
Object-Oriented Design Lecture 10
CS 3500 Fall 2010 (Pucella) Tuesday, Oct 19, 2010

10 Subtyping Multiple Types

The goal in this lecture is to look at creating types that are subtypes of multiple types at
the same time, and why that might be useful. Intuitively, this will enable even more code
reuse.

Let’s start with the implementation of the Point and CPoint ADT from last lecture. I
won’t give you the whole code, just remind you of the abstract classes Point and CPoint:� �
abstract class Point {

def xCoord ():Double

def yCoord ():Double

def move (dx:Double,dy:Double):Point

def rotate(t:Double):Point

def add (p:Point):Point

def isEqual (p:Point):Boolean

}

abstract class CPoint extends Point {

def color ():Color

def updateColor (c:Color):CPoint

def xCoord ():Double

def yCoord ():Double

def move (dx:Double,dy:Double):CPoint

def rotate (t:Double):CPoint

def add (cp:CPoint):CPoint

def isEqual (cp:CPoint):Boolean

// to get subtyping to work

def add (p:Point):Point

def isEqual (p:Point):Boolean

}� �
1

We have implementations of these.

Suppose we do something similar for rectangles, defining both rectangles and colored rect-
angles. Here’s the Rect ADT:

CREATORS

create : (Point, Point) -> Rect

OPERATIONS

upperLeft : () -> Point

lowerRight : () -> Point

move : (Double, Double) -> Rect

within : (Point) -> Rect

isEqual : (Rect) -> Boolean

with specification:

create(ul,lr).upperLeft() = ul

create(ul,lr).lowerRight() = lr

create(ul,lr).move(dx,dy) = create(ul.move(dx,dy), lr.move(dx,dy))

create(ul,lr).within(p)

=

true if ul.xCoord() ≤ p.xCoord() ≤ lr.xCoord()

and lr.yCoord() ≤ p.yCoord() ≤ ul.yCoord()

false otherwise

create(ul,lr).isEqual(r)

=

true if ul.isEqual(r.upperLeft()) = true

and lr.isEqual(r.lowerRight()) = true

false otherwise

It’s a straightforward exercise to implement this ADT using the Specification Design Pattern:� �
object Rect {

def create (p:Point, q:Point):Rect =

if (p.xCoord() <= q.xCoord() &&

p.yCoord() <= q.yCoord())

new RectImpl(p,q)

else

throw new IllegalArgumentException("Rect.create()")

private class RectImpl (ul:Point, lr:Point) extends Rect {

def upperLeft ():Point = ul

2

def lowerRight ():Point = lr

def move (dx:Double,dy:Double):Rect =

new RectImpl(ul.move(dx,dy), lr.move(dx,dy))

def within (p:Point):Boolean = {

ul.xCoord() <= p.xCoord() && p.xCoord() <= lr.xCoord() &&

ul.yCoord() <= p.yCoord() && p.yCoord() <= lr.yCoord()

}

def isEqual (r:Rect):Boolean = {

ul==r.upperLeft() && lr==r.lowerRight()

}

// CANONICAL

override def toString ():String =

"rect(" + ul + "," + lr + ")"

override def equals (other : Any):Boolean =

other match {

case that : Rect => this.isEqual(that)

case _ => false

}

override def hashCode ():Int =

41 * (

41 + ul.hashCode()

) + lr.hashCode()

}

}

abstract class Rect {

def upperLeft ():Point

def lowerRight ():Point

def move (dx:Double,dy:Double):Rect

def within (p:Point):Boolean

def isEqual (r:Rect):Boolean

}� �
3

What about colored rectangles? The CRect ADT is what you would expect:

CREATORS

create : (Point, Point, Color) -> CRect

OPERATIONS

upperLeft : () -> Point

lowerRight : () -> Point

move : (Double, Double) -> CRect

within : (Point) -> CRect

isEqual : (CRect) -> Boolean

color : () -> Color

updateColor : (Color) -> CRect

The specification I will leave as an exercise — it is a simple variation on the specification for
ADT Rect.

