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8 Understanding Subtyping

Subtpying is a great way to enable client-side reuse, requiring a client to write a single
function that can work with argument of several types, namely all the subtypes of the type
that has been declared. But subtyping brings a whole range of issues to the fore. Not
the least of which the need to distinguish between static types (or compile-time types) and
dynamic types (or run-time types).

Static and Dynamic Types. Types are associated with identifiers in your program —
such identifiers include field declarations such as x in val x : T= ... and parameter
names in methods, such as y in def m (y:T):U = .... The type of those identifiers describe
the kind of values they can be bound to.

The static type of an identifier is the type that the identifier is declared to have in the source
code. For instance, if we declare val x:Point = ..., then identifier x has static type Point.

In contrast, the dynamic type of an identifier only makes sense when the program is execut-
ing and that identifier has actually been bound to a value, and is the actual type of the value
that the identifier is bound to. (Note that an identifier may be bound to different values
at different points in a program execution — for instance, the parameter to a method will
be bound to different values when the method is called with different arguments at different
points in the program execution.) The best way to think about it is to use the following
execution model for Scala: during program execution, doing a new C(...) creates a struc-
ture (just like a struct in Scheme) whose fields are the field of class C along with an extra
field holding the name of the class C, which is of course the actual type of the newly-created
structure. When that structure is bound to an identifier, the dynamic type of that identifier
is the type in the structure.

To show the difference between the two, recall the rotateAroundPoint() method for points,
declared to have signature

def rotateAroundPoint (p:Point, a:angle, c:Point):Point

The static type of both p and q is Point. The static return type of the method is also Point.

In contrast, the dynamic type of p and q only make sense when the method is called at
execution. For instance, writing

val p1:Point = Point.cartesian(0,1)
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val cq1:CPoint = CPoint.cartesian(10,20,Color.red())

val result:Point = rotatePointAround(p1,math.Pi/2,cq1)

has the following effect: p1 is bound to an actual point (intuitively a structure with fields
containing coordinates 0 and 1), cq1 is bound to an actual color pointed (intuitively a
structure with fields containing coordinates 10 and 20 and a color field containing red),
and the call to rotateAroundPoint() ensure that in the body of rotateAroundPoint()

parameter p is bound to the actual point (0, 1) — and thus the dynamic type of p is a Point

— while parameter q is bound to the actual color point (10, 20, red) — and thus the dynamic
type of q is a CPoint. Here, the static and dynamic types of p in rotateAroundPoint()

agree, but the static and dynamic types of q in rotateAroundPoint() differ.

The static type is what’s used by Scala to do type checking. That makes sense, because type
checking occurs before the program is run, and because the dynamic type of an identifier
depends on the execution of the program, we do not know the dynamic type of identifiers
before program execution. Thus, the only thing that the type checker can work with is the
static type of identifiers. What the type checker does, then is whenever the code says that
there is a method call such as p.foo(), it checks the static type of p, and asks whether the
static type of p has a method foo(); if yes, checking continues, if not, a type-checking error
is reported saying that foo() is undefined in the static type of p.

(There is another restriction on the type checker, which is more pragmatic: you want it to
be fast. People don’t like when type checking or compiling in general takes too long. So to
make sure that type checking can be done quickly, when type checking a method call, the
type checker only uses the signature of the method — that is, its declared parameter types,
and its declared return type. It does not actually look inside the method to see the kind of
calls that are being made. It relies on the fact that it has type checked that method already
to make sure it is guaranteed to be safe. This is going to be important later.)

We could imagine that the dynamic type of identifiers could be “guessed” or somewhat
derived by the type checker, but there are deep reasons why that cannot be done. To give
you an idea of the difficulties involved, consider that the actual type of values may and in
fact often will depend on some a priori unpredictable value. For instance, suppose that x is
an integer derived from something the user input to the program, then the following code

if (x>0)

Point.cartesian(1.0,2.0)

else

CPoint.cartesian(10.0,20.0,Color.blue())

creates either an actual Point or an actual CPoint depending on the value of x — whether
the result has dynamic type Point or CPoint therefore depends on user input, which is
definitely unknown before the program executes.

