs of AInts to illustrate the potential for generalization there:� �
object PairAInt {

def create (f:AInt,s:AInt):PairAInt = new PairImpl(f,s)

private class PairImpl (f:AInt,s:AInt) extends PairAInt {

def first ():AInt = f

def second ():AInt = s

def add (i:PairAInt):PairAInt =

new PairImpl(f.add(i.first()),s.add(i.second()))

// canonical methods?

override def toString ():String = "(" + f + "," + s + ")"

}

}

abstract class PairAInt extends Addable[PairAInt] {

def first ():AInt

def second ():AInt

def add (p:PairAInt):PairAInt

}� �
This is a simple variant of the PairInt example from earlier, except using AInts instead of
Ints. Here is an example using a binary tree of pairs of AInts:

def p (i:Int,j:Int):PairAInt = PairAInt.create(AInt.create(i),

AInt.create(j))

// a convenient abbreviation for the creator

13

val T2:BinTree[PairAInt] =

T.node(p(1,2),

T.node(p(30,40),T.empty(),T.empty()),

T.node(p(500,600),

T.node(p(7000,8000),

T.empty(), T.empty()),

T.empty()))

println("T2 = " + T2)

println("Elements T2 = ")

Stream.print(T2)

println("Sum T2 = " + Stream.sum(p(0,0),T2))

with output:

T2 = (1,2)[(30,40)[-,-],(500,600)[(7000,8000)[-,-],-]]

Elements T2 =

(1,2)

(30,40)

(500,600)

(7000,8000)

Sum T2 = (7531,8642)

Now, if you look at the PairAInt class, two things stick out. First, it should be easy to
parameterize — instead of a pair of two values, each of type AInt, make it a pair of two
values, one of type T and one of type U, and make those parameters to the class. Second,
the add() method in PairAInt calls the add() methods of the values appearing as first and
second elements of the pair. So in order for the code above to make sense in general, not only
will our pairs be Addable, they will also require you to give them two types T and U that are
themselves Addable — otherwise the type checker will complain when type checking add()

in our pair implementation that it’s trying to call an add() method on a type that is not
guaranteed to have it.

Here is the resulting ADT, called APair[T,U]:� �
object APair {

def create[T<:Addable[T],U<:Addable[U]] (f:T,s:U):APair[T,U] =

new APairImpl[T,U](f,s)

private class APairImpl[T <: Addable[T],U <: Addable[U]] (f:T,s:U)

extends APair[T,U] {

14

def first ():T = f

def second ():U = s

def add (i:APair[T,U]):APair[T,U] =

new APairImpl(f.add(i.first()),s.add(i.second()))

// canonical methods?

override def toString ():String =

"(" + f.toString() + "," + s.toString() + ")"

}

}

abstract class APair[T <: Addable[T],U <: Addable[U]]

extends Addable[APair[T,U]] {

def first ():T

def second ():U

def add (p:APair[T,U]):APair[T,U]

}� �
The types tell the whole story. Look at the type for the abstract class:

abstract class APair[T <: Addable[T],U <: Addable[U]]

extends Addable[APair[T,U]] {

This says that we’re defining an abstract class APair that has two parameters, T and U, each
that must be a subtype of Addable, and that is itself a subtype of Addable. Each use of
Addable needs to specify the type at which it should be instantiated.

This works and compiles, and gives us a lot of flexibility to create structure on which we can
reuse our sum() functions (which is of course just a stand-in for some application code that
requires access to the content of an aggregate structure using a stream).

Here is the same example as T2 above, except rewritten using APairs of AInts:

val p0:APair[AInt,AInt] = APair.create(i(0),i(0))

val p1:APair[AInt,AInt] = APair.create(i(1),i(2))

val p2:APair[AInt,AInt] = APair.create(i(30),i(40))

val p3:APair[AInt,AInt] = APair.create(i(500),i(600))

val p4:APair[AInt,AInt] = APair.create(i(7000),i(8000))

val T3:BinTree[APair[AInt,AInt]] =

T.node(p1,

T.node(p2,T.empty(),T.empty()),

15

T.node(p3,

T.node(p4,

T.empty(), T.empty()),

T.empty()))

println("T3 = " + T3)

println("Elements T3 = ")

Stream.print(T3)

println("Sum T3 = " + Stream.sum(p0,T3))

with output:

T3 = (1,2)[(30,40)[-,-],(500,600)[(7000,8000)[-,-],-]]

Elements T3 =

(1,2)

(30,40)

(500,600)

(7000,8000)

Sum T3 = (7531,8642)

But we can also do things beyond what we could easily do before, like working with trees of
pairs of an addable integer and another pair, itself a pair of two addable integers:

val pp0:APair[AInt,APair[AInt,AInt]] = APair.create(i(0),p0)

val pp1:APair[AInt,APair[AInt,AInt]] = APair.create(i(1),p1)

val pp2:APair[AInt,APair[AInt,AInt]] = APair.create(i(2),p2)

val pp3:APair[AInt,APair[AInt,AInt]] = APair.create(i(3),p3)

val pp4:APair[AInt,APair[AInt,AInt]] = APair.create(i(4),p4)

val T4:BinTree[APair[AInt,APair[AInt,AInt]]] =

T.node(pp1,

T.node(pp2,T.empty(),T.empty()),

T.node(pp3,

T.node(pp4,

T.empty(), T.empty()),

T.empty()))

println("T4 = " + T4)

println("Elements T4 = ")

Stream.print(T4)

println("Sum T4 = " + Stream.sum(pp0,T4))

with output:

T4 = (1,(1,2))[(2,(30,40))[-,-],(3,(500,600))[(4,(7000,8000))[-,-],-]]

16

Elements T4 =

(1,(1,2))

(2,(30,40))

(3,(500,600))

(4,(7000,8000))

Sum T4 = (10,(7531,8642))

17