Implementing the CRect ADT so that it is a subtype of Rect is straightforward using the
Specification Design Pattern and a “bridge method” for isEqual().� �
object CRect {

def create (p:Point, q:Point, c:Color):CRect =

if (p.xCoord() <= q.xCoord() &&

p.yCoord() <= q.yCoord())

new CRectImpl(p,q,c)

else

throw new IllegalArgumentException("CRect.create()")

private class CRectImpl (ul:Point, lr:Point, col:Color) extends CRect {

def color ():Color = col

def updateColor (c:Color):CRect =

new CRectImpl(ul,lr,c)

def upperLeft ():Point = ul

def lowerRight ():Point = lr

def move (dx:Double,dy:Double):CRect =

new CRectImpl(ul.move(dx,dy), lr.move(dx,dy), col)

def within (p:Point):Boolean = {

ul.xCoord() <= p.xCoord() && p.xCoord() <= lr.xCoord() &&

ul.yCoord() <= p.yCoord() && p.yCoord() <= lr.yCoord()

4

}

def isEqual (cr:CRect):Boolean = {

ul==cr.upperLeft() && lr==cr.lowerRight() && color==cr.color()

}

def isEqual (r:Rect):Boolean =

r match {

case cr:CRect => this.isEqual(cr)

case _ => false

}

// CANONICAL

override def toString ():String =

"crect(" + ul + "," + lr + "," + color + ")"

override def equals (other : Any):Boolean =

other match {

case that : CRect => this.isEqual(that)

case _ => false

}

override def hashCode ():Int =

41 * (

41 * (

41 + ul.hashCode()

) + lr.hashCode()

) + col.hashCode()

}

}

abstract class CRect extends Rect {

def color ():Color

def updateColor (c:Color):CRect

def upperLeft ():Point

def lowerRight ():Point

def move (dx:Double,dy:Double):CRect

def within (p:Point):Boolean

5

def isEqual (r:CRect):Boolean

// to get subtyping to work

def isEqual (r:Rect):Boolean

}� �
So CPoint is a subtype of Point, and CRect is a subtype of Rect. We already know we can
get some code reuse out of those relationships — any function that works on Points will
work on CPoints, and any function that works on Rects will work on CRects.

Now, suppose we wanted to write a function that extracted the color out of a colored “shape”
and complemented it. (ADT Color has an operation complement() that returns the com-
plement of a color on the color wheel.) Right now, given our definition, we would have to
write two functions:

def colorComplementPoint (c:CPoint):Color =

c.color().complement()

def colorComplementRect (c:CRect):Color =

c.color().complement()

The fact that both of those functions look exactly the same except for the type suggest that
there might be a way to write a single function to work with both CPoints and CRects.
Unfortunately, there is no type that is both a supertype of CPoint and CRect and that has
a color() operation.

So how about we introduce one, call it Colored, and make sure that CPoint and CRect are
both subtypes of Colored, on top of being subtypes of Point and Rect, respectively.

What we would like to define is something like an abstract class Colored:

abstract class Colored {

def color ():Color

}

and when we define, say, CPoint, we would say:

abstract class CPoint extends Point,Colored {

def color ():Color

def updateColor (c:Color):CPoint

def xCoord ():Double

def yCoord ():Double

6

def move (dx:Double,dy:Double):CPoint

def rotate (t:Double):CPoint

def add (cp:CPoint):CPoint

def isEqual (cp:CPoint):Boolean

// to get subtyping to work

def add (p:Point):Point

def isEqual (p:Point):Boolean

}

Unfortunately, this doesn’t work. (It works in some languages, just not the ones we’re using.)
We can technically only extend one other class. If we want to be a subtype of other types,
we have to make those types traits. Traits are reminiscent of Java interfaces, except that
they let you do more. We’ll see what that “more” denotes later. For the time being, think
of traits as simply abstract classes. Traits are easy to define:

trait Colored {

def color ():Color

}

To use the Colored trait, redefine both abstract classes CPoint and CRect:

abstract class CPoint extends Point with Colored {

def updateColor (c:Color):CPoint

def xCoord ():Double

def yCoord ():Double

def move (dx:Double,dy:Double):CPoint

def rotate (t:Double):CPoint

def add (cp:CPoint):CPoint

def isEqual (cp:CPoint):Boolean

// to get subtyping to work

def add (p:Point):Point

def isEqual (p:Point):Boolean

}

abstract class CRect extends Rect with Colored {

def updateColor (c:Color):CRect

7

def upperLeft ():Point

def lowerRight ():Point

def move (dx:Double,dy:Double):CRect

def within (p:Point):Boolean

def isEqual (r:CRect):Boolean

// to get subtyping to work

def isEqual (r:Rect):Boolean

}

Note that I’ve left out the declaration of color() from the abstract classes CPoint and
CRect. I will use the convention that when I write with SomeTrait, I will be pulling in the
declarations from SomeTrait. So the methods available in my abstract class will be all the
methods declared in the class plus all the methods declared in all the traits.

Now, I have both CPoint and CRect being subtypes of Colored, so I can replace my two
functions above with a single function that can work with any value of type Colored:

def colorComplement (c:Colored):Color =

c.color().complement()

We can call colorComplement() with a CPoint or a CRect, because the type checker will
insert an upcast automatically, since both CPoint and CRect are subtypes of Colored.

That takes care of color(). Now, what about updateColor()? Suppose we wanted to
create a shape that looked just like some other shape but colored with the complement of
that other shape? This is easy to do for CPoint:

def makeComplementPoint (c:CPoint):CPoint =

c.updateColor(c.color().complement())

And we can write a similar function for CRect:

def makeComplementRect (c:CRect):CRect =

c.updateColor(c.color().complement())

Again, the same code occurs in both function, so maybe we can write a single function
instead. As before, we need to make sure we have a supertype for both CPoint and CRect

with a suitable updateColor() method declared.

The easiest might just be to add updateColor() to traitColored. But we hit a bit of a snag
— updateColor() returns a result of the same type as the class in which it lives. So we
cannot easily abstract it away in Colored.

The solution is to parameterize Colored by the result type of the updateColor() operation:

8

� �
trait Colored[A] {

def color ():Color

def updateColor (c:Color):A

}� �
Think of the A in trait Colored[A] as a parameter like a parameter in a method. When
we use Colored, we get to choose the exact type we want to instantiate the parameter [A]
to. Such a parameterized trait is sometimes called a generic trait.

With this change, the abstract classes for CPoint and CRect look like:� �
abstract class CPoint extends Point with Colored[CPoint] {

def xCoord ():Double

def yCoord ():Double

def move (dx:Double,dy:Double):CPoint

def rotate(t:Double):CPoint

def add (cp:CPoint):CPoint

def isEqual (cp:CPoint):Boolean

// to get subtyping to work

def add (p:Point):Point

def isEqual (p:Point):Boolean

}

abstract class CRect extends Rect with Colored[CRect] {

def upperLeft ():Point

def lowerRight ():Point

def move (dx:Double,dy:Double):CRect

def within (p:Point):Boolean

def isEqual (r:CRect):Boolean

// to get subtyping to work

def isEqual (r:Rect):Boolean

}� �
Think about it, in CPoint, the updateColor() method should take a Color and return a
CPoint, so we instantiate Colored to Colored[CPoint], and similarly for CRect.

Now we can write a single function makeComplement() that creates a shape of the same kind
as the argument, but with its color replaced by its complement:

9

def makeComplement[A] (c:Colored[A]):A =

c.updateColor(c.color().complement())

Note that because we want this function to work on Colored[A] instances for any kind of
A, we need to use a generic method.

Here’s some sample code that illustrates this:

val q2 : CPoint = CPoint.cartesian(1,2,Color.red())

println("q2 = " + q2)

println("Complementing q2 = " + makeComplement[CPoint](q2))

val p3:Point = Point.cartesian(20,30)

val q3:Point = CPoint.cartesian(40,60,Color.red())

val r2:CRect = CRect.create(p3,q3,Color.blue())

println("r2 = " + r2)

println("Complementing r2 = " + makeComplement[CRect](r2))

which yiels the result:

q2 = cpoint(1.0,2.0,red)

Complementing q2 = cpoint(1.0,2.0,green)

r2 = crect(point(20.0,30.0),cpoint(40.0,60.0,red),blue)

Complementing r2 = crect(point(20.0,30.0),cpoint(40.0,60.0,red),orange)

10.1 Standardized Interfaces

Another way in which subtyping multiple types comes in handy is when you want your
ADT to provide one or more of what we might call “standardized interfaces”. For instance,
most aggregates structures (lists, trees, graphs, arrays, queues, stacks, etc) provide ways of
traversing the structure and getting one’s hands on all the elements in it, in some order.