So the type checker uses the static types to do its job. Why do we even care about dynamic
types? Because that’s what gives OO languages much of their expressive power.
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Dynamic Dispatch. Consider the following function

def printPoint (p:Point):Unit =

println(p.toString())

Clearly, because printPoint() expects a Point, we should be able to give it a CPoint, since
CPoint is a subtype of Point — we will see below exactly how we can reason about those
kind of situations formally, but for now, let’s rely on our intuition.

So the following two calls should be acceptable:

printPoint(Point.cartesian(1.0,2.0))

printPoint(CPoint.cartesian(10.0,20.0,Color.red())

What gets printed? When you call

printPoint(Point.cartesian(1.0,2.0)),

this eventually invokes method toString() — which toString() method is invoked? The
one defined for the actual instance that is passed to printPoint() — the toString()

method in Point. So this prints cart(1.0,2.0). By way of contrast, when you call

printPoint(CPoint.cartesian(10.0,20.0,Color.red())),

this eventually invokes the toString() method defined for the actual instance that is passed
to printPoint() — the toString() method in CPoint. So this prints cart(10.0,20.0,red).

In Scala (and in Java, and in several modern object-oriented languages), when you invoke a
method on an instance, then the method that gets called is the method defined in the actual
type of the instance. So if you write p.toString(), the method toString() that is called
is the one defined in the dynamic type of p, since the dynamic type is the one corresponding
to the actual type of the value carried by p. This is called dynamic dispatch — the method
called (or dispatched) is the one in the dynamic type of the value on which you invoke the
method.

(In some other languages, the method called is the one defined in the static type of the value
on which the method is invoked. That’s the default behavior in C++, for instance. That’s
called, naturally enough, static dispatch.)

Dynamic dispatch is pretty powerful, because it makes it easy to adjust the behavior of
objects by simply giving different definitions for a given method. It is one of the hallmarks
of object-oriented programming, and one of the reason it took off when it did. But it’s also
a software-engineering nightmare. Why?

Consider the definition printPoint() above. Someone looking at the code might think that
the call to toString() is to the method defined in Point, but we know that’s not true. The
methods invoked depend on the dynamic type of the value passed to printPoint(), which
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can be of any subtype of Point. But that means that someone can define a subtype of Point
that happens to do anything in its toString(), and the function printPoint() will happily
call that method. Unless one knows exactly what the possible subtypes of Point exist and
what their methods are doing, it is essentially impossible to predict just what printPoint()
does. This gets worse when developing a library and offer something like printPoint(),
because then you cannot guarantee anything to users about what the function can do.1

So what do we have? The type checker uses static types to do its check, while the execution
engine uses dynamic types to determine exactly what method to call during executon. Recall
that the purpose of the type system is to ensure safety, namely, that there is never an attempt
during execution to invoke a method that does not exist. Whether there is an attempt to
invoke a method that does not exist depends on the dynamic type (since that’s what the
execution engine uses to find the method to execute), but the type checker only has access
to the static types. It turns out that in order for the type checker to never accept a program
that is not safe, it suffices for the type checker to guarantee the following invariant: that
during execution, the dynamic type of an identifier is always a subtype of its static type.
(Why is this enough?) This forces the type checker to reject some programs when it cannot
guarantee that this invariant will hold.

And understanding subtyping is in part understanding why the type checker rejects some
programs but not others.

Upcasts. There are many ways to understand subtyping. The basic model that I will
advocate is the following. First, start with the assumption that the type checker is only
happy if static types agree, so that if an expression expects a value with static type T , the
type checker will only be happy if that expression is given a value with static type T . Thus,

val x:T = <some-expr>

if okay if the static type of <some-expr> (that is the type that <some-expr> is declared to
return — the result type of a method, say) is T, since x expects a T.

Similarly,

val x:T = <some-expr>

foo(x)

if okay if foo() has a parameter with static type T.

Let’s define the following function on Points:

def sum2 (pt:Point):Double =

pt.xCoord() + pt.yCoord()

1One way around this is to restrict the extent to which Point can be subtyped. Languages have ways to
do that.
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The type checker has no problems with the following code, in which all static types agree:
Point.cartesian() returns a static Point, p expects a static Point, and sum2() expects
a static Point. Running the code form the scala interactive loop (so that we see the results
right away):

scala> {

val p:Point = Point.cartesian(1.0,2.0)

sum2(p)

}

res1: Double = 3.0

So if the type checker is only happy when static types agree, where does subtyping come in?
The type checker gets some help.

For every pair of subtypes D ≤ C in the program, think of there being a function ⇑C
D taking

values of type D and giving back that same value but now looking like it has type C. This
function is called an upcast, since it moves up the subtyping hierarchy by “transforming” Ds
into Cs. (There is also such a thing as a downcast, to which we’ll return below.)

When the type checker checks to see if type agrees and they don’t, it sees whether or not
it can insert an upcast (chosen from among the upcasts it has available — remember, every
pair of subtypes yields an upcast) to make the types agree.

Consider the following example, a variant of the one above:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

sum2(cp)

}

res2: Double = 3.0

Here, cp is a CPoint, and sum2() expects a Point — that’s a mismatch. Is there an upcast
available? We know Cpoint is a subtype of Point, so there is an upcast ⇑Point

CPoint, and

sum2(⇑Point
CPointcp)

has no type mismatch.

Similarly, in

scala> {

val p:Point = CPoint.cartesian(1.0,2.0,Color.red())

sum2(p)

}

res3: Double = 3.0
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the binding of p to a CPoint is a type mismatch — since p expects its value to be (statically)
a Point but it is given a CPoint, but as we saw there is an upcast from CPoint to Point

and the type checker is happy to insert it so that we have

val p:Point = ⇑Point
CPointCPoint.cartesian(1.0,2.0,Color.red())

which has no type mismatch.

There is no need for you to write upcasts explicitly.2 The point is: upcasts are always safe to
insert. An upcast can never make a safe program unsafe. (Why?) Therefore, if a program
is safe after an upcast has been inserted, it would have been safe even without the upcast.
That means that the type checker can actually take care of all the upcasts for you, since
it never has to worry about screwing up and making a program that was safe the way you
wrote it unsafe by adding the upcast.

Downcasts. Let’s look at a different variant example. Consider the following function:

def sum3 (cpt:CPoint):Double =

cpt.xCoord() + cpt.yCoord() + cpt.color().code()

Again, if we call sum3() with a value of static type CPoint, the type checker is happy:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

sum3(cp)

}

res4: Double = 4.0

If we do not, however, it complains bitterly:

scala> {

val p:Point = CPoint.cartesian(1.0,2.0,Color.red())

sum3(p)

}

<console>:9: error: type mismatch;

found : Point

required: CPoint

sum3(p)

2Although you can if you want. For any type C and D such that D ≤ C, you can define an upcast easily.
For CPoint and Point, for instance, you can define

def upCPointToPoint (cp:CPoint):Point = cp
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As we see, the type checker did not help us: sum3() expected a value with static type
CPoint, it received a value with static type Point. To convert one into the other, it would
have needed a downcast. Again, just like for upcasts, for every pair of subtypes D ≤ C,
there is a downcast function ⇓C

D that takes values of type C and returns them unchanged
but looking like values of type D.