Let’s look at one such way. We will use streams of values as a way to get at all the elements
of an aggregate structure. Think of a stream as a (possibly infinite) list of values. The
interface to strems is defined by the following trait:� �
trait Stream[A] {

def hasElement ():Boolean

def head ():A

def tail ():Stream[A]

}� �
10

As an example, here is how we can have our List ADT implement stream functionality. We
start with the standard List ADT, and add the following operations as specified by trait
Stream:

hasElement : () -> Boolean

head : () -> Int

tail : () -> Stream[Int]

with specification:

empty().hasElement() = false

cons(n,L).hasElement() = true

cons(n,L).head() = n

cons(n,L).tail() = L

Adding this to the List specification, it is easy enough to apply the Specification Design
Pattern and get an easy implementation:� �
object List {

def empty ():List = new ListEmpty()

def cons (n:Int, L:List):List = new ListCons(n,L)

// EMPTY LIST REPRESENTATION

//

private class ListEmpty () extends List {

def isEmpty ():Boolean = true

def first ():Int =

throw new RuntimeException("empty().first()")

def rest ():List =

throw new RuntimeException("empty().rest()")

def length ():Int = 0

def append (M:List):List = M

def find (f:Int):Boolean = false

def isEqual (M:List):Boolean = M.isEmpty()

override def equals (other:Any):Boolean =

other match {

case that:List => this.isEqual(that)

case _ => false

}

override def hashCode ():Int = 41

override def toString ():String = ""

11

// stream functions

def hasElement ():Boolean = false

def head ():Int =

throw new RuntimeException("empty().head()")

def tail ():Stream[Int] =

throw new RuntimeException("empty().tail()")

}

// CONS LIST REPRESENTATION

//

private class ListCons (n:Int, L:List) extends List {

def isEmpty ():Boolean = false

def first ():Int = n

def rest ():List = L

def length ():Int = 1 + L.length()

def append (M:List):List = List.cons(n,L.append(M))

def find (f:Int):Boolean = { (f == n) || L.find(f) }

def isEqual (M:List):Boolean =

(!(M.isEmpty()) && n==M.first() && L.isEqual(M.rest()))

override def equals (other:Any):Boolean =

other match {

case that:List => this.isEqual(that)

case _ => false

}

override def hashCode ():Int =

41 * (

41 + n.hashCode()

) + L.hashCode()

override def toString ():String = n + " " + L.toString()

// stream functions

def hasElement():Boolean = true

def head():Int = n

def tail():Stream[Int] = L

}

}

abstract class List extends Stream[Int] {

12

def isEmpty ():Boolean

def first ():Int

def rest (): List

def length ():Int

def append (M:List):List

def find (f:Int):Boolean

def isEqual (M:List):Boolean

}� �
Note that when we are subtyping a single trait, then we use extends instead of with.

Let’s illustrate this with several functions that work on streams, such as printStream() that
prints the elements from a stream, and sumStream that sums up the elements of a stream of
integers.

def printStream[A] (st:Stream[A]):Unit =

if (st.hasElement()) {

println(" " + st.head());

printStream(st.tail())

} else

()

def sumStream (st:Stream[Int]):Int =

if (st.hasElement())

st.head() + sumStream(st.tail())

else

0

We will see that we will be able to reuse all of those functions for all our aggregate structures
that implement the Stream trait.

val L1:List = List.cons(33,List.cons(66,List.cons(99,List.empty())))

println("Printing L1 = ")

printStream[Int](L1)

println("Sum L1 = " + sumStream(L1))

which yields an output:

Printing L1 =

33

66

99

Sum L1 = 198

13