The difference between downcasts and upcasts is that the type checker will never insert
a downcast for you. That’s because downcasts are not safe. In the above example, the
downcast would be fine — why? Well, during execution, p gets an actual CPoint (the
dynamic type of p during execution is indeed CPoint) — it just looks like a Point to the
type system because the static type of p is Point (and note that the type checker will need
to throw in an upcast to make the CPoint type agree with the Point type in the val line).
Were that value p be passed to sum3(), it would be fine because sum3() will access the
xCoord(), yCoord(), and color() methods of p, and it has all of those because its dynamic
type is indeed CPoint. So we could expect that the system would insert a downcast like this:

sum3(⇓Point
CPointp)

The problem is that the system cannot guarantee that such a downcast is safe. Consider the
following variant of the code above:

scala> {

val p:Point = Point.cartesian(1.0,2.0)

sum3(p)

}

<console>:9: error: type mismatch;

found : Point

required: CPoint

sum3(p)

As far as the type system is concerned, when looking at sum3(p), it sees that p has static
type Point, and that sum3() expects a static type CPoint. Should it insert a downcast?
No, because the dynamic type of p during execution is actually a Point, and were it passed
to sum3() the method color() would not be defined. So that program’s unsafe.

When type checking sum3(), the only information that the type checker looks at is the
static type of the values it has to work with. It sees p with static type Point and sum3()

expecting a value of static type CPoint. It cannot insert a downcast because just based on
that information it doesn’t know whether it is in the first case above (where the value p

has dynamic type CPoint) or the second case above (where the value p has dynamic type
Point). The first case would be fine, the second case would be disastrous. So it has to act
conservatively, and never insert downcasts.

Bottom line: type checking requires static types to agree. upcasts can be used to bridge
static types that do not agree, and they are inserted automatically for you by the type
checker. Downcasts, however, are never inserted for you.
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Information Loss. Consider the following two functions:

def identityPoint (pt:Point):Point =

pt

def clonePoint (pt:Point):Point =

Point.cartesian(pt.xCoord(),pt.yCoord())

First, note that identityPoint() just returns its argument, while clonePoint() constructs
a new Point out of its argument. Second note that the two functions have exactly the same
signature: they both take a Point argument, and return a Point result. Therefore, by the
statement I made above regarding how the type checker works, the type checker will not be
able to distinguish these two functions when reasoning about calls to those functions.

Let’s make sure that we understand what happens when we try to use those functions. In
this first example, all static types agree, so the type checker is happy.

scala> {

val p:Point = Point.cartesian(1.0,2.0)

val q:Point = identityPoint(p)

sum2(q)

}

res7: Double = 3.0

In this second example, the type checker is happy because it can insert an upcast when
calling identityPoint():

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val q:Point = identityPoint(cp)

sum2(q)

}

res8: Double = 3.0

If we try to bind the result of identityPoint() to a CPoint, we fail as in this third example:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val cq:CPoint = identityPoint(cp)

sum3(cq)

}

<console>:10: error: type mismatch;

found : Point

required: CPoint

val cq:CPoint = identityPoint(cp)
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There is an upcast inserted before the argument of identityPoint, but to take the result
(which has static type Point) and bind it to cq which is declared to have static type CPoint,
we need a downcast, and the type checker does not insert those for us. So we get a type-
checking error. For exactly that same reason, the type checker gives an error if we also try
to do that with clonePoint():

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val cq:CPoint = clonePoint(cp)

sum3(cq)

}

<console>:10: error: type mismatch;

found : Point

required: CPoint

val cq:CPoint = clonePoint(cp)

And rightly so — if this was not forbidden, we could pass cq to sum3() and we’d get a
runtime error that the color() method does not exist in cq.

But there’s something going on here. Looking at identityPoint(), it just returns its
argument untouched. Meaning that if we construct a CPoint and pass it to identityPoint,
the result will have dunamic type CPoint. In contrast, clonePoint() construct an actual
Point from whatever its argument is, meaning that if we pass clonePoint() a colored point,
the result will have dynamic type Point.

The types we have at this point, however, cannot pin down this difference between the
behavior of identityPoint() and clonePoint(). Intuitively, the type of identityPoint()
loses some information about what identityPoint() does, and that makes code such as the
third example above fail, while we know full well the program is safe.

How can we recover from this information loss? We can use downcasts. Now, the type
checker does not insert downcasts automatically for us — as we saw, they’re not safe in
general. Downcasts are only safe when the value they’re downcasting has dynamic type that
is a subtype of the type you’re downcasting to. (Ouch, that’s a mouthful.) And the thing
is, we can insert downcasts by hand. We just need to define them first. Here’s the downcast
from Point to CPoint:

def downPointToCPoint (pt:Point):CPoint =

pt match {

case cpt : CPoint => cpt

case _ => throw new RuntimeException("conversion to CPoint failed")

}

This function basically checks the dynamic type of its argument using match — if it is
CPoint, then it returns that CPoint. If not, then it throws an exception indicating you’ve
tried to downcast a Point to a CPoint when what you had was not really a CPoint.
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And with this, we can now satisfy the type checker in our third example:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val q:Point = identityPoint(cp)

sum3(downPointToCPoint(q))

}

res12: Double = 4.0

The type checker is happy, and execution proceeds correctly.

What about using a downcast in the clonePoint() example? Something should go wrong,
right, because we saw that the program is unsafe.

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val q:Point = clonePoint(cp)

sum3(downPointToCPoint(q))

}

java.lang.RuntimeException: conversion to CPoint failed

at .downPointToCPoint(<console>:8)

...

Note that the program type checked — the type checker was happy with the downcast, since
all the static types agreed — but the program failed during execution, with an exception
from our downcast, stating that the downcast we’re trying to perform is not possible.

What we’ve done, with downcast, is trade the niceness of getting compile-time errors (that is,
the type checker complaining that something might be unsafe), for instead having run-time
errors (the downcast failing with an exception because the program is unsafe).

Because of that, becaue they trade compile-time errors for run-time errors, downcasts are
usually frowned upon. But they seem necessary in the cases like identityPoint() to recover
information lost because the type system could not precisely enough describe the behavior
of identityPoint(). Or could it?

Generic Methods. The problem is that the type of identityPoint() is the same as that
of clonePoint(), even though the two functions behave quite differently. In particular, we
know full well that whatever the dynamic type of the argument of identityPoint() is, the
result will have that exact same dynamic type.

It turns out that by using a generic method, we can define a method a suitable type that
says exactly that. Intuitively, we want the type of identityPoint() to say that it takes an
argument of some type T and returns a result of that same exact type T , and does so for
any type T that is a subtype of Point. Let’s write that down:
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def identityPoint[T <: Point] (pt:T):T =

pt

You can think of the [T <: Point] part as an extra parameter to the method, so that
when you call it not only do you pass the regular arguments, but also another argu-
ment representing the type at which you want identityPoint() to work. Intuitively,
identityPoint[Point]() takes a (static) Point as argument and returns a (static) Point,
while identityPoint[CPoint] takes a (static) CPoint as argument and returns a (static)
CPoint.

We can confirm that we can use this new function appropriately. First, the third example
from before:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val cq:CPoint = identityPoint[CPoint](cp)

sum3(cq)

}

res14: Double = 4.0

and here’s another example that shows that static types still need to agree:

scala> {

val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())

val cq:CPoint = identityPoint[Point](cp)

sum3(cq)

}

<console>:10: error: type mismatch;

found : Point

required: CPoint

val cq:CPoint = identityPoint[Point](cp)

^

Again, since identityPoint[Point]() returns a value of static type Point, in order for
that to match with the expected type CPoint, the type checker would need to introduce a
downcast, which it will never do automatically, so we get a type error.

Two things. First off, you often do not have to specify the type argument when calling a
generic function — that type can usually be inferred for you. So you can just write

val cq:CPoint = identityPoint(cp)

and the system will fill in the [CPoint] for you.

Second, if the bound on the type parameter in the generic method is <: Any, then it can
simply be left out. For instance, here is a definition for a general identity function:
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def identity[T] (x:T):T = x

and some sample execution:

scala> {

val i:Int = 100

val j:Int = identity[Int](i)

j

}

res16: Int = 100
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